SlideShare a Scribd company logo
1 of 22
Concept Kit:PWM Buck Converter Average Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Pre Version
Contents Concept of Simulation Buck Converter Circuit Switches Filter & Load 4.1 Inductor 4.2 Capacitor PWM Controller 5.1 Error Amp. 5.2 PWM Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Type 2 Compensator Calculator Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3 1.Concept of Simulation Block Diagram: Power Switches Averaged Buck Switch Model Filter & Load Parameter: ,[object Object]
C
ESR
RloadPWM Controller  (Voltage Mode Control) Parameter: ,[object Object]
VREFVOUT VREF Models:
2.Buck Converter Circuit All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4 Power Switches Filter & Load PWM Controller
3.Switches  ,[object Object]
Transfer function of the model is vout = d  vin ,[object Object],iin = d  iout All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 5
4.1 Filter & Load: Inductor All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6 Inductor Value The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode). Calculated by Where LCCM is the inductor that make the converter to work in CCM. VI,max is input maximum voltage RL(max) is load resistance at the minimum output current (IOUT) fosc is switching frequency (1)
4.2 Filter & Load: Capacitor All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7 Capacitor Value The minimum allowable output capacitor value should be determined by Where IL, RIPPLE is an inductor ripple current, chosen to be 25% of IOUT. VO,RIPPLE is an output ripple voltage. fosc is switching frequency ,[object Object],(2) (3)
[object Object],5.1 PWM Controller: Error Amp.  All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 8 Vo (4) Error Amp.
5.2 PWM Controller: PWM All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle. The error voltage (vcomp) will be compared with sawtooth signal ( amplitude = VP ) to create the pulse that the duty cycle depends on the vcomp Transfer function of the PWM block is  d = vcomp/ VP GPWM = 1/VP VP Duty cycle (d) is a value from 0 to 1
[object Object],The purpose of the compensator G(s)is to tailor the converter loop gain (frequency response) to make it stable when operated in closed-loop conditions. 5.3 PWM Controller: Compensator All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 10 H(s) G(s) GPWM
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11 Specification: VOUT = 5V VIN = 7 ~ 40V ILOAD = 0.2 ~ 1A L = 330uH,  C = 330uF (ESR = 100m), Rupper = 3.1k, Rlower = 1k, PWM Controller: fOSC = 52kHz VP = 2.5V VREF = 1.23V Task: to find out the element of the Type 2 compensator ( R2, C1, and C2 ) G(s) e.g. Characteristics from National Semiconductor Corp. IC: LM2575
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12 The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the average models (ac models). Step2 Set C1=1kF, C2=1fF, and R2= calculated value (Rupper//Rlower) as the initial values. Step1 Open the loop with LoL=1kH and CoL=1kF then inject the ac signal to generate Bode plot.
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13 Step3 Select a crossover frequency (fc < fosc/4), for this example, 10kHz is selected. Then complete the table. Calcuted value of the Rupper//Rlower
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14 6.Stablilizing the Converter  (Example)  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximate from the characteristics below. from  d = vcomp/ VP Suppose that the error amp. gain is 100. vcomp =gain (-vFB)then  d = (100   (-vFB) ) / VP From the graph on the left, vFB = -25mV 	 VP = (100  (-vFB) ) / d 	VP ≈ (100  (-(-25mV)) ) / 1 	     ≈ 2.5V vFB = -25mV d = 1 (100%) LM2575: Feedback Voltage vs. Duty Cycle
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15 6.Stablilizing the Converter  (Example) Gain: T(s) = H(s)GPWM Step4 Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table . Phase atfc Tip: To bring cursor to the fc = 10kHz  type “ sfxv(10k) ” in Search Command. Cursor Search
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16 Step5 Select the desired amount of phase margin you need at fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=25 is chosen for Phase margin = 46. R2, C1, and C2 are calculated  K Factor, introduce by Dean Venable, enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results from a few straight-forward algebraic equations.
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17 The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by  Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation. The calculated values of the type 2 elements are, C1=0.778nF, C2=21.6pF, and R2=122.780k. *Analysis directives:  .AC DEC 100 0.1 10MEG

More Related Content

What's hot

Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
altaf423
 
2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學
2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學
2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學
ssuser29f076
 
3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)
firozamin
 

What's hot (20)

MOSFET AND JFET
MOSFET AND JFETMOSFET AND JFET
MOSFET AND JFET
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
Two port network
Two port networkTwo port network
Two port network
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 
Operational Amplifiers
Operational AmplifiersOperational Amplifiers
Operational Amplifiers
 
Basics of op amp
Basics of op ampBasics of op amp
Basics of op amp
 
Operational Amplifier Design
Operational Amplifier DesignOperational Amplifier Design
Operational Amplifier Design
 
CASCADE AMPLIFIER
CASCADE AMPLIFIERCASCADE AMPLIFIER
CASCADE AMPLIFIER
 
Single Stage Differential Folded Cascode Amplifier
Single Stage Differential Folded Cascode AmplifierSingle Stage Differential Folded Cascode Amplifier
Single Stage Differential Folded Cascode Amplifier
 
2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學
2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學
2024 SIMPLIS 系列課程 _ SIMPLIS電路模擬軟體的基礎操作教學
 
DC Power Supply with a Full-Wave Bridge Rectifier
DC Power Supply with a Full-Wave Bridge RectifierDC Power Supply with a Full-Wave Bridge Rectifier
DC Power Supply with a Full-Wave Bridge Rectifier
 
Boost converter
Boost converterBoost converter
Boost converter
 
Field Effect Transistor (FET) and it's Types
Field Effect Transistor (FET) and it's TypesField Effect Transistor (FET) and it's Types
Field Effect Transistor (FET) and it's Types
 
Chapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdfChapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdf
 
3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)
 
Time base Generators (part-1)
Time base Generators (part-1)Time base Generators (part-1)
Time base Generators (part-1)
 
Comparator
ComparatorComparator
Comparator
 
Oscillators
OscillatorsOscillators
Oscillators
 
Dc–Dc converters
Dc–Dc convertersDc–Dc converters
Dc–Dc converters
 

Similar to PWM Buck Converter using Average Model

Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
Tsuyoshi Horigome
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
cuashok07
 

Similar to PWM Buck Converter using Average Model (20)

「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
Final Project
Final ProjectFinal Project
Final Project
 
Chapter two Part two.pptx
Chapter two Part two.pptxChapter two Part two.pptx
Chapter two Part two.pptx
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 
ADC LAB MANUAL.docx
ADC LAB MANUAL.docxADC LAB MANUAL.docx
ADC LAB MANUAL.docx
 
15 47-58
15 47-5815 47-58
15 47-58
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
 
Time response of first order systems and second order systems
Time response of first order systems and second order systemsTime response of first order systems and second order systems
Time response of first order systems and second order systems
 
Analog Communication Lab Manual
Analog Communication Lab ManualAnalog Communication Lab Manual
Analog Communication Lab Manual
 
OSAMAFINALEMINAR19.pptx
OSAMAFINALEMINAR19.pptxOSAMAFINALEMINAR19.pptx
OSAMAFINALEMINAR19.pptx
 

More from Tsuyoshi Horigome

More from Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Recently uploaded

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 

PWM Buck Converter using Average Model

  • 1. Concept Kit:PWM Buck Converter Average Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Pre Version
  • 2. Contents Concept of Simulation Buck Converter Circuit Switches Filter & Load 4.1 Inductor 4.2 Capacitor PWM Controller 5.1 Error Amp. 5.2 PWM Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Type 2 Compensator Calculator Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
  • 3.
  • 4. C
  • 5. ESR
  • 6.
  • 8. 2.Buck Converter Circuit All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4 Power Switches Filter & Load PWM Controller
  • 9.
  • 10.
  • 11. 4.1 Filter & Load: Inductor All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6 Inductor Value The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode). Calculated by Where LCCM is the inductor that make the converter to work in CCM. VI,max is input maximum voltage RL(max) is load resistance at the minimum output current (IOUT) fosc is switching frequency (1)
  • 12.
  • 13.
  • 14. 5.2 PWM Controller: PWM All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle. The error voltage (vcomp) will be compared with sawtooth signal ( amplitude = VP ) to create the pulse that the duty cycle depends on the vcomp Transfer function of the PWM block is d = vcomp/ VP GPWM = 1/VP VP Duty cycle (d) is a value from 0 to 1
  • 15.
  • 16. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11 Specification: VOUT = 5V VIN = 7 ~ 40V ILOAD = 0.2 ~ 1A L = 330uH, C = 330uF (ESR = 100m), Rupper = 3.1k, Rlower = 1k, PWM Controller: fOSC = 52kHz VP = 2.5V VREF = 1.23V Task: to find out the element of the Type 2 compensator ( R2, C1, and C2 ) G(s) e.g. Characteristics from National Semiconductor Corp. IC: LM2575
  • 17. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12 The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the average models (ac models). Step2 Set C1=1kF, C2=1fF, and R2= calculated value (Rupper//Rlower) as the initial values. Step1 Open the loop with LoL=1kH and CoL=1kF then inject the ac signal to generate Bode plot.
  • 18. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13 Step3 Select a crossover frequency (fc < fosc/4), for this example, 10kHz is selected. Then complete the table. Calcuted value of the Rupper//Rlower
  • 19. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14 6.Stablilizing the Converter (Example)  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximate from the characteristics below. from d = vcomp/ VP Suppose that the error amp. gain is 100. vcomp =gain (-vFB)then d = (100  (-vFB) ) / VP From the graph on the left, vFB = -25mV VP = (100  (-vFB) ) / d VP ≈ (100  (-(-25mV)) ) / 1 ≈ 2.5V vFB = -25mV d = 1 (100%) LM2575: Feedback Voltage vs. Duty Cycle
  • 20. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15 6.Stablilizing the Converter (Example) Gain: T(s) = H(s)GPWM Step4 Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table . Phase atfc Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command. Cursor Search
  • 21. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16 Step5 Select the desired amount of phase margin you need at fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=25 is chosen for Phase margin = 46. R2, C1, and C2 are calculated  K Factor, introduce by Dean Venable, enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results from a few straight-forward algebraic equations.
  • 22. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17 The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation. The calculated values of the type 2 elements are, C1=0.778nF, C2=21.6pF, and R2=122.780k. *Analysis directives: .AC DEC 100 0.1 10MEG
  • 23. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 18 6.Stablilizing the Converter (Example) Gain: T(s) = H(s) G(s)GPWM Phase atfc Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz. Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command. Cursor Search
  • 24. 7. Load Transient Response Simulation (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 19 The converter, that have been stabilized, are connected with step-load to perform load transient response simulation. 5V/2.5 = 0.2A step to 0.2+0.8=1.0A load *Analysis directives: .TRAN 0 20ms 0 1u
  • 25.
  • 26.