SlideShare a Scribd company logo
1 of 10
Download to read offline
Focus on: e-Learning: requirement of the disciplines

Natural User Interfaces
as a powerful tool for
courseware design in
Physical Education
Pio Alfredo Di Tore1, Tiziana Discepolo2, Stefano
Di Tore1
Department of Human, Philosophical and Education
Sciences (DISUFF) - Università degli studi di Salerno,
pditore@unisa.it
2
tidiscepolo@gmail.com
1

This article aims to describe a possible scenario for the applications of
e-learning solutions to the field of Physical Education. Knowledge related
to Physical Education is here defined as enactive knowledge, codified in
the form of motor responses and acquired in the action, not mediated
by the iconic and symbolic plan. The iconic and symbolic dimension,
typical of Graphical User Interfaces, has been a barrier to the creation of
e-learning strategies in Physical Education. The new paradigms of Human
Computer Interaction such as Natural Interfaces, the spread of “everyday’’
technologies that retrieve to HCI the physical dimension, and the diffusion of
exergames in education, now make it possible to imagine large-scale creative
and collaborative elearning-based physical education. The article describes
coarse-grained theoretical and methodological approaches underlying learning
of motor skills and indicates the possible technological scenario, according
for citations:
Di Tore P.A., Discepolo T., Di Tore S. (2013), Natural User Interfaces as a powerful tool for courseware design in Physical Education, Journal of e-Learning and Knowledge Society, v.9, n.2, 105-114.
ISSN: 1826-6223, e-ISSN:1971-8829

|

Journal of e-Learning and Knowledge Society
Vol. 9, n. 2, May 2013 (pp. 105 - 114)
ISSN: 1826-6223 | eISSN: 1971-8829
| Focus on: e-Learning: Requirements of the disciplines

- Vol. 9, n. 2, May 2013

to the type of interaction determined by the Natural Interfaces.

1 Introduction
The difficulty, as evidenced by the absence of specific literature on the
subject, of the development of e-learning experiences in Physical Education,
is related to the type of knowledge linked to Physical Education. The knowledge codified in the form of motor responses was defined enactive knowledge.
“Enactive knowledge is not simply multisensory mediated knowledge, but
knowledge stored in the form of motor responses and acquired by the act
of “doing”. A typical example of enactive knowledge is constituted by the
competence required by tasks such as typing, driving a car, dancing, playing
a musical instrument, modeling objects from clay, which would be difficult to
describe in an iconic or symbolic form. This type of knowledge transmission
can be considered the most direct, in the sense that it is natural and intuitive,
since it is based on the experience and on the perceptual responses to motor
acts”.(Bergamasco, 2005).
According to Bruner, the interaction with the information mediated by
computers is based on a iconic or symbolic knowledge. If, in this approach,
knowledge is coded by symbol systems or in the form of images, on the enactive approach knowledge is not simply mediated by motor skills, but it is encoded
in the form of motor responses and acquired in action (Bergamasco, op. cit.).
The encoding of knowledge through symbol systems or in the form of images has found a natural fit in HCI systems based on GUIs, because the interaction which is realized in the GUI is a discreet and dialogical interaction, which
well combines with the cognitive theoretical of Human Information Processing
mold that includes discrete and non-overlapping stages. In essence, this model
is functional in an interaction that excludes or minimizes the embodiment and
that considers space and time as separate elements, consistent with a conception
of time as something moving with respect to a static observer, a linear path
from A to B in which to place our body. Not surprisingly, we often hear about
the “flow” of time. Against the flow metaphor, Merleau-Ponty stated: “time is
not like a river, not a flowing substance” and “it is not the past that pushes the
present, nor the present that pushes the future, into being “I belong to space and
time, my body combines with them and includes them”(Merleau-Ponty, 1962).
Merleau-Ponty’s reflections are echoed in Deleuze, that juxtaposes the idea
of time-image (Deleuze, 1983, 1985) to the movement-image idea. In this view,
“each movement is not just a change of place within a whole but a becoming
in which the movement is a transformation of the body which moves” (Colebrook, 2002).
The idea of becoming, which is at the basis of continuous, enactive inte-

106
Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design
in Physical Education

raction, is also central in HCI: “today’s creative computing system can present
powerfully evocative meanings by invoking a sense of the “becoming” whole
in spatiotemporally embodied interaction. This means that users are engaged in
interfaces that highlight perceivable continuity and variation. Hence, we argue,
in creative computing systems the idea of embodiment must be reconsidered
from the perspective of engagement in a holistically transformative and partially responsive world” (Chow & Harrell, 2011).
The new paradigms of Human Machine Interaction can be a tool to give
back to man-machine interfaces the enactive dimension, representing a simplex
strategy (Berthoz, 2011) in design of courseware dedicated to Physical Education, in the awareness that “the degree of physical involvement is the measure
of immersion“ in a digital context (Krueger, 1991).
This strategy is possible because of the spread of Natural User Interfaces
(NUIS), “an emerging computer interaction methodology which focuses on
human abilities such as touch, vision, voice, motion and higher cognitive functions such as expression, perception and recall. A natural user interface or
“NUI” seeks to harness the power of a much wider breadth of communication
modalities which leverage skills people gain through traditional physical interaction (NUIGroup, 2009).
The NUIs include natural inputs and outputs based on the movements, and
evolve towards an efficient use of the senses in the interaction with machines, capitalizing on the characteristics of the new generation of devices that
can detect movement and location of points in space. For example, Microsoft
Kinect, an accessory for the Xbox, is able to detect the segments of the body
of a user placed in front of the camera and to use this information to move an
avatar in a video game.

2 Motor control and motor learning
In this section we present a summary of certain currents of thought in motor
learning and motor control, to assess the resulting methodological educational
systems and investigate the possible application of existing methodologies to
e-learning solutions, by virtue of the above. In the context of sport and physical
training most common approaches to motor control are:
•	 the cognitive approach
•	 the ecological approach
The motor control theories developed in cognitive psychology have generated a substantial amount of educational applications. Based on these theories,
the human being possesses, at the cerebral level, a series of motor programs,
or sequences of commands that coordinate the execution of the movements.

107
| Focus on: e-Learning: Requirements of the disciplines

- Vol. 9, n. 2, May 2013

According a preliminary formulation, the processing of information from
the sense organs and proprioceptors enables the system to correct the movement
during the performance (closed-loop motor control, Adams (Adams, 1971). The
closed-loop motor control assumes that the movements are sufficiently slow to
allow the correction during the implementation, on the basis of data from the
feedback. The longer the execution time, the wider the possibility of using the
circuits of motor control based on feedback (Schmidt & Wrisberg, 2008). In
shorter times, the movement is not susceptible to correction during execution
and is completely programmed at the level of central nervous system (open
loop motor control, Schmidt (Schmidt, 1975), Keele (Keele & Jennings, 1992)).
The cognitive theory of motor learning derives directly from the integration
of open loop motor control (motor programs) and closed loop motor control
(feedback). Learn movements is to develop cognitive structures (the motor
programs) through information processing. These processes allow the ability
to compare real-time (closed loop) or later (open loop) results and expected
results, triggering a process of adjustment of the same motor program.
The generalized motor program “is a program that defines a motor pattern
of movement, this flexibility allows you to adapt it to produce variations of
the motor pattern adapted to changed demands of the environment” (Schmidt
& Wrisberg, 2008). Its structure is such that allows the performer to adjust the
movement in order to cope with the changing needs of the environment.
The ecological approach does not refer to prescriptive mental structures: the
action is directly available for those who act in their own environment. In other
words, the sensorimotor system possesses the property of self-organization that
does not make it necessary to use a motor program. In the ecological approach,
the central nervous system develops from environmental influences on the
neuronal groups that specialize on specific tasks (Edelman et al., 1995). In
this approach, learning is defined as the education of attention (Gibson, 1986).
Learning means optimizing perceptual processes.
Learning, in ecological perspective, is defined as the construction of a new
coordination adapted to the needs of the prescribed task. This construction
is not realized ex novo: the novice, which addresses for the first time a task,
uses some spontaneous types of coordination, which may refer to behaviors
acquired before, or even be implied by very general coupling trends. It is on
the basis of this repertoire that will be realized the construction of new models
of coordination.
In the two approaches presented here, the perception of the environment is
different and is defined otherwise the learning process.
In the first approach, motor learning means to stabilize a motor program
effective in function of a particular information processing.
108
Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design
in Physical Education

In the other, motor learning is a question of the adaptability of the movement, matching the diversity of the environment and the specificity of the
individual (Carnus, 2010)
The direct consequence of cognitive theory in educational applications is a
prescriptive approach: the structuring of motor programs increasingly articulate and the optimization of their parameters. The aim of exercises will be to
stabilize and refine motor program by reducing the variability of execution. On
this basis, in the context of cognitive psychology has been developed massive
quantity of results on strategies and techniques for structuring the exercise in
order to achieve optimal learning.
The main ways of structuring the exercise are partial exercise, randomized
exercise and varied exercise.
In the ecological approach, to practice does not mean repeating over and
over again the same solution for a given task, but repeating the process of
solution of the task itself. Teaching, in the ecological approach, aims to stimulate the emergence of spontaneous solutions (heuristics) to motor problems,
implementing a process that passes through the continuous variation of the
motor gestures.
In heuristic learning, the teacher must assist the student in finding autonomous solutions. If the learning task is too complex, teachers do not have to
impose constraints on the learner, pointing out in a how to simplify the motor
execution, but have to apply constraints to the environment
The prerequisite for an effective strategy for facilitating teaching is that the
unitary structure perception / action, postulated within the ecological approach,
is not altered. In the ecological approach, the execution variability is not seen
as a limiting factor, but as an inherent property, index of the non-linear interaction of the system with the constraints imposed by the body, the task and
the environment in the search for solutions.

3 Exergames
The recent spread of exergames, videogames which require a high involvement of the body and movement of the player, has triggered an extensive
series of studies in the field of physical education, to evaluate the possibility of
using these technologies in educational, performative and rehabilitative field.
With the term “exergames” we refer to games that integrate the traditional
system of videogame the element of the user’s movement, a movement which
is digitized and made to gameplay by a series of new-generation controller,
such as the Wiimote and Balance Board accessories of Nintendo’s Wii console
and the Kinect sensor, originally created as an accessory of the Xbox and evolved as an independent device interfaced with personal computers (A. Di Tore

109
| Focus on: e-Learning: Requirements of the disciplines

- Vol. 9, n. 2, May 2013

& Raiola, 2012). In this broad sense, the exergames reproduce in the digital
environment, the fundamental questions of perception and phenomenology,
confirming how the actions embedded within a digital interface are “fluid and
functional crossings between physical and digital realms” (Hansen, 2006).
Historically, the literature has pointed out before the potential of exergames
for wellness and education, in particular in the fight against sedentary lifestyle
(Chamberlin & Gallagher, 2008); Within studies related motor learning, Staiano
and Calvert pointed out a lack of specific research:
“Because many exergames such as DDR or Wii Sports tennis require rapid
hand–eye or foot–eye coordination, they may improve general coordination
skills. However, the majority of research on coordination benefits involves
elderly people playing sedentary video games, not exergames. Video game play
increased perceptual-motor skills including hand–eye coordination, dexterity,
and fine motor ability (Drew & Waters, 1986). At present, there is no exergame research on this topic.” (Staiano & Calvert, 2011). The added value of
exergaming in terms of user involvement has been studied (and recognized)
by Baranowski and Wigdor (Baranowski et al., 2008; Wigdor & Wixon, 2011).
The exergames, as complex games, create an experience of immersion in
a virtual environment that sparks interest in the game. A deep learning requires an extended commitment and this commitment is favored by a process of
identification, challenge and control. The ability to transfer skills acquired in
the activity of gaming in other contexts is widely discussed in the literature.
Silberman (Silberman, 2009) provides a comprehensive account of the different
positions.
For exergames, transferability of skills is an issue addressed, once again,
by Staiano and Calvert:
“The skills that young people acquire during the game with the exergame
move to other activities, for the benefit of the physical, social and cognitive
development. [...] The exergame interpret a player’s body movements as input
associated with specific meanings for the game, translating the actual movements in three dimensional space on the two-dimensional screen. As the player
exergame is physically distant from his avatar on the screen, it requires visualspatial skills, hand–eye coordination and fast reaction times to be successful in
the game.” (Staiano & Calvert, 2011).
A further example, focused on special education, comes from the research
of Cai and Kornspan, who argue that the movement-based games have the
potential to support psycho-motor and cognitive learning for students with
disabilities.(Cai & Kornspan, 2012)
Sheehan has emphasized the added value in terms of motivation in the
specific field of education, addressing design issues, in a paper entitled “The
practical and theoretical implications of flow theory and intrinsic motivation
110
Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design
in Physical Education

in designing and implementing exergaming in the school environment”:
“The intentional design of educationally appropriate video games that require the use of the whole body to play already affords students the personalized
experience needed to find balance between the level of difficulty and their skill
level. Once that agreement exists, other aspects associated with intrinsic motivation and e creative flow can be attended to (achievable goals, perception of
control, prompt feedback, focused concentration, etc.)(Sheehan & Katz, 2012)
The use of exergames in the school system needs to balance the needs of
the student with curricular expectations. Researchers have recently begun to
study the factors that motivate students to participate in such activities (Staiano
& Calvert, 2011).
“Exergaming and interactive fitness activities could provide the stimulus for
engagement to those students who have started to lose interest in more traditional forms of physical activity and reengage them towards lifelong physical
activity”(Sheehan & Katz, 2012).
The point of view of ecological psychology emphasizes the primacy of the
principles and objectives intentions that guide the perception-action within the
limits of game design and user interface.
From the ecological point of view, therefore, the task of game design becomes to select targets and create environments in which these objectives can
be pursued in an optimal way, taking advantage of those qualities that make
gaming an engaging experience”.(Young, 2004)
The peculiar characteristic of the movement also adds another layer of
complexity to the design: the mechanisms of detection accuracy of the gesture
(Gesture Recognition).
In a work on gesture recognition in prototyping software, Gacem has identified two trends:
1.	 Trigger based. Is a particular gesture executed?
2.	 Quality based. Is a particular gesture executed correctly? (Gacem et al.,
2011)

4 NUIs and Enactive Interaction
From the literature review, the exergames were assessed first as a tool which
supports a less sedentary lifestyle among gamers. In a second step, they were
assessed for their potential in education. Although the general trend is to consider exergames as a useful tool in the field of Physical Education, there are
still many doubts about the possibility of assessing the correct execution of
motor gestures in the digital environment. The thesis that we want to support
here is that exergames may constitute a useful tool, and therefore suitable for
the development of courseware, only if they were seen in a perspective of

111
| Focus on: e-Learning: Requirements of the disciplines

- Vol. 9, n. 2, May 2013

interface design which enhances the enactive component. The NUIS, in fact,
allow to retrieve to the Human Computer Interaction “simplifying it principles
that reduce the number or complexity of processes and allow it to very quickly
develop information and situations, taking into account past and anticipating
the future, facilitating the understanding of the intentions without distorting
the complexity of the reality” (Berthoz, 2011).
Specifically, these media involve two distinct aspects of sensory-motor
connections:
1.	 the components of user input related to movement are representative of
his intention;
2.	 user input is in relation to a changing environment.
The paradigm of continuous interaction mechanisms that these two qualities contribute to build can be called “enactive interaction”, with different
characteristics from the conversational, discrete interaction” based on GUI
point-and-click. (Chow & Harrell, 2011)
The enactive interaction involves not only the idea of space (changes the
relationship with the space that becomes sensitive), but also the idea of time:
movement is “not just a change of place within a whole but a becoming in
which the movement is a transformation of the body which moves”. (Chow
& Harrell, 2011)
If the peculiarities of repetition in classic videogames seemed to suggest
affinities with the cognitive approach (see the concept of repetition set out
in paragraph on the cognitive approach), the enactive interaction favored by
NUIS seems to have strong links with the ecological approach, valuing the
uniqueness motor intentionality and its implementation at the expense of rigid
and preordained sequence of motor responses.
This type of interaction provides the opportunity to create environments and
tools that can translate into educational practice a conception of knowledge and
learning that, in theory, recognized the role of body and movement, struggling
on the operational level to define methodologies and tools used in everyday.
In fact we witness, not in the MIT labs, but in the bedrooms of middle school students, to forms of HCI (Human Computer Interaction) that go beyond
the flattening on the Cartesian plane that has characterized the video game
phenomenon(Di Tore et al., 2012).
The analysis of the educational potential of gesture-based technologies is
developed from the knowledge that the devices that encourage to touch, move
and tend to explore are considered interesting for education and training. The
gesture-based computing will probably take control of the educational experience through the body and voice, to transform the educational act in digital
contexts in natural and interactive experience and to interact with an augmented
112
Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design
in Physical Education

environment to “manipulate”, influence and transform it intuitively (Faiella &
Mangione, 2012).
Knowledge becomes “embodied” in the corporeality of the subjects they
learn and environments that synergistically incorporate them, converging more
and more towards the idea that the body can be considered as one of the fundamental dimensions in the formation of knowledge architecture (Santoianni
et al., 2010).

REFERENCES
Adams, J. A. (1971), A closed-loop theory of motor learning. Journal of Motor
Behavior; Journal of Motor Behavior.
Baranowski, T., Buday, R., Thompson, D. I., & Baranowski, J. (2008), Playing for real:
Video games and stories for health-related behavior change. American journal of
preventive medicine, 34(1), 74-82. e10.
Bergamasco, M. (2005), Multimodal Interfaces: an Introduction to ENACTIVE systems.
Paper presented at the Eurographic.
Berthoz, A. (2011), La semplessità: Codice.
Cai, S. X., & Kornspan, A. S. (2012), The Use of Exergaming with Developmentally
Disabled Students. Strategies: A Journal for Physical and Sport Educators, 25(3),
1-40.
Carnus, M. F. (2010), Analyse didactique clinique de l’activité décisionnelle de deux
enseignantes en éducation physique et sportive (EPS). Education et didactique,
4(3), 49-62.
Chamberlin, B., & Gallagher, R. (2008), Exergames: Using video games to promote
physical activity.
Chow, K. K. N., & Harrell, D. F. (2011), Enduring interaction: an approach to
analysis and design of animated gestural interfaces in creative computing systems.
Paper presented at the Proceedings of the 8th ACM conference on Creativity and
cognition.
Colebrook, C. (2002), Understanding Deleuze.
Deleuze, G. (1983), Cinéma: L’image-mouvement: Éd. de Minuit.
Deleuze, G. (1985), Cinéma II. L’Image Temps. Paris: Minuit.
Di Tore, A., & Raiola, G. (2012), Exergames e didattica delle attività motorie e sportive.
European Journal of Sustainable Development, 1(2), 221-228.
Di Tore, S., Aiello, P., Di Tore, P. A., & Sibilio, M. (2012), Can I Consider the Pong
Racket as a Part of My Body?: Toward a Digital Body Literacy. International
Journal of Digital Literacy and Digital Competence (IJDLDC), 3(2), 58-63.
Drew, B., & Waters, J. (1986), Video games: Utilization of a novel strategy to improve
perceptual motor skills and cognitive functioning in the non-institutionalized
elderly. Cognitive Rehabilitation.

113
| Focus on: e-Learning: Requirements of the disciplines

- Vol. 9, n. 2, May 2013

Edelman, G. M., Tononi, G., & Ferraresi, S. (1995), Darwinismo neurale: la teoria
della selezione dei gruppi neuronali: Einaudi.
Faiella, F., & Mangione, G. (2012), E-learning. Le pratiche consolidate e i nuovi
scenari di ricerca. Lecce: Pensa.
Gacem, B., Vergouw, R., Verbiest, H., Cicek, E., van Oosterhout, T., Bakkes, S., &
Kröse, B. (2011), Gesture Recognition for an Exergame Prototype.
Gibson, J. J. (1986), The ecological approach to visual perception: Taylor & Francis.
Hansen, M. B. N. (2006), Bodies in Code: Interfaces with Digital Media: Routledge.
Keele, S. W., & Jennings, P. J. (1992), Attention in the representation of sequence:
Experiment and theory. Human Movement Science, 11(1), 125-138.
Krueger, M. W. (1991), Artificial reality: Past and future. Virtual Reality: Theory,
Practiсe and Promise/Ed. SK Helsel, JP Roth.–Westport, London: Meckler, 19-26.
Merleau-Ponty, M. (1962), Phenomenology of Perception: An Introduction: Routledge
& Kegan Paul.
NUIGroup. (2009), Multi-Touch Technologies. Community Release]: May.
Santoianni, F., Sabatano, C., Capasso, M., Sorrentino, M., & De Angelis, S. (2010),
Online/offline, globale/locale, rete/individuo. C’è “spazio” pedagogico tra le facce
della medaglia? ISDM Journal International des Sciences de l’Information et de la
Communication, 39(689), 12.
Schmidt, R. A. (1975), A schema theory of discrete motor skill learning. Psychological
review, 82(4), 225.
Schmidt, R. A., & Wrisberg, C. A. (2008), Motor learning and performance: a
situation-based learning approach: Human Kinetics Publishers.
Sheehan, D. P., & Katz, L. (2012), The practical and theoretical implications of flow
theory and intrinsic motivation in designing and implementing exergaming in the
school environment. Loading... 6(9).
Silberman, L. (2009), Double play: athletes’ use of sport video games to anhance
athletic performance. University of Wisconsin.
Staiano, A. E., & Calvert, S. L. (2011), Exergames for physical education courses:
Physical, social, and cognitive benefits. Child Development Perspectives, 5(2),
93-98.
Wigdor, D., & Wixon, D. (2011), Brave NUI world: designing natural user interfaces
for touch and gesture: Morgan Kaufmann.
Young, M. (2004), An ecological description of video games in education. Thinking.

114

More Related Content

What's hot

Information Processing_Implications for Adult Education Practices by Jane White
Information Processing_Implications for Adult Education Practices by Jane WhiteInformation Processing_Implications for Adult Education Practices by Jane White
Information Processing_Implications for Adult Education Practices by Jane WhiteJane Christine White
 
Proposal Section I
Proposal   Section IProposal   Section I
Proposal Section Irmusallam
 
A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...
A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...
A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...ijait
 
Designing the Future Perfect: Developing a temporal understanding of the int...
Designing the Future Perfect: Developing a temporal understanding of the int...Designing the Future Perfect: Developing a temporal understanding of the int...
Designing the Future Perfect: Developing a temporal understanding of the int...Niamh O Riordan
 
Chapter6 huizing
Chapter6 huizingChapter6 huizing
Chapter6 huizingokeee
 
Dr. William Allan Kritsonis, Educational Philosophy
Dr. William Allan Kritsonis, Educational PhilosophyDr. William Allan Kritsonis, Educational Philosophy
Dr. William Allan Kritsonis, Educational PhilosophyWilliam Kritsonis
 
Coordination for Situated MAS: Towards an Event-driven Architecture
Coordination for Situated MAS: Towards an Event-driven ArchitectureCoordination for Situated MAS: Towards an Event-driven Architecture
Coordination for Situated MAS: Towards an Event-driven ArchitectureAndrea Omicini
 
Cuadro comparativo CHAT-Connectivism
Cuadro comparativo CHAT-ConnectivismCuadro comparativo CHAT-Connectivism
Cuadro comparativo CHAT-ConnectivismClaudia Mesa
 
Artificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot InteractionArtificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot InteractionSubmissionResearchpa
 
An ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual worldAn ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual worldijaia
 
Improving Reading Comprehension of Iranian High School Students via Graphic O...
Improving Reading Comprehension of Iranian High School Students via Graphic O...Improving Reading Comprehension of Iranian High School Students via Graphic O...
Improving Reading Comprehension of Iranian High School Students via Graphic O...juraikha
 
Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)
Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)
Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)Dr. Ahmad, Futurist.
 
The experiential utility: how behavioural economics can help hci to define qu...
The experiential utility: how behavioural economics can help hci to define qu...The experiential utility: how behavioural economics can help hci to define qu...
The experiential utility: how behavioural economics can help hci to define qu...Stefano Bussolon
 
A Conceptual Model for Ontology Based Learning
A Conceptual Model for Ontology Based LearningA Conceptual Model for Ontology Based Learning
A Conceptual Model for Ontology Based LearningIJORCS
 
The X factor - defining the concept of Experience
The X factor - defining the concept of ExperienceThe X factor - defining the concept of Experience
The X factor - defining the concept of ExperienceStefano Bussolon
 

What's hot (17)

Information Processing_Implications for Adult Education Practices by Jane White
Information Processing_Implications for Adult Education Practices by Jane WhiteInformation Processing_Implications for Adult Education Practices by Jane White
Information Processing_Implications for Adult Education Practices by Jane White
 
Proposal Section I
Proposal   Section IProposal   Section I
Proposal Section I
 
A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...
A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...
A SOFTWARE AGENT FRAMEWORK TO OVERCOME MALICIOUS HOST THREATS AND UNCONTROLLE...
 
Designing the Future Perfect: Developing a temporal understanding of the int...
Designing the Future Perfect: Developing a temporal understanding of the int...Designing the Future Perfect: Developing a temporal understanding of the int...
Designing the Future Perfect: Developing a temporal understanding of the int...
 
Chapter6 huizing
Chapter6 huizingChapter6 huizing
Chapter6 huizing
 
Dr. William Allan Kritsonis, Educational Philosophy
Dr. William Allan Kritsonis, Educational PhilosophyDr. William Allan Kritsonis, Educational Philosophy
Dr. William Allan Kritsonis, Educational Philosophy
 
Coordination for Situated MAS: Towards an Event-driven Architecture
Coordination for Situated MAS: Towards an Event-driven ArchitectureCoordination for Situated MAS: Towards an Event-driven Architecture
Coordination for Situated MAS: Towards an Event-driven Architecture
 
Cuadro comparativo CHAT-Connectivism
Cuadro comparativo CHAT-ConnectivismCuadro comparativo CHAT-Connectivism
Cuadro comparativo CHAT-Connectivism
 
Artificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot InteractionArtificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot Interaction
 
An ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual worldAn ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual world
 
Improving Reading Comprehension of Iranian High School Students via Graphic O...
Improving Reading Comprehension of Iranian High School Students via Graphic O...Improving Reading Comprehension of Iranian High School Students via Graphic O...
Improving Reading Comprehension of Iranian High School Students via Graphic O...
 
Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)
Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)
Dr Ahmad_Cognitive Sciences Strategies for Futures Studies (Foresight)
 
The experiential utility: how behavioural economics can help hci to define qu...
The experiential utility: how behavioural economics can help hci to define qu...The experiential utility: how behavioural economics can help hci to define qu...
The experiential utility: how behavioural economics can help hci to define qu...
 
Are robots present?
Are robots present?Are robots present?
Are robots present?
 
Authentic learning vs chat
Authentic learning vs chatAuthentic learning vs chat
Authentic learning vs chat
 
A Conceptual Model for Ontology Based Learning
A Conceptual Model for Ontology Based LearningA Conceptual Model for Ontology Based Learning
A Conceptual Model for Ontology Based Learning
 
The X factor - defining the concept of Experience
The X factor - defining the concept of ExperienceThe X factor - defining the concept of Experience
The X factor - defining the concept of Experience
 

Viewers also liked

Колоризация ультразвуковых скенированных изображений
Колоризация ультразвуковых скенированных изображенийКолоризация ультразвуковых скенированных изображений
Колоризация ультразвуковых скенированных изображенийandrii68
 
เครื่องใช้ไฟฟ้า
เครื่องใช้ไฟฟ้าเครื่องใช้ไฟฟ้า
เครื่องใช้ไฟฟ้าsupgon
 
Vacancy - Accountant, Antigua Commercial Bank
Vacancy - Accountant, Antigua Commercial BankVacancy - Accountant, Antigua Commercial Bank
Vacancy - Accountant, Antigua Commercial BankNeedajob-Dominica
 
Linked in page slide share - final-20160506
Linked in page   slide share - final-20160506Linked in page   slide share - final-20160506
Linked in page slide share - final-20160506eswadmin
 
Pagina web minuto
Pagina web minuto Pagina web minuto
Pagina web minuto polisbego_5
 
Ahli jawatan kuasa hal ehwal murid 2011
Ahli jawatan kuasa hal ehwal murid 2011Ahli jawatan kuasa hal ehwal murid 2011
Ahli jawatan kuasa hal ehwal murid 2011Ramlan Ruspan
 
Truongquocte.info_Phương pháp luyện trí não [Tập 2]
Truongquocte.info_Phương pháp luyện trí não [Tập 2]Truongquocte.info_Phương pháp luyện trí não [Tập 2]
Truongquocte.info_Phương pháp luyện trí não [Tập 2]Thư viện trường quốc tế
 
แบบสอบถาม พึงใจบริการ Bts mrt airport link
แบบสอบถาม พึงใจบริการ Bts  mrt  airport linkแบบสอบถาม พึงใจบริการ Bts  mrt  airport link
แบบสอบถาม พึงใจบริการ Bts mrt airport linkสำเร็จ นางสีคุณ
 
The Challenges of Urbanisation in India
The Challenges of Urbanisation in IndiaThe Challenges of Urbanisation in India
The Challenges of Urbanisation in IndiaRajesh K.Wdr
 

Viewers also liked (20)

Shouldice
ShouldiceShouldice
Shouldice
 
Truongquocte.ifno_Nhân vật lịch sử & giai thoại
Truongquocte.ifno_Nhân vật lịch sử & giai thoạiTruongquocte.ifno_Nhân vật lịch sử & giai thoại
Truongquocte.ifno_Nhân vật lịch sử & giai thoại
 
Колоризация ультразвуковых скенированных изображений
Колоризация ультразвуковых скенированных изображенийКолоризация ультразвуковых скенированных изображений
Колоризация ультразвуковых скенированных изображений
 
เครื่องใช้ไฟฟ้า
เครื่องใช้ไฟฟ้าเครื่องใช้ไฟฟ้า
เครื่องใช้ไฟฟ้า
 
Oceania
OceaniaOceania
Oceania
 
Vacancy - Accountant, Antigua Commercial Bank
Vacancy - Accountant, Antigua Commercial BankVacancy - Accountant, Antigua Commercial Bank
Vacancy - Accountant, Antigua Commercial Bank
 
Linked in page slide share - final-20160506
Linked in page   slide share - final-20160506Linked in page   slide share - final-20160506
Linked in page slide share - final-20160506
 
Pagina web minuto
Pagina web minuto Pagina web minuto
Pagina web minuto
 
Ahli jawatan kuasa hal ehwal murid 2011
Ahli jawatan kuasa hal ehwal murid 2011Ahli jawatan kuasa hal ehwal murid 2011
Ahli jawatan kuasa hal ehwal murid 2011
 
Manometria
ManometriaManometria
Manometria
 
Bln merdeka 2013
Bln merdeka 2013Bln merdeka 2013
Bln merdeka 2013
 
Truongquocte.info_Phương pháp luyện trí não [Tập 2]
Truongquocte.info_Phương pháp luyện trí não [Tập 2]Truongquocte.info_Phương pháp luyện trí não [Tập 2]
Truongquocte.info_Phương pháp luyện trí não [Tập 2]
 
แบบสอบถาม พึงใจบริการ Bts mrt airport link
แบบสอบถาม พึงใจบริการ Bts  mrt  airport linkแบบสอบถาม พึงใจบริการ Bts  mrt  airport link
แบบสอบถาม พึงใจบริการ Bts mrt airport link
 
Imagen Sales Kit 2014 Casiano Communications
Imagen Sales Kit 2014 Casiano CommunicationsImagen Sales Kit 2014 Casiano Communications
Imagen Sales Kit 2014 Casiano Communications
 
Pj thn 4.5.6
Pj thn 4.5.6Pj thn 4.5.6
Pj thn 4.5.6
 
The Challenges of Urbanisation in India
The Challenges of Urbanisation in IndiaThe Challenges of Urbanisation in India
The Challenges of Urbanisation in India
 
Truongquocte.info_Bài Giảng_Tâm Lý Học Giao Tiếp
Truongquocte.info_Bài Giảng_Tâm Lý Học Giao TiếpTruongquocte.info_Bài Giảng_Tâm Lý Học Giao Tiếp
Truongquocte.info_Bài Giảng_Tâm Lý Học Giao Tiếp
 
FARHAM ESTATE HEALTH SPA
FARHAM ESTATE HEALTH SPAFARHAM ESTATE HEALTH SPA
FARHAM ESTATE HEALTH SPA
 
Hernia femoral
Hernia femoralHernia femoral
Hernia femoral
 
SydJS Oct, 2016
SydJS Oct, 2016SydJS Oct, 2016
SydJS Oct, 2016
 

Similar to Natural User Interfaces as a powerful tool for courseware design in Physical Education

CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD
CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD
CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD ijcsit
 
10 publication 4_korakakis et al_2009
10 publication 4_korakakis et al_200910 publication 4_korakakis et al_2009
10 publication 4_korakakis et al_2009You-lii Ssi
 
Technology Enhanced Textbook - Provoking active ways of learning
Technology Enhanced Textbook - Provoking active ways of learningTechnology Enhanced Textbook - Provoking active ways of learning
Technology Enhanced Textbook - Provoking active ways of learningWolfgang Neuhaus
 
Temporal Reasoning Graph for Activity Recognition
Temporal Reasoning Graph for Activity RecognitionTemporal Reasoning Graph for Activity Recognition
Temporal Reasoning Graph for Activity RecognitionIRJET Journal
 
Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...
Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...
Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...Sebastian Dennerlein
 
Human - compuTer interaction
Human  -  compuTer interactionHuman  -  compuTer interaction
Human - compuTer interactionpavishkumarsingh
 
OntoSOC: S ociocultural K nowledge O ntology
OntoSOC:  S ociocultural  K nowledge  O ntology OntoSOC:  S ociocultural  K nowledge  O ntology
OntoSOC: S ociocultural K nowledge O ntology IJwest
 
Analytical-frameworks - Methods in user-technology studies
Analytical-frameworks - Methods in user-technology studiesAnalytical-frameworks - Methods in user-technology studies
Analytical-frameworks - Methods in user-technology studiesAntti Salovaara
 
Cognitive Load Persuade Attribute for Special Need Education System Using Dat...
Cognitive Load Persuade Attribute for Special Need Education System Using Dat...Cognitive Load Persuade Attribute for Special Need Education System Using Dat...
Cognitive Load Persuade Attribute for Special Need Education System Using Dat...ijdmtaiir
 
V1_I1_2012_Paper2.docx
V1_I1_2012_Paper2.docxV1_I1_2012_Paper2.docx
V1_I1_2012_Paper2.docxpraveena06
 
Formative Interfaces for Scaffolding Self-Regulated Learning in PLEs
Formative Interfaces for Scaffolding Self-Regulated Learning in PLEsFormative Interfaces for Scaffolding Self-Regulated Learning in PLEs
Formative Interfaces for Scaffolding Self-Regulated Learning in PLEseLearning Papers
 
Synthesis
SynthesisSynthesis
SynthesisLinda
 
A Path Towards Autonomous Machines
A Path Towards Autonomous MachinesA Path Towards Autonomous Machines
A Path Towards Autonomous MachinesAlejandro Franceschi
 
SkinnerJ_PS533_Final Paper
SkinnerJ_PS533_Final PaperSkinnerJ_PS533_Final Paper
SkinnerJ_PS533_Final PaperJake Skinner
 
Relationships between learning theory and e learning theory (oistein gjovik)
Relationships between learning theory and e learning theory (oistein gjovik)Relationships between learning theory and e learning theory (oistein gjovik)
Relationships between learning theory and e learning theory (oistein gjovik)Øistein Gjøvik
 

Similar to Natural User Interfaces as a powerful tool for courseware design in Physical Education (20)

CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD
CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD
CONSIDERATION OF HUMAN COMPUTER INTERACTION IN ROBOTIC FIELD
 
Hardman
HardmanHardman
Hardman
 
Systems 550 ppt_art
Systems 550 ppt_artSystems 550 ppt_art
Systems 550 ppt_art
 
10 publication 4_korakakis et al_2009
10 publication 4_korakakis et al_200910 publication 4_korakakis et al_2009
10 publication 4_korakakis et al_2009
 
Ijcet 06 09_003
Ijcet 06 09_003Ijcet 06 09_003
Ijcet 06 09_003
 
Technology Enhanced Textbook - Provoking active ways of learning
Technology Enhanced Textbook - Provoking active ways of learningTechnology Enhanced Textbook - Provoking active ways of learning
Technology Enhanced Textbook - Provoking active ways of learning
 
Temporal Reasoning Graph for Activity Recognition
Temporal Reasoning Graph for Activity RecognitionTemporal Reasoning Graph for Activity Recognition
Temporal Reasoning Graph for Activity Recognition
 
Artificial-intelligence and its applications in medicine and dentistry.pdf
Artificial-intelligence and its applications in medicine and dentistry.pdfArtificial-intelligence and its applications in medicine and dentistry.pdf
Artificial-intelligence and its applications in medicine and dentistry.pdf
 
Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...
Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...
Understanding and Supporting Intersubjective Meaning Making in Socio-Technica...
 
Human - compuTer interaction
Human  -  compuTer interactionHuman  -  compuTer interaction
Human - compuTer interaction
 
OntoSOC: S ociocultural K nowledge O ntology
OntoSOC:  S ociocultural  K nowledge  O ntology OntoSOC:  S ociocultural  K nowledge  O ntology
OntoSOC: S ociocultural K nowledge O ntology
 
Analytical-frameworks - Methods in user-technology studies
Analytical-frameworks - Methods in user-technology studiesAnalytical-frameworks - Methods in user-technology studies
Analytical-frameworks - Methods in user-technology studies
 
Cognitive Load Persuade Attribute for Special Need Education System Using Dat...
Cognitive Load Persuade Attribute for Special Need Education System Using Dat...Cognitive Load Persuade Attribute for Special Need Education System Using Dat...
Cognitive Load Persuade Attribute for Special Need Education System Using Dat...
 
V1_I1_2012_Paper2.docx
V1_I1_2012_Paper2.docxV1_I1_2012_Paper2.docx
V1_I1_2012_Paper2.docx
 
Formative Interfaces for Scaffolding Self-Regulated Learning in PLEs
Formative Interfaces for Scaffolding Self-Regulated Learning in PLEsFormative Interfaces for Scaffolding Self-Regulated Learning in PLEs
Formative Interfaces for Scaffolding Self-Regulated Learning in PLEs
 
Synthesis
SynthesisSynthesis
Synthesis
 
A Path Towards Autonomous Machines
A Path Towards Autonomous MachinesA Path Towards Autonomous Machines
A Path Towards Autonomous Machines
 
SkinnerJ_PS533_Final Paper
SkinnerJ_PS533_Final PaperSkinnerJ_PS533_Final Paper
SkinnerJ_PS533_Final Paper
 
DIGITAL ECOSYSTEMS, Paola Di Maio
DIGITAL ECOSYSTEMS, Paola Di MaioDIGITAL ECOSYSTEMS, Paola Di Maio
DIGITAL ECOSYSTEMS, Paola Di Maio
 
Relationships between learning theory and e learning theory (oistein gjovik)
Relationships between learning theory and e learning theory (oistein gjovik)Relationships between learning theory and e learning theory (oistein gjovik)
Relationships between learning theory and e learning theory (oistein gjovik)
 

Recently uploaded

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 

Recently uploaded (20)

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 

Natural User Interfaces as a powerful tool for courseware design in Physical Education

  • 1. Focus on: e-Learning: requirement of the disciplines Natural User Interfaces as a powerful tool for courseware design in Physical Education Pio Alfredo Di Tore1, Tiziana Discepolo2, Stefano Di Tore1 Department of Human, Philosophical and Education Sciences (DISUFF) - Università degli studi di Salerno, pditore@unisa.it 2 tidiscepolo@gmail.com 1 This article aims to describe a possible scenario for the applications of e-learning solutions to the field of Physical Education. Knowledge related to Physical Education is here defined as enactive knowledge, codified in the form of motor responses and acquired in the action, not mediated by the iconic and symbolic plan. The iconic and symbolic dimension, typical of Graphical User Interfaces, has been a barrier to the creation of e-learning strategies in Physical Education. The new paradigms of Human Computer Interaction such as Natural Interfaces, the spread of “everyday’’ technologies that retrieve to HCI the physical dimension, and the diffusion of exergames in education, now make it possible to imagine large-scale creative and collaborative elearning-based physical education. The article describes coarse-grained theoretical and methodological approaches underlying learning of motor skills and indicates the possible technological scenario, according for citations: Di Tore P.A., Discepolo T., Di Tore S. (2013), Natural User Interfaces as a powerful tool for courseware design in Physical Education, Journal of e-Learning and Knowledge Society, v.9, n.2, 105-114. ISSN: 1826-6223, e-ISSN:1971-8829 | Journal of e-Learning and Knowledge Society Vol. 9, n. 2, May 2013 (pp. 105 - 114) ISSN: 1826-6223 | eISSN: 1971-8829
  • 2. | Focus on: e-Learning: Requirements of the disciplines - Vol. 9, n. 2, May 2013 to the type of interaction determined by the Natural Interfaces. 1 Introduction The difficulty, as evidenced by the absence of specific literature on the subject, of the development of e-learning experiences in Physical Education, is related to the type of knowledge linked to Physical Education. The knowledge codified in the form of motor responses was defined enactive knowledge. “Enactive knowledge is not simply multisensory mediated knowledge, but knowledge stored in the form of motor responses and acquired by the act of “doing”. A typical example of enactive knowledge is constituted by the competence required by tasks such as typing, driving a car, dancing, playing a musical instrument, modeling objects from clay, which would be difficult to describe in an iconic or symbolic form. This type of knowledge transmission can be considered the most direct, in the sense that it is natural and intuitive, since it is based on the experience and on the perceptual responses to motor acts”.(Bergamasco, 2005). According to Bruner, the interaction with the information mediated by computers is based on a iconic or symbolic knowledge. If, in this approach, knowledge is coded by symbol systems or in the form of images, on the enactive approach knowledge is not simply mediated by motor skills, but it is encoded in the form of motor responses and acquired in action (Bergamasco, op. cit.). The encoding of knowledge through symbol systems or in the form of images has found a natural fit in HCI systems based on GUIs, because the interaction which is realized in the GUI is a discreet and dialogical interaction, which well combines with the cognitive theoretical of Human Information Processing mold that includes discrete and non-overlapping stages. In essence, this model is functional in an interaction that excludes or minimizes the embodiment and that considers space and time as separate elements, consistent with a conception of time as something moving with respect to a static observer, a linear path from A to B in which to place our body. Not surprisingly, we often hear about the “flow” of time. Against the flow metaphor, Merleau-Ponty stated: “time is not like a river, not a flowing substance” and “it is not the past that pushes the present, nor the present that pushes the future, into being “I belong to space and time, my body combines with them and includes them”(Merleau-Ponty, 1962). Merleau-Ponty’s reflections are echoed in Deleuze, that juxtaposes the idea of time-image (Deleuze, 1983, 1985) to the movement-image idea. In this view, “each movement is not just a change of place within a whole but a becoming in which the movement is a transformation of the body which moves” (Colebrook, 2002). The idea of becoming, which is at the basis of continuous, enactive inte- 106
  • 3. Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design in Physical Education raction, is also central in HCI: “today’s creative computing system can present powerfully evocative meanings by invoking a sense of the “becoming” whole in spatiotemporally embodied interaction. This means that users are engaged in interfaces that highlight perceivable continuity and variation. Hence, we argue, in creative computing systems the idea of embodiment must be reconsidered from the perspective of engagement in a holistically transformative and partially responsive world” (Chow & Harrell, 2011). The new paradigms of Human Machine Interaction can be a tool to give back to man-machine interfaces the enactive dimension, representing a simplex strategy (Berthoz, 2011) in design of courseware dedicated to Physical Education, in the awareness that “the degree of physical involvement is the measure of immersion“ in a digital context (Krueger, 1991). This strategy is possible because of the spread of Natural User Interfaces (NUIS), “an emerging computer interaction methodology which focuses on human abilities such as touch, vision, voice, motion and higher cognitive functions such as expression, perception and recall. A natural user interface or “NUI” seeks to harness the power of a much wider breadth of communication modalities which leverage skills people gain through traditional physical interaction (NUIGroup, 2009). The NUIs include natural inputs and outputs based on the movements, and evolve towards an efficient use of the senses in the interaction with machines, capitalizing on the characteristics of the new generation of devices that can detect movement and location of points in space. For example, Microsoft Kinect, an accessory for the Xbox, is able to detect the segments of the body of a user placed in front of the camera and to use this information to move an avatar in a video game. 2 Motor control and motor learning In this section we present a summary of certain currents of thought in motor learning and motor control, to assess the resulting methodological educational systems and investigate the possible application of existing methodologies to e-learning solutions, by virtue of the above. In the context of sport and physical training most common approaches to motor control are: • the cognitive approach • the ecological approach The motor control theories developed in cognitive psychology have generated a substantial amount of educational applications. Based on these theories, the human being possesses, at the cerebral level, a series of motor programs, or sequences of commands that coordinate the execution of the movements. 107
  • 4. | Focus on: e-Learning: Requirements of the disciplines - Vol. 9, n. 2, May 2013 According a preliminary formulation, the processing of information from the sense organs and proprioceptors enables the system to correct the movement during the performance (closed-loop motor control, Adams (Adams, 1971). The closed-loop motor control assumes that the movements are sufficiently slow to allow the correction during the implementation, on the basis of data from the feedback. The longer the execution time, the wider the possibility of using the circuits of motor control based on feedback (Schmidt & Wrisberg, 2008). In shorter times, the movement is not susceptible to correction during execution and is completely programmed at the level of central nervous system (open loop motor control, Schmidt (Schmidt, 1975), Keele (Keele & Jennings, 1992)). The cognitive theory of motor learning derives directly from the integration of open loop motor control (motor programs) and closed loop motor control (feedback). Learn movements is to develop cognitive structures (the motor programs) through information processing. These processes allow the ability to compare real-time (closed loop) or later (open loop) results and expected results, triggering a process of adjustment of the same motor program. The generalized motor program “is a program that defines a motor pattern of movement, this flexibility allows you to adapt it to produce variations of the motor pattern adapted to changed demands of the environment” (Schmidt & Wrisberg, 2008). Its structure is such that allows the performer to adjust the movement in order to cope with the changing needs of the environment. The ecological approach does not refer to prescriptive mental structures: the action is directly available for those who act in their own environment. In other words, the sensorimotor system possesses the property of self-organization that does not make it necessary to use a motor program. In the ecological approach, the central nervous system develops from environmental influences on the neuronal groups that specialize on specific tasks (Edelman et al., 1995). In this approach, learning is defined as the education of attention (Gibson, 1986). Learning means optimizing perceptual processes. Learning, in ecological perspective, is defined as the construction of a new coordination adapted to the needs of the prescribed task. This construction is not realized ex novo: the novice, which addresses for the first time a task, uses some spontaneous types of coordination, which may refer to behaviors acquired before, or even be implied by very general coupling trends. It is on the basis of this repertoire that will be realized the construction of new models of coordination. In the two approaches presented here, the perception of the environment is different and is defined otherwise the learning process. In the first approach, motor learning means to stabilize a motor program effective in function of a particular information processing. 108
  • 5. Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design in Physical Education In the other, motor learning is a question of the adaptability of the movement, matching the diversity of the environment and the specificity of the individual (Carnus, 2010) The direct consequence of cognitive theory in educational applications is a prescriptive approach: the structuring of motor programs increasingly articulate and the optimization of their parameters. The aim of exercises will be to stabilize and refine motor program by reducing the variability of execution. On this basis, in the context of cognitive psychology has been developed massive quantity of results on strategies and techniques for structuring the exercise in order to achieve optimal learning. The main ways of structuring the exercise are partial exercise, randomized exercise and varied exercise. In the ecological approach, to practice does not mean repeating over and over again the same solution for a given task, but repeating the process of solution of the task itself. Teaching, in the ecological approach, aims to stimulate the emergence of spontaneous solutions (heuristics) to motor problems, implementing a process that passes through the continuous variation of the motor gestures. In heuristic learning, the teacher must assist the student in finding autonomous solutions. If the learning task is too complex, teachers do not have to impose constraints on the learner, pointing out in a how to simplify the motor execution, but have to apply constraints to the environment The prerequisite for an effective strategy for facilitating teaching is that the unitary structure perception / action, postulated within the ecological approach, is not altered. In the ecological approach, the execution variability is not seen as a limiting factor, but as an inherent property, index of the non-linear interaction of the system with the constraints imposed by the body, the task and the environment in the search for solutions. 3 Exergames The recent spread of exergames, videogames which require a high involvement of the body and movement of the player, has triggered an extensive series of studies in the field of physical education, to evaluate the possibility of using these technologies in educational, performative and rehabilitative field. With the term “exergames” we refer to games that integrate the traditional system of videogame the element of the user’s movement, a movement which is digitized and made to gameplay by a series of new-generation controller, such as the Wiimote and Balance Board accessories of Nintendo’s Wii console and the Kinect sensor, originally created as an accessory of the Xbox and evolved as an independent device interfaced with personal computers (A. Di Tore 109
  • 6. | Focus on: e-Learning: Requirements of the disciplines - Vol. 9, n. 2, May 2013 & Raiola, 2012). In this broad sense, the exergames reproduce in the digital environment, the fundamental questions of perception and phenomenology, confirming how the actions embedded within a digital interface are “fluid and functional crossings between physical and digital realms” (Hansen, 2006). Historically, the literature has pointed out before the potential of exergames for wellness and education, in particular in the fight against sedentary lifestyle (Chamberlin & Gallagher, 2008); Within studies related motor learning, Staiano and Calvert pointed out a lack of specific research: “Because many exergames such as DDR or Wii Sports tennis require rapid hand–eye or foot–eye coordination, they may improve general coordination skills. However, the majority of research on coordination benefits involves elderly people playing sedentary video games, not exergames. Video game play increased perceptual-motor skills including hand–eye coordination, dexterity, and fine motor ability (Drew & Waters, 1986). At present, there is no exergame research on this topic.” (Staiano & Calvert, 2011). The added value of exergaming in terms of user involvement has been studied (and recognized) by Baranowski and Wigdor (Baranowski et al., 2008; Wigdor & Wixon, 2011). The exergames, as complex games, create an experience of immersion in a virtual environment that sparks interest in the game. A deep learning requires an extended commitment and this commitment is favored by a process of identification, challenge and control. The ability to transfer skills acquired in the activity of gaming in other contexts is widely discussed in the literature. Silberman (Silberman, 2009) provides a comprehensive account of the different positions. For exergames, transferability of skills is an issue addressed, once again, by Staiano and Calvert: “The skills that young people acquire during the game with the exergame move to other activities, for the benefit of the physical, social and cognitive development. [...] The exergame interpret a player’s body movements as input associated with specific meanings for the game, translating the actual movements in three dimensional space on the two-dimensional screen. As the player exergame is physically distant from his avatar on the screen, it requires visualspatial skills, hand–eye coordination and fast reaction times to be successful in the game.” (Staiano & Calvert, 2011). A further example, focused on special education, comes from the research of Cai and Kornspan, who argue that the movement-based games have the potential to support psycho-motor and cognitive learning for students with disabilities.(Cai & Kornspan, 2012) Sheehan has emphasized the added value in terms of motivation in the specific field of education, addressing design issues, in a paper entitled “The practical and theoretical implications of flow theory and intrinsic motivation 110
  • 7. Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design in Physical Education in designing and implementing exergaming in the school environment”: “The intentional design of educationally appropriate video games that require the use of the whole body to play already affords students the personalized experience needed to find balance between the level of difficulty and their skill level. Once that agreement exists, other aspects associated with intrinsic motivation and e creative flow can be attended to (achievable goals, perception of control, prompt feedback, focused concentration, etc.)(Sheehan & Katz, 2012) The use of exergames in the school system needs to balance the needs of the student with curricular expectations. Researchers have recently begun to study the factors that motivate students to participate in such activities (Staiano & Calvert, 2011). “Exergaming and interactive fitness activities could provide the stimulus for engagement to those students who have started to lose interest in more traditional forms of physical activity and reengage them towards lifelong physical activity”(Sheehan & Katz, 2012). The point of view of ecological psychology emphasizes the primacy of the principles and objectives intentions that guide the perception-action within the limits of game design and user interface. From the ecological point of view, therefore, the task of game design becomes to select targets and create environments in which these objectives can be pursued in an optimal way, taking advantage of those qualities that make gaming an engaging experience”.(Young, 2004) The peculiar characteristic of the movement also adds another layer of complexity to the design: the mechanisms of detection accuracy of the gesture (Gesture Recognition). In a work on gesture recognition in prototyping software, Gacem has identified two trends: 1. Trigger based. Is a particular gesture executed? 2. Quality based. Is a particular gesture executed correctly? (Gacem et al., 2011) 4 NUIs and Enactive Interaction From the literature review, the exergames were assessed first as a tool which supports a less sedentary lifestyle among gamers. In a second step, they were assessed for their potential in education. Although the general trend is to consider exergames as a useful tool in the field of Physical Education, there are still many doubts about the possibility of assessing the correct execution of motor gestures in the digital environment. The thesis that we want to support here is that exergames may constitute a useful tool, and therefore suitable for the development of courseware, only if they were seen in a perspective of 111
  • 8. | Focus on: e-Learning: Requirements of the disciplines - Vol. 9, n. 2, May 2013 interface design which enhances the enactive component. The NUIS, in fact, allow to retrieve to the Human Computer Interaction “simplifying it principles that reduce the number or complexity of processes and allow it to very quickly develop information and situations, taking into account past and anticipating the future, facilitating the understanding of the intentions without distorting the complexity of the reality” (Berthoz, 2011). Specifically, these media involve two distinct aspects of sensory-motor connections: 1. the components of user input related to movement are representative of his intention; 2. user input is in relation to a changing environment. The paradigm of continuous interaction mechanisms that these two qualities contribute to build can be called “enactive interaction”, with different characteristics from the conversational, discrete interaction” based on GUI point-and-click. (Chow & Harrell, 2011) The enactive interaction involves not only the idea of space (changes the relationship with the space that becomes sensitive), but also the idea of time: movement is “not just a change of place within a whole but a becoming in which the movement is a transformation of the body which moves”. (Chow & Harrell, 2011) If the peculiarities of repetition in classic videogames seemed to suggest affinities with the cognitive approach (see the concept of repetition set out in paragraph on the cognitive approach), the enactive interaction favored by NUIS seems to have strong links with the ecological approach, valuing the uniqueness motor intentionality and its implementation at the expense of rigid and preordained sequence of motor responses. This type of interaction provides the opportunity to create environments and tools that can translate into educational practice a conception of knowledge and learning that, in theory, recognized the role of body and movement, struggling on the operational level to define methodologies and tools used in everyday. In fact we witness, not in the MIT labs, but in the bedrooms of middle school students, to forms of HCI (Human Computer Interaction) that go beyond the flattening on the Cartesian plane that has characterized the video game phenomenon(Di Tore et al., 2012). The analysis of the educational potential of gesture-based technologies is developed from the knowledge that the devices that encourage to touch, move and tend to explore are considered interesting for education and training. The gesture-based computing will probably take control of the educational experience through the body and voice, to transform the educational act in digital contexts in natural and interactive experience and to interact with an augmented 112
  • 9. Pio Alfredo Di Tore, Tiziana Discepolo, Stefano Di Tore - Natural User Interfaces as a powerful tool for courseware design in Physical Education environment to “manipulate”, influence and transform it intuitively (Faiella & Mangione, 2012). Knowledge becomes “embodied” in the corporeality of the subjects they learn and environments that synergistically incorporate them, converging more and more towards the idea that the body can be considered as one of the fundamental dimensions in the formation of knowledge architecture (Santoianni et al., 2010). REFERENCES Adams, J. A. (1971), A closed-loop theory of motor learning. Journal of Motor Behavior; Journal of Motor Behavior. Baranowski, T., Buday, R., Thompson, D. I., & Baranowski, J. (2008), Playing for real: Video games and stories for health-related behavior change. American journal of preventive medicine, 34(1), 74-82. e10. Bergamasco, M. (2005), Multimodal Interfaces: an Introduction to ENACTIVE systems. Paper presented at the Eurographic. Berthoz, A. (2011), La semplessità: Codice. Cai, S. X., & Kornspan, A. S. (2012), The Use of Exergaming with Developmentally Disabled Students. Strategies: A Journal for Physical and Sport Educators, 25(3), 1-40. Carnus, M. F. (2010), Analyse didactique clinique de l’activité décisionnelle de deux enseignantes en éducation physique et sportive (EPS). Education et didactique, 4(3), 49-62. Chamberlin, B., & Gallagher, R. (2008), Exergames: Using video games to promote physical activity. Chow, K. K. N., & Harrell, D. F. (2011), Enduring interaction: an approach to analysis and design of animated gestural interfaces in creative computing systems. Paper presented at the Proceedings of the 8th ACM conference on Creativity and cognition. Colebrook, C. (2002), Understanding Deleuze. Deleuze, G. (1983), Cinéma: L’image-mouvement: Éd. de Minuit. Deleuze, G. (1985), Cinéma II. L’Image Temps. Paris: Minuit. Di Tore, A., & Raiola, G. (2012), Exergames e didattica delle attività motorie e sportive. European Journal of Sustainable Development, 1(2), 221-228. Di Tore, S., Aiello, P., Di Tore, P. A., & Sibilio, M. (2012), Can I Consider the Pong Racket as a Part of My Body?: Toward a Digital Body Literacy. International Journal of Digital Literacy and Digital Competence (IJDLDC), 3(2), 58-63. Drew, B., & Waters, J. (1986), Video games: Utilization of a novel strategy to improve perceptual motor skills and cognitive functioning in the non-institutionalized elderly. Cognitive Rehabilitation. 113
  • 10. | Focus on: e-Learning: Requirements of the disciplines - Vol. 9, n. 2, May 2013 Edelman, G. M., Tononi, G., & Ferraresi, S. (1995), Darwinismo neurale: la teoria della selezione dei gruppi neuronali: Einaudi. Faiella, F., & Mangione, G. (2012), E-learning. Le pratiche consolidate e i nuovi scenari di ricerca. Lecce: Pensa. Gacem, B., Vergouw, R., Verbiest, H., Cicek, E., van Oosterhout, T., Bakkes, S., & Kröse, B. (2011), Gesture Recognition for an Exergame Prototype. Gibson, J. J. (1986), The ecological approach to visual perception: Taylor & Francis. Hansen, M. B. N. (2006), Bodies in Code: Interfaces with Digital Media: Routledge. Keele, S. W., & Jennings, P. J. (1992), Attention in the representation of sequence: Experiment and theory. Human Movement Science, 11(1), 125-138. Krueger, M. W. (1991), Artificial reality: Past and future. Virtual Reality: Theory, Practiсe and Promise/Ed. SK Helsel, JP Roth.–Westport, London: Meckler, 19-26. Merleau-Ponty, M. (1962), Phenomenology of Perception: An Introduction: Routledge & Kegan Paul. NUIGroup. (2009), Multi-Touch Technologies. Community Release]: May. Santoianni, F., Sabatano, C., Capasso, M., Sorrentino, M., & De Angelis, S. (2010), Online/offline, globale/locale, rete/individuo. C’è “spazio” pedagogico tra le facce della medaglia? ISDM Journal International des Sciences de l’Information et de la Communication, 39(689), 12. Schmidt, R. A. (1975), A schema theory of discrete motor skill learning. Psychological review, 82(4), 225. Schmidt, R. A., & Wrisberg, C. A. (2008), Motor learning and performance: a situation-based learning approach: Human Kinetics Publishers. Sheehan, D. P., & Katz, L. (2012), The practical and theoretical implications of flow theory and intrinsic motivation in designing and implementing exergaming in the school environment. Loading... 6(9). Silberman, L. (2009), Double play: athletes’ use of sport video games to anhance athletic performance. University of Wisconsin. Staiano, A. E., & Calvert, S. L. (2011), Exergames for physical education courses: Physical, social, and cognitive benefits. Child Development Perspectives, 5(2), 93-98. Wigdor, D., & Wixon, D. (2011), Brave NUI world: designing natural user interfaces for touch and gesture: Morgan Kaufmann. Young, M. (2004), An ecological description of video games in education. Thinking. 114