ECCENTRIC LOADBy : CrystinPanjaitanEdwin SeranoEkiSinagaRicky Bancin
Pengaruhmomenlenturpadadayadukungdapatdiperkirakandenganmengubahmomenlenturpadaeksentrisitasekivalen (e).
Kemudiandimensifondasitelapakdiperkeciluntukmemperhitungkanpengaruheksentrisitas yang merugikan, denganpenjelasansebagaiberikut :Pengaruhdimensifondasitelapakdapatdihitungdenganpersamaan:L' = L - 2ex    (modified width)
B' = B - 2ey    (modified length)
ex =        (eccentricities in the directions of length)
ey =         (eccentricities in the directions of width) Dimana ;B   : lebarpondasiB’  : lebarefektifpondasiL   : panjangpondasiL’  : panjangefektifpondasie: eksentrisitasbebanresultanpadadasarpondasiMx = momenlentursejajardenganlebarfondasi, B (ton.matauKN/m)My = momenlentursejajardenganpanjangfondasi, B (ton.matauKN/m)P    = beban (ton atau KN)
For design the minimum dimensions of a rectangular  footing  with a central column of dimensions “Wx x Wy”are required to beBmin = 4ey + Wy			B’ = 2ey + WyLmin = 4ex + Wx			B’ = 2ex + Wx
2) Bebanbatas yang bekerjapadafondasitelapakmenimbulkankeruntuhandukungsebagaiberikut:Pu = qultB’L’
The ultimate bearing capacity for footings with eccentricity, using either the Meyerhof or Hansen/Vesic equations, is found in either of two ways:
1) Use either the Hansen or Vesic bearing-capacity equation
a. Use B' in the yBNy term.b. Use B' and L' in computing the shape factors.c. Use actual B and L for all depth factors.The computed ultimate bearing capacity qult is then reduced to an allowable value qa with an appropriate safety factor SF as				(and Pa = qaB'L')qa = qult/ SF
2) Use the Meyerhof general bearing-capacity equation and a reduction factor Re

Eccentric load

  • 1.
    ECCENTRIC LOADBy :CrystinPanjaitanEdwin SeranoEkiSinagaRicky Bancin
  • 2.
  • 3.
    Kemudiandimensifondasitelapakdiperkeciluntukmemperhitungkanpengaruheksentrisitas yang merugikan,denganpenjelasansebagaiberikut :Pengaruhdimensifondasitelapakdapatdihitungdenganpersamaan:L' = L - 2ex (modified width)
  • 4.
    B' = B- 2ey (modified length)
  • 5.
    ex = (eccentricities in the directions of length)
  • 6.
    ey = (eccentricities in the directions of width) Dimana ;B : lebarpondasiB’ : lebarefektifpondasiL : panjangpondasiL’ : panjangefektifpondasie: eksentrisitasbebanresultanpadadasarpondasiMx = momenlentursejajardenganlebarfondasi, B (ton.matauKN/m)My = momenlentursejajardenganpanjangfondasi, B (ton.matauKN/m)P = beban (ton atau KN)
  • 9.
    For design theminimum dimensions of a rectangular footing with a central column of dimensions “Wx x Wy”are required to beBmin = 4ey + Wy B’ = 2ey + WyLmin = 4ex + Wx B’ = 2ex + Wx
  • 11.
    2) Bebanbatas yangbekerjapadafondasitelapakmenimbulkankeruntuhandukungsebagaiberikut:Pu = qultB’L’
  • 12.
    The ultimate bearingcapacity for footings with eccentricity, using either the Meyerhof or Hansen/Vesic equations, is found in either of two ways:
  • 13.
    1) Use eitherthe Hansen or Vesic bearing-capacity equation
  • 14.
    a. Use B'in the yBNy term.b. Use B' and L' in computing the shape factors.c. Use actual B and L for all depth factors.The computed ultimate bearing capacity qult is then reduced to an allowable value qa with an appropriate safety factor SF as (and Pa = qaB'L')qa = qult/ SF
  • 15.
    2) Use theMeyerhof general bearing-capacity equation and a reduction factor Re
  • 27.