Copyright (C) Bee Technologies Inc. 2011<br />1<br />SPICEの活用方法<br />「コンセプトキット」でパラメータベース・シミュレーション<br />1.PWM Buck Converte...
コンセプトキットの位置付け<br />Copyright (C) Bee Technologies Inc. 2011<br />2<br />[スパイスモデル]デバイスモデリングサービス(58種類のデバイスモデリング)<br />スパイス・パ...
コンセプトキットとは<br />Copyright (C) Bee Technologies Inc. 2011<br />3<br />
デザインキット<br />Copyright (C) Bee Technologies Inc. 2011<br />4<br />要望が多いインバータ回路方式を中心に20種類の新製品を開発中。<br />
Concept Kit:PWM Buck Converter Average Model<br />Copyright (C) Bee Technologies Inc. 2011<br />5<br />
Contents<br />Concept of Simulation<br />Buck Converter Circuit<br />Averaged Buck Switch Model<br />Buck Regulator Design...
Copyright (C) Bee Technologies Inc. 2011<br />7<br />Concept of Simulation<br />Block Diagram:<br />Power Switches<br />Av...
C
ESR
Rload</li></ul>PWM Controller <br />(Voltage Mode Control)<br />Parameter:<br /><ul><li>VP
VREF</li></ul>VOUT<br />VREF<br />Models:<br />
Buck Converter Circuit<br />Copyright (C) Bee Technologies Inc. 2011<br />8<br />Power Switches<br />Filter & Load<br />PW...
Averaged Buck Switch Model<br /><ul><li>The Averaged Buck Switch Model represents relation between input and output of the...
Transfer function of the model is </li></ul>vout = d  vin<br /><ul><li>The current flow into the switch is </li></ul>iin ...
Buck Regulator Design Workflow <br />Copyright (C) Bee Technologies Inc. 2011<br />10<br />Setting PWM Controller’s Parame...
Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table
Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for...
Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 agai...
Buck Regulator Design Workflow <br />Copyright (C) Bee Technologies Inc. 2011<br />11<br />3<br />4<br />5<br />2<br />1<b...
<ul><li>VREF, feedback reference voltage, value is given by the datasheet
VP=  (Error Amp. Gain  vFB ) / d
vFB = vFBH – vFBL
d = dMAX – dMIN
Error Amp. Gain is 100 (approximated)</li></ul>	where<br />VP is the sawtooth peak voltage.<br />vFBH is maximum FB voltag...
Copyright (C) Bee Technologies Inc. 2011<br />13<br />Setting PWM Controller’s Parameters (Example)<br />1<br /> If the V...
Use the following formula to select the resistor values.<br /><ul><li>Rlower can be between 1k and 5k.</li></ul>Example<br...
Inductor Selection: L<br />Copyright (C) Bee Technologies Inc. 2011<br />15<br />Inductor Value<br />The output inductor v...
VI,max is input maximum voltage
RL,min is load resistance at the minimum output current ( IOUT,min )
fosc is switching frequency</li></ul>3<br />
Inductor Selection: L (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />16<br />Inductor Value<br />from<br />G...
Capacitor Selection: C, ESR<br />Copyright (C) Bee Technologies Inc. 2011<br />17<br />Capacitor Value<br />The minimum al...
Capacitor Selection: C, ESR (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />18<br />Capacitor Value<br />From...
Copyright (C) Bee Technologies Inc. 2011<br />19<br />Stabilizing the Converter<br />5<br />H(s)<br />G(s)<br /><ul><li>Lo...
Stabilizing the Converter  (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />20<br />5<br />Specification:<br /...
Copyright (C) Bee Technologies Inc. 2011<br />21<br />Stabilizing the Converter  (Example)<br />5<br />The element of the ...
Stabilizing the Converter  (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />22<br />5<br />Step3 Select a cros...
Copyright (C) Bee Technologies Inc. 2011<br />23<br />Stabilizing the Converter  (Example)<br />5<br />Gain: T(s) = H(s)G...
Stabilizing the Converter  (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />24<br />5<br />Step5 Select the ph...
Stabilizing the Converter  (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />25<br />5<br />The element of the ...
Copyright (C) Bee Technologies Inc. 2011<br />26<br />Stabilizing the Converter  (Example)<br />5<br />Gain and Phase resp...
Load Transient Response Simulation (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />27<br />The converter, tha...
Simulation<br />Measurement<br />Copyright (C) Bee Technologies Inc. 2011<br />28<br />Load Transient Response Simulation ...
Copyright (C) Bee Technologies Inc. 2011<br />30<br />B. Feedback Loop Compensators<br />Type1 Compensator<br />Type2 Comp...
Copyright (C) Bee Technologies Inc. 2011<br />31<br />C. Simulation Index<br />Libraries :<br />..bucksw.lib<br />..pwm_ct...
Copyright (C) Bee Technologies Inc. 2011<br />33<br />Unipolar Stepping Motor Drive Circuit <br />
Copyright (C) Bee Technologies Inc. 2011<br />34<br />1.Concept of Simulation<br />Block Diagram:<br />Driver Unit:<br />(...
HYS</li></ul>Switches<br />(e.g. FET, Diode)<br />Parameter:<br /><ul><li>Ron</li></ul>Control Unit <br />(e.g. Microcontr...
Two-Phase
Half-Step</li></ul>Stepping Motor<br />Parameter:<br /><ul><li>L
R</li></ul>Models:<br />
2.Unipolar Stepping Motor Drive Circuit<br />Copyright (C) Bee Technologies Inc. 2011<br />35<br />Signal generator<br />H...
3.Unipolar Stepping Motor <br />Copyright (C) Bee Technologies Inc. 2011<br />36<br />The electrical equivalent circuit of...
4.Switches <br />Copyright (C) Bee Technologies Inc. 2011<br />37<br />A near-ideal DIODE can be modeled by using spice pr...
5.Signal Generator<br />The signal generators are used as a microcontroller capable of generating step pulses and directio...
Assures the accuracy regardless of the winding imbalance.</li></ul>Two-Phase (Hi-Torque)<br /><ul><li>Energizes 2 phases a...
Offers an improved torque-speed result and greater holding torque.</li></ul>Input PPS (Pulse Per Second) as a clock pulse ...
Reduces motor resonance which could cause a motor to stall at a resonant frequency.
Please note that this sequence is 8 steps.</li></li></ul><li>5.1 One-Phase Sequence<br />Copyright (C) Bee Technologies In...
5.2 Two-Phase Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />40<br />Clock<br />Phase A<br />ON<br />Phase /A...
5.3 Half-Step Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />41<br />Clock<br />Phase A<br />ON<br />Phase /A...
6.Hysteresis-Based Current Controller<br />Copyright (C) Bee Technologies Inc. 2011<br />42<br />Controlled by the signal ...
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />43<br />One-Pha...
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />44<br />Clock<b...
7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />45<br />Two-Pha...
7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />46<br />Clock<b...
7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />47<br />Half-P...
7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />48<br />Clock<...
Upcoming SlideShare
Loading in …5
×

「SPICEの活用方法」セミナー資料(28JAN2011) PPT

1,781 views

Published on

2011年1月28日に発表しました「SPICEの活用方法」の資料です。このデータは、パワー・ポイント版になります。お問い合わせは、ビー・テクノロジーまで。info@bee-tech.com

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,781
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
18
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

「SPICEの活用方法」セミナー資料(28JAN2011) PPT

  1. 1. Copyright (C) Bee Technologies Inc. 2011<br />1<br />SPICEの活用方法<br />「コンセプトキット」でパラメータベース・シミュレーション<br />1.PWM Buck Converter Average Model←[DEMO] フィードバック制御におけるアベレージモデルを活用した 位相余裕度のシミュレーションの活用方法を解説していきます。2.ステッピングモータのコンセプトキット [事例紹介]2.1 ユニポーラ・ステッピングモーター制御回路2.2 バイポーラ・ステッピングモーター制御回路<br />2011年1月28日(金曜日)<br />株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com<br />
  2. 2. コンセプトキットの位置付け<br />Copyright (C) Bee Technologies Inc. 2011<br />2<br />[スパイスモデル]デバイスモデリングサービス(58種類のデバイスモデリング)<br />スパイス・パーク www.spicepark.com<br />シンプルモデル(NEW)←ブロックベースのスパイスモデル<br />[デザインキット]回路方式のテンプレート<br />コンセプトキット(NEW)←(概念設計のテンプレート)<br />デザインキット(各回路方式のテンプレート)<br />回路解析シミュレータSpice 系回路解析シミュレータPSpice,LTspice,MultiSim,MicroCap,HSPICE,SmartSPICE,Simplorer, and so on<br />
  3. 3. コンセプトキットとは<br />Copyright (C) Bee Technologies Inc. 2011<br />3<br />
  4. 4. デザインキット<br />Copyright (C) Bee Technologies Inc. 2011<br />4<br />要望が多いインバータ回路方式を中心に20種類の新製品を開発中。<br />
  5. 5. Concept Kit:PWM Buck Converter Average Model<br />Copyright (C) Bee Technologies Inc. 2011<br />5<br />
  6. 6. Contents<br />Concept of Simulation<br />Buck Converter Circuit<br />Averaged Buck Switch Model<br />Buck Regulator Design Workflow<br />Setting PWM Controller’s Parameters.<br />Programming Output Voltage: Rupper, Rlower<br />Inductor Selection: L<br />Capacitor Selection: C, ESR<br />Stabilizing the Converter (Example)<br />Load Transient Response Simulation (Example)<br />Appendix<br />Type 2 Compensation Calculation using Excel<br />Feedback Loop Compensators<br />Simulation Index<br />Copyright (C) Bee Technologies Inc. 2011<br />6<br />
  7. 7. Copyright (C) Bee Technologies Inc. 2011<br />7<br />Concept of Simulation<br />Block Diagram:<br />Power Switches<br />Averaged Buck Switch Model<br />Filter & Load<br />Parameter:<br /><ul><li>L
  8. 8. C
  9. 9. ESR
  10. 10. Rload</li></ul>PWM Controller <br />(Voltage Mode Control)<br />Parameter:<br /><ul><li>VP
  11. 11. VREF</li></ul>VOUT<br />VREF<br />Models:<br />
  12. 12. Buck Converter Circuit<br />Copyright (C) Bee Technologies Inc. 2011<br />8<br />Power Switches<br />Filter & Load<br />PWM Controller<br />
  13. 13. Averaged Buck Switch Model<br /><ul><li>The Averaged Buck Switch Model represents relation between input and output of the switch that is controlled by duty cycle – d (value between 0 and 1).
  14. 14. Transfer function of the model is </li></ul>vout = d  vin<br /><ul><li>The current flow into the switch is </li></ul>iin = d  iout<br />Copyright (C) Bee Technologies Inc. 2011<br />9<br />
  15. 15. Buck Regulator Design Workflow <br />Copyright (C) Bee Technologies Inc. 2011<br />10<br />Setting PWM Controller’s Parameters: VREF, VP<br />1<br />Setting Output Voltage: Rupper, Rlower<br />2<br />Inductor Selection: L<br />3<br />Capacitor Selection: C, ESR<br />4<br />Stabilizing the Converter: R2, C1, C2<br /><ul><li>Step1: Open the loopwith LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot. (always default)
  16. 16. Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
  17. 17. Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
  18. 18. Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table
  19. 19. Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.
  20. 20. Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.</li></ul>5<br />Load Transient Response Simulation<br />6<br />
  21. 21. Buck Regulator Design Workflow <br />Copyright (C) Bee Technologies Inc. 2011<br />11<br />3<br />4<br />5<br />2<br />1<br />
  22. 22. <ul><li>VREF, feedback reference voltage, value is given by the datasheet
  23. 23. VP= (Error Amp. Gain  vFB ) / d
  24. 24. vFB = vFBH – vFBL
  25. 25. d = dMAX – dMIN
  26. 26. Error Amp. Gain is 100 (approximated)</li></ul> where<br />VP is the sawtooth peak voltage.<br />vFBH is maximum FB voltage where d = 0<br />vFBL is minimum FB voltage where d =1(100%)<br />dMAX is maximum duty cycle, e.g. d = 0(0%)<br />dMIN is minimum duty cycle, e.g. d =1(100%)<br />Setting PWM Controller’s Parameters<br />Copyright (C) Bee Technologies Inc. 2011<br />12<br />1<br />The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle.<br /> If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.<br />
  27. 27. Copyright (C) Bee Technologies Inc. 2011<br />13<br />Setting PWM Controller’s Parameters (Example)<br />1<br /> If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximated from the characteristics below.<br />from<br />VP= (Error Amp. Gain  vFB )/d<br />Error Amp. Gain = 100 (approximated)<br />from the graph on the left, vFB= 25mV (15m - (-10m))<br />d = 1 – 0 = 1<br />VP ≈ ( 100  25mV )/1<br /> ≈ 2.5V<br />vFBH<br />vFB = 25mV<br />vFBL<br />d = 1 (100%)<br />dMIN<br />dMAX<br />LM2575: Feedback Voltage vs. Duty Cycle<br /> If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.<br />
  28. 28. Use the following formula to select the resistor values.<br /><ul><li>Rlower can be between 1k and 5k.</li></ul>Example<br />Given: VOUT = 5V<br /> VREF = 1.23<br />Rlower = 1k<br />then: Rupper = 3.065k<br />Setting Output Voltage: Rupper, Rlower<br />Copyright (C) Bee Technologies Inc. 2011<br />14<br />2<br />
  29. 29. Inductor Selection: L<br />Copyright (C) Bee Technologies Inc. 2011<br />15<br />Inductor Value<br />The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode).<br />Calculated by<br />Where<br /><ul><li>LCCM is the inductor that make the converter to work in CCM.
  30. 30. VI,max is input maximum voltage
  31. 31. RL,min is load resistance at the minimum output current ( IOUT,min )
  32. 32. fosc is switching frequency</li></ul>3<br />
  33. 33. Inductor Selection: L (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />16<br />Inductor Value<br />from<br />Given: <br />VI,max = 40V, VOUT = 5V<br />IOUT,min = 0.2A<br />RL,min = (VOUT /IOUT,min ) = 25<br />fosc = 52kHz<br />Then:<br />LCCM 210(uH), <br />L = 330(uH) is selected<br />3<br />
  34. 34. Capacitor Selection: C, ESR<br />Copyright (C) Bee Technologies Inc. 2011<br />17<br />Capacitor Value<br />The minimum allowable output capacitor value should be determined by<br />Where<br />VI, max is the maximum input voltage.<br />L (H) is the inductance calculated from previous step ( ).<br /><ul><li>In addition, the output ripple voltage due to the capacitor ESR must be considered as the following equation.</li></ul>4<br />3<br />
  35. 35. Capacitor Selection: C, ESR (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />18<br />Capacitor Value<br />From<br />and<br />Given:<br />VI, max = 40 V<br />VOUT = 5 V<br />L (H) = 330<br />Then:<br />C 188 (F)<br />In addition:<br />ESR 100m<br />4<br />
  36. 36. Copyright (C) Bee Technologies Inc. 2011<br />19<br />Stabilizing the Converter<br />5<br />H(s)<br />G(s)<br /><ul><li>Loop gain for this configuration is</li></ul>GPWM<br />The purpose of the compensator G(s)is to tailor the converter loop gain (frequency response) to make it stable when operated in closed-loop conditions.<br />
  37. 37. Stabilizing the Converter (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />20<br />5<br />Specification:<br />VOUT = 5V<br />VIN = 7 ~ 40V<br />ILOAD = 0.2 ~ 1A<br />PWM Controller:<br />VREF = 1.23V<br />VP = 2.5V<br />fOSC = 52kHz<br />Rlower = 1k,<br />Rupper = 3.1k,<br />L = 330uH, <br />C = 330uF (ESR = 100m)<br />Task:<br /><ul><li>to find out the element of the Type 2 compensator ( R2, C1, and C2 )</li></ul>G(s)<br />1<br />e.g. Given values from National Semiconductor Corp. IC: LM2575 <br />2<br />3<br />4<br />
  38. 38. Copyright (C) Bee Technologies Inc. 2011<br />21<br />Stabilizing the Converter (Example)<br />5<br />The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the Average Switch Models (ac models).<br />Step2 Set C1=1kF, C2=1fF, and R2=calculated value (Rupper//Rlower) as the initial values.<br />Step1 Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot.<br /> C1=1kF is AC shorted, and C2 1fF is AC opened (or Error-Amp without compensator).<br />
  39. 39. Stabilizing the Converter (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />22<br />5<br />Step3 Select a crossover frequency (about 10kHz or fc < fosc/4 ), for this example, 10kHz is selected. Then complete the table.<br />values from <br />2<br />Calculated value of the Rupper//Rlower<br />values from <br />1<br />
  40. 40. Copyright (C) Bee Technologies Inc. 2011<br />23<br />Stabilizing the Converter (Example)<br />5<br />Gain: T(s) = H(s)GPWM<br />Step4 Read the Gain and Phase value at the crossover frequency(10kHz) from the Bode plot, Then put the values to the table.<br />Phase  atfc<br />Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command.<br />Cursor Search<br />
  41. 41. Stabilizing the Converter (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />24<br />5<br />Step5 Select the phase margin at fc (> 45 ). Then change the K value (start from K=2) until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.<br />As the result; R2, C1, and C2 are calculated.<br />Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.<br /> K Factor enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results. A very big K value (e.g. K > 100) acts like no compensator (C1 is shorted and C2 is opened).<br />
  42. 42. Stabilizing the Converter (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />25<br />5<br />The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation.<br />The calculated values of the type 2 elements are, R2=122.780k, C1=0.778nF, and C2=21.6pF.<br />*Analysis directives: <br />.AC DEC 100 0.1 10MEG<br />
  43. 43. Copyright (C) Bee Technologies Inc. 2011<br />26<br />Stabilizing the Converter (Example)<br />5<br />Gain and Phase responses after stabilizing<br />Gain: T(s) = H(s) G(s)GPWM<br />Phase  atfc<br />Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz.<br />Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command.<br />Cursor Search<br />
  44. 44. Load Transient Response Simulation (Example)<br />Copyright (C) Bee Technologies Inc. 2011<br />27<br />The converter, that have been stabilized, are connected with step-load to perform load transient response simulation.<br />5V/2.5 = 0.2A step to 0.2+0.8=1.0A load<br />*Analysis directives: <br />.TRAN 0 20ms 0 1u<br />
  45. 45. Simulation<br />Measurement<br />Copyright (C) Bee Technologies Inc. 2011<br />28<br />Load Transient Response Simulation (Example)<br />Output Voltage Change<br />Load Current<br /><ul><li>The simulation results are compared with the measurement data (National Semiconductor Corp. IC LM2575 datasheet).</li></li></ul><li>A. Type 2 Compensation Calculation using Excel<br />Copyright (C) Bee Technologies Inc. 2011<br />29<br />
  46. 46. Copyright (C) Bee Technologies Inc. 2011<br />30<br />B. Feedback Loop Compensators<br />Type1 Compensator<br />Type2 Compensator<br />Type2a Compensator<br />Type2b Compensator<br />Type3 Compensator<br />
  47. 47. Copyright (C) Bee Technologies Inc. 2011<br />31<br />C. Simulation Index<br />Libraries :<br />..bucksw.lib<br />..pwm_ctr.lib<br />Tool :<br /><ul><li>Type 2 Compensator Calculator (Excel sheet)</li></li></ul><li>Unipolar Stepping Motor Drive Circuit <br />Contents<br />Concept of Simulation<br />Unipolar Stepping Motor Drive Circuit<br />Unipolar Stepping Motor<br />Switches<br />Signal Generator<br />Hysteresis-Based Current Controller<br />Unipolar Stepping Motor Drive Circuit (Example)<br />7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Drive Circuit Efficiency<br />Copyright (C) Bee Technologies Inc. 2011<br />32<br />
  48. 48. Copyright (C) Bee Technologies Inc. 2011<br />33<br />Unipolar Stepping Motor Drive Circuit <br />
  49. 49. Copyright (C) Bee Technologies Inc. 2011<br />34<br />1.Concept of Simulation<br />Block Diagram:<br />Driver Unit:<br />(e.g. Hysteresis-Based Controller)<br />Parameter:<br /><ul><li>I_SET
  50. 50. HYS</li></ul>Switches<br />(e.g. FET, Diode)<br />Parameter:<br /><ul><li>Ron</li></ul>Control Unit <br />(e.g. Microcontroller)<br />Sequence:<br /><ul><li>One-Phase
  51. 51. Two-Phase
  52. 52. Half-Step</li></ul>Stepping Motor<br />Parameter:<br /><ul><li>L
  53. 53. R</li></ul>Models:<br />
  54. 54. 2.Unipolar Stepping Motor Drive Circuit<br />Copyright (C) Bee Technologies Inc. 2011<br />35<br />Signal generator<br />Hysteresis Based Current Controller<br />Switches<br />Supply Voltage<br />Unipolar Stepping Motor<br />
  55. 55. 3.Unipolar Stepping Motor <br />Copyright (C) Bee Technologies Inc. 2011<br />36<br />The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance.<br />The inductance is ideal (without saturation characteristics and the mutual inductance between phases)<br />The motor back EMF is set as zero to simplified the model parameters extraction.<br />Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.<br />
  56. 56. 4.Switches <br />Copyright (C) Bee Technologies Inc. 2011<br />37<br />A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0.<br />A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch. <br />The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.<br />
  57. 57. 5.Signal Generator<br />The signal generators are used as a microcontroller capable of generating step pulses and direction signals for the driver.<br />There are 3 useful stepping sequences to control unipolar stepping motor<br />Copyright (C) Bee Technologies Inc. 2011<br />38<br />One-Phase (Wave Drive)<br /><ul><li>Consumes the least power.
  58. 58. Assures the accuracy regardless of the winding imbalance.</li></ul>Two-Phase (Hi-Torque)<br /><ul><li>Energizes 2 phases at the same time.
  59. 59. Offers an improved torque-speed result and greater holding torque.</li></ul>Input PPS (Pulse Per Second) as a clock pulse speed(frequency).<br />Half-Step<br /><ul><li>Doubles the stepping resolution of the motor.
  60. 60. Reduces motor resonance which could cause a motor to stall at a resonant frequency.
  61. 61. Please note that this sequence is 8 steps.</li></li></ul><li>5.1 One-Phase Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />39<br />Clock<br />Phase A<br />ON<br />Phase /A<br />ON<br />Phase B<br />ON<br />Phase /B<br />ON<br />1 Sequence<br />
  62. 62. 5.2 Two-Phase Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />40<br />Clock<br />Phase A<br />ON<br />Phase /A<br />ON<br />Phase B<br />ON<br />Phase /B<br />ON<br />ON<br />1 Sequence<br />
  63. 63. 5.3 Half-Step Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />41<br />Clock<br />Phase A<br />ON<br />Phase /A<br />ON<br />Phase B<br />ON<br />Phase /B<br />ON<br />1 Sequence<br />
  64. 64. 6.Hysteresis-Based Current Controller<br />Copyright (C) Bee Technologies Inc. 2011<br />42<br />Controlled by the signal from the microcontroller.<br />Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references.<br />Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).<br />
  65. 65. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />43<br />One-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 40ms 0 10u<br />
  66. 66. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />44<br />Clock<br />Phase A Current<br />I_HYS=0.1A<br />I_SET=0.5A<br />Phase /A Current<br />Phase B Current<br />Phase /B Current<br />
  67. 67. 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />45<br />Two-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 40ms 0 10u SKIPBP <br />.OPTIONS ITL4= 40<br />
  68. 68. 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />46<br />Clock<br />Phase A Current<br />I_HYS=0.1A<br />I_SET=0.5A<br />Phase /A Current<br />Phase B Current<br />Phase /B Current<br />
  69. 69. 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />47<br />Half-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 80ms 0 10u SKIPBP <br />.OPTIONS ITL4= 40<br />
  70. 70. 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />48<br />Clock<br />Phase A Current<br />I_HYS=0.1A<br />I_SET=0.5A<br />Phase /A Current<br />Phase B Current<br />Phase /B Current<br />
  71. 71. 8.Drive Circuit Efficiency (%)<br />Copyright (C) Bee Technologies Inc. 2011<br />49<br />Half-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 40ms 0ms 10u SKIPBP <br />.STEP PARAM RON LIST 10m, 100m, 1 <br />.OPTIONS ITL4= 40<br />
  72. 72. 8.Drive Circuit Efficiency (%)<br />Copyright (C) Bee Technologies Inc. 2011<br />50<br />at switches Ron = 10m, (99.6%)<br />at switches Ron = 100m, (99.3%)<br />at switches Ron = 1,(95.9%)<br />Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.<br />
  73. 73. Copyright (C) Bee Technologies Inc. 2011<br />51<br />Bipolar Stepping Motor Drive Circuit <br />
  74. 74. Bipolar Stepping Motor Drive Circuit <br />Contents<br />Concept of Simulation<br />Unipolar Stepping Motor Drive Circuit<br />Unipolar Stepping Motor<br />Switches<br />Signal Generator<br />Hysteresis-Based Current Controller<br />Unipolar Stepping Motor Drive Circuit (Example)<br />7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Drive Circuit Efficiency<br />Copyright (C) Bee Technologies Inc. 2011<br />52<br />
  75. 75. Copyright (C) Bee Technologies Inc. 2011<br />53<br />1.Concept of Simulation<br />Block Diagram:<br />Driver Unit:<br />(e.g. Hysteresis-Based Controller)<br />Parameter:<br /><ul><li>I_SET
  76. 76. HYS</li></ul>Switches<br />(e.g. FET, Diode)<br />Parameter:<br /><ul><li>Ron</li></ul>Control Unit <br />(e.g. Microcontroller)<br />Sequence:<br /><ul><li>One-Phase
  77. 77. Two-Phase
  78. 78. Half-Step</li></ul>Stepping Motor<br />Parameter:<br /><ul><li>L
  79. 79. R</li></ul>Models:<br />
  80. 80. Signal generator<br />Hysteresis Based Current Controller<br />2.Unipolar Stepping Motor Drive Circuit<br />Copyright (C) Bee Technologies Inc. 2011<br />54<br />Bipolar Stepping Motor<br />H-Bridge Switches (Driver)<br />Supply Voltage<br />
  81. 81. 3.Bipolar Stepping Motor <br />Copyright (C) Bee Technologies Inc. 2011<br />55<br />The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance.<br />The inductance is ideal (without saturation characteristics and the mutual inductance between phases)<br />The motor back EMF is set as zero to simplified the model parameters extraction.<br />Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.<br />
  82. 82. 4.Switches <br />Copyright (C) Bee Technologies Inc. 2011<br />56<br />A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0.<br />A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch. <br />MOSFETs are used as a H-Bridge.<br />The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.<br />
  83. 83. 5.Signal Generator<br />The signal generators are used as a microcontroller capable of generating step pulses and direction signals for the driver.<br />There are 3 useful stepping sequences to control unipolar stepping motor<br />Copyright (C) Bee Technologies Inc. 2011<br />57<br />One-Phase (Wave Drive)<br /><ul><li>Consumes the least power.
  84. 84. Assures the accuracy regardless of the winding imbalance.</li></ul>Two-Phase (Hi-Torque)<br /><ul><li>Energizes 2 phases at the same time.
  85. 85. Offers an improved torque-speed result and greater holding torque.</li></ul>Input PPS (Pulse Per Second) as a clock pulse speed(frequency).<br />Half-Step<br /><ul><li>Doubles the stepping resolution of the motor.
  86. 86. Reduces motor resonance which could cause a motor to stall at a resonant frequency.
  87. 87. Please note that this sequence is 8 steps.</li></li></ul><li>5.1 One-Phase Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />58<br />Clock<br />Phase A<br />ON<br />Phase /A<br />ON<br />Phase B<br />ON<br />Phase /B<br />ON<br />1 Sequence<br />
  88. 88. 5.2 Two-Phase Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />59<br />Clock<br />Phase A<br />ON<br />Phase /A<br />ON<br />Phase B<br />ON<br />Phase /B<br />ON<br />ON<br />1 Sequence<br />
  89. 89. 5.3 Half-Step Sequence<br />Copyright (C) Bee Technologies Inc. 2011<br />60<br />Clock<br />Phase A<br />ON<br />Phase /A<br />ON<br />Phase B<br />ON<br />Phase /B<br />ON<br />1 Sequence<br />
  90. 90. 6.Hysteresis-Based Current Controller<br />Copyright (C) Bee Technologies Inc. 2011<br />61<br />Controlled by the signal from the microcontroller.<br />Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references.<br />Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).<br />
  91. 91. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />62<br />One-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 80ms 0 10u SKIPBP <br />.OPTIONS ITL4= 40<br />
  92. 92. 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />63<br />Clock<br />Phase A Current<br />I_HYS=0.1A<br />I_SET=0.5A<br />Phase /A Current<br />Phase B Current<br />Phase /B Current<br />
  93. 93. 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />64<br />One-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 80ms 0 10u SKIPBP <br />.OPTIONS ITL4= 40<br />
  94. 94. 7.2 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />65<br />Clock<br />Phase A Current<br />I_HYS=0.1A<br />I_SET=0.5A<br />Phase /A Current<br />Phase B Current<br />Phase /B Current<br />
  95. 95. 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />66<br />One-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 160ms 0 10u SKIPBP <br />.OPTIONS ITL4= 40<br />
  96. 96. 7.3 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A<br />Copyright (C) Bee Technologies Inc. 2011<br />67<br />Clock<br />Phase A Current<br />I_HYS=0.1A<br />I_SET=0.5A<br />Phase /A Current<br />Phase B Current<br />Phase /B Current<br />
  97. 97. 8.Drive Circuit Efficiency (%)<br />Copyright (C) Bee Technologies Inc. 2011<br />68<br />One-Phase Step Sequence Generator (100 pps) <br />*Analysisdirectives: <br />.TRAN 0 80ms 0 10u SKIPBP <br />.STEP PARAM RON LIST 10m, 100m, 1 <br />.OPTIONS ITL4= 40<br />
  98. 98. 8.Drive Circuit Efficiency (%)<br />Copyright (C) Bee Technologies Inc. 2011<br />69<br />at switches Ron = 10m, (99.7%)<br />at switches Ron = 100m, (99.8%)<br />at switches Ron = 1, (86%)<br />Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.<br />
  99. 99. Bee Technologies Group<br />デバイスモデリング<br />スパイス・パーク(スパイスモデル・ライブラリー) シンプルモデル(準備中)<br />デザインキット<br />コンセプトキット(準備中)<br />デバイスモデリング教材<br />【本社】<br />株式会社ビー・テクノロジー<br />〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階<br />代表電話: 03-5401-3851<br />設立日:2002年9月10日<br />資本金:8,830万円<br />【子会社】<br />Bee Technologies Corporation (アメリカ)<br />Siam Bee Technologies Co.,Ltd. (タイランド) <br />本ドキュメントは予告なき変更をする場合がございます。<br />ご了承下さい。また、本文中に登場する製品及びサービスの名称は全て関係各社または個人の各国における商標または登録商標です。本原稿に関するお問い合わせは、当社にご連絡下さい。<br />お問合わせ先)<br />info@bee-tech.com<br />70<br />Copyright (C) Bee Technologies Inc. 2011<br />

×