SlideShare a Scribd company logo
1 of 35
Download to read offline
Conductive Nanoparticle Inks for
Flexible and Printed Electronics
            Zhihao Yang, Ph.D. & CTO
           NanoMas Technologies, Inc.
                1093 Clark Street
            Endicott, N
            E di tt New York 13760
                          Y k

             Phone: 607-755-4121
               Fax: 866-367-1128
         Website: www.nanomastech.com


3rd Annual Flexible Electronics Symposium
3rd Annual Flexible Electronics Symposium
       August 17‐18, 2010, Binghamton, New York
Printed Electronics: Fabricating
                            Electronic Devices with Printing




• Low equipment cost
• Continuous roll to roll processing
• Additive deposition and p
             p              patterning
                                     g
Application Market
       (by IDTechEX projection)
Conductive Inks for
                         Printed Electronics
Highly conductive and high resolution patterns fabricated
using low cost and roll-to-roll processes (such as inkjet and
      low-cost      roll to roll
gravure printing) are one of the most critical technology
components in making printed electronics and displays

What are the requirements:
  High performance: high conductivity (close to pure metal)
  Low temperature processing: plastic compatible
  Printability: solution processed with “high” resolution
 patterning
  High throughput: R2R and fast curing
  Mechanically robust: adhesion to substrates, tolerance to
 mechanical deformation
  Low cost
Nanoparticle Inks for
                                       Printed Electronics
• Nanoparticles can be stabilized in ink solutions by organic ligand shells,
  which can be removed after printing.
• N
  Nanoparticles can b f th cured or sintered t hi hl conductive fil
           ti l     be further      d     i t d to highly       d ti films
  at low temperatures.

                         70-90°C
                         70 90°C             100-150°C
                                             100 150°C



 Deposited Ag nanoparticles
                                            Conductive Ag film on PET cured
                                            from printed nanoparticle inks


                                   150°C



                        200 nm
NanoMas Proprietary Technology:
                       Producing High Quality Nanoparticles with
                         Large-Scale and Low-Cost Processes
                            g



                                                            NanoMas
                                                            silver
                                                            nanoparticles
                                                            with 5 6 nm
                                                              ith 5-6
                                                            in size (SEM)




50L pilot production
reactor at NanoMas       NanoMas Ag nanoparticle powders and inks
NanoMas Conductive Nanoparticle
                                 Inks Technology
                                              gy


•   Patented unique nanoparticle synthesis technology, widely
                  q        p         y                 gy       y
    compatible with the low cost production processes in the
    chemical industry
•   Low cost and fully scalable to large scale mass production
•   Ultra-small nanoparticle size (2 to 10 nm) with specially designed
    surface chemistry allows low annealing temperature, short
    process time, and high conductivity
•   Variety of surface chemistry for different solvent dispersion and
    applications
•   Low resistivity (as low as ~2.4 μΩ-cm, 1.5x of pure Ag)
•   Low process temperature (as low as ~70°C) compatible with most
    p ast c substrates
    plastic subst ates
•   Also curable by laser or UV light at room temperature
Fully Scalable Process
                           y

                      • NanoMas patented process
                        built around traditional wet
                        chemistry manufacturing
                        – Lowest cost method of nanoparticle
                          production
                        – Superior quality and reproducibility
                            p      q     y       p           y




2000L HV Production




                                                                 8
NanoMas Metal Nanoparticles
                          (Ag, Au, Pd, Pt)

  Silver (~5 nm)          Gold ( 3-4 nm)




                                 Platinum ( ~2 nm)
Palladium ( ~3 nm)
Thermal Curing Profile of NanoMas
                                          Silver & Gold Nanoparticles


                   40
                                                  NanoMas NanoSilver Ink (~5 nm)
                                                  NanoMas NanoGold Ink (3-4 nm)


                   30
              m)
Resistiv (μΩ-cm




                   20
       vity




                   10



                        Bulk Silver Resistivity
                    0
                        80       100        120   140     160      180      200
                                     Annealing Temperature (C)
In-Situ Resistance
                                           Measurements




The measurements show the evolution of the electrical resistance of Ag‐NP films over 
more than 5 decades upon sintering. 
The final resistance is relatively invariant, whereas kinetics vary dramatically.
Three characteristic times, the onset, the peak rate, and the terminal times, have been 
identified.   Arrhenius analysis reveals an activation energy of ca. 600 meV.
Morphology of Sintered
                        Silver NP Films

5s           10 s                     20 s




30 s         60 s                     300 s




       Ag-NP thin films sintered at 120oC
Control Film Morphology by
                 Formulation and Processing
                                          g


Film processed
with normal
NanoSilver ink
formulation




Film processed
with a special
NanoSilver ink
formulation
Mechanical Performance
                                            of NanoSilver Films
      Stretching apparatus                  Printed Ag-NP films before & after stretching
                                                                 ~ 6 inch
                                                                   6 inch




                                                        3 inch



                                                 II

                                                                            Regime 
                                                                 Regime 
                                                                            IV
                                                                 III
                                                         I        Regio
                                                                  n II
Resistance increases with elongation
Still conducting with >200% elongation 
PET substrate fails first 
NanoSilver Ink for Inkjet Printing




                       Dimatix DMP2800
                     used for development
                        df d l

                                            15
Inkjet Printing


Advantages Ink Jet Printing
         g                  g   Challenges
                                        g
• Inexpensive system            • Depositing thick materials
• Proven high volume            • Inks require nanoparticles
  production tool and             for stability (free of
  technology                      aggregations)
• Digital flexible can make
  Digital, flexible,            • Depositing on three-
  changes on the fly              dimensional objects
• 50-100 micron line
  resolution with 10 pl heads
NanoMas Inkjet Inks


  Properties           Value
  % Loading            10‐50%
  Viscosity
  Vi    it             5‐ 16 cps
                       5 16
  Surface tension      27‐35 dynes/cm
  Trace height         up to 400nm/per pass
  Curing Temperature   <180⁰C
  Conductivity         5 µΩ‐cm



• Customizable to meet customer needs

                                              17
Inkjet Printing using
                                    NanoMas Inks


                                                                        Line width

                                                                        ~200 μm




                                                                        ~100 μm




Jetting from 10pL head at 5KHz     NanoSilver ink printed on glass & 
                                           cured at 150⁰C


                                                                           18
NanoSilver Ink for 
Pneumatic Aerosol Jet 
      Printing


                         Optomec Aerosol  Jet Printer  
                            used for Development


                                                          19
20
3D Multi‐Chip Stack Packaging




• 3D multi-chip stack packaging enables portable devices with more
 functions that consumers are looking for (such as smart phones).
• Printed vertical interconnects to replace wire bonding
           ertical                           ire
• Lower cost, higher yield, better device performance and reliability…
                                                                     21
Aerosol Jet Printing


Advantages Aerosol Jet Printing      Challenges (ink):
• Capable of depositing traces on    • Loss of solvent from ink during
  3-dimensional packages               aerosol formation
• High deposition rates
    g     p                          • Agglomeration of p
                                        gg                particles
• High throughput tools currently      during aerosol formation
  being developed                    • Depositing thick materials
• Does not require <100nm
  particles in ink
• Very high resolution can be
  achieved (<10 micron)
Example of Target Material
                                  Specification for Optomec Ink
Physical Property              Target Spec.                         Formulated Ink
Particle Size     <100nm                                5nm
Solids Loading    50wt% (or greater required),          >66%
                  >70wt%  preferred
Resistivity       <5x10‐8 ohm.m                          < 5x10‐8 ohm.m
Sintered trace 
Sintered trace    Several microns thick
                  Several microns thick                  Demonstrated several microns thick
                                                         Demonstrated several microns thick
                                                        traces
Agglomerates      Very few required, none preferred      None observed
Sedimentation     No cake formation in 1‐2 hours        None observed
                  required, no cake formation preferred
Multiple          No preferential sedimentation         Single component
Components
Pot Life
Pot Life          > 12 hr shift
                  > 12 hr shift                          >8 hour operation with no measurable
                                                         >8 hour operation with no measurable
                                                         change in total dispersed solids level
Shelf Life      6 months required,                       Projected to be > 6months 
                12 months preferred                     (under testing)
Viscosity       1 30cP
                1‐30cP                                   5 6cP
                                                         5‐6cP
Solvent Systems High boiling point/low evaporation       BP 240 C , 0.07mmHg @ 20C
                rate  (e.g. BP 193C, 0.06mmHg @ 20C) 
                                                                                              23
Characterization of Printing




Sintered Trace Height: 3.8µm
        Width 40 µm              24
Cross-Section of Printed Trace




             High conductive (~5 
             uohm‐cm), high 
             resolution (<30 um line 
             width), high aspect ratio 
             width), high aspect ratio
             (20‐30 um height) 
             printing can be achieved




                                   25
NanoSilver Ink for High Throughput 
  Commercial Gravure Printing




                                      26
High Throughput Gravure
                      Printing of RFID Antenna
                             g




• Demonstrated low cost production of RFID antenna using a
commercial gravure printing press
• 25-50 m/s roll-to-roll printing
                         p      g
Applications in Fabricating
Printed Electronic Devices with
  NanoMas Nanoparticle Inks




                                  28
Solar Cell Metallization




Advantages of using NanoMas special solar inks and pastes:
• Low temperature processing (<250˚C) compatible with most thin-film
  and organic solar cell technologies
        g                        g
• High resolution printing enables better efficiency
• Excellent electric contact and mechanical adhesion with silicon, glass
  ITO, etc.

                                                                      29
Fine Line Solar Cell Metallization
    Printed with Aerosol Jet




                                30
All-Printed Hydrogen
Sensors on Plastics




• Sensing hydrogen as low as 200 ppm
• Response time less than 1s
  Response time less than 1s
• Low cost for large area sensing 
                                   31
Printed Organic TFTs


              (a)

                                                        Ag       OSC          Ag
                        (b)
                                                    Silicon dioxide gate dielectric
                                                      Single crystal silicon gate


                                                                (a)                 (b)




                                                  Optical microscopy of fabricated bottom-
                                                 gate-bottom-contact polythiophene
IV
I-V characterization of OTFT based on            OTFTs with (a) evaporated Au and (b)
polythiophene as the organic SC and printed      printed Ag as the electrode materials,
Ag electrodes. (on/off ratio ~ 103 and carrier   respectively.
mobility ~ 0.02 cm2 V-1 S-1)                                                              32
Printed Silver Contacts on Single
                    Walled Carbon Nanotube FET
                                      Vsd
SEM on SWNT‐FET
                             Source
                             S              SWCNTs           Drain
                                                             D i

                            SiO2

                            P‐Si

                                                     Vgate



                                   SWNT FET
                                   SWNT‐FET




                                                                     33
Summary

• NanoMas has developed a low cost process for
  producing A A P and Pd nanoparticles
       d i    Ag, Au, Pt d                i l
• The particles are some of the smallest and most stable
  commercially available, while allowing low temperature
  sintering compatible with most flexible substrates for
  printed electronics
• The nanoparticles can be formulated into inks suited to
            p
  a number of printing techniques including gravure, ink-
  jet, Aerosol-Jet printing.
• The printed traces can be sintered at low temperatures
        p                                        p
  to produce low resistivity, adherent, mechanically
  robust conductive patterns suitable for use in the
  printed electronics applications.

                                                       34
Acknowledgements

NanoMas Technologies, Inc.
   Dr. David van Heerden
      Dr. Hichang Yoon
          Dr. Yu Du
       Dr. Jalal Salami
       D J l lS l i

  Binghamton University
     Prof.
     Prof Howard Wang
        Liwei Huang
 Dr. Yayong Liu (SiPix now)



                     Nano Material    LINX‐CONSULTING
                     Investors, LLC
                                  C

More Related Content

What's hot

3 D Packaging 2007 For Emc3d
3 D Packaging 2007 For Emc3d3 D Packaging 2007 For Emc3d
3 D Packaging 2007 For Emc3dRRPlass
 
ELMARCO - Company overview
ELMARCO - Company overviewELMARCO - Company overview
ELMARCO - Company overviewElmarcoCompany
 
Ehud tzuri 3 d challanges new
Ehud tzuri 3 d challanges    newEhud tzuri 3 d challanges    new
Ehud tzuri 3 d challanges newchiportal
 
Bnp double 65_suction_blast_cabinet
Bnp double 65_suction_blast_cabinetBnp double 65_suction_blast_cabinet
Bnp double 65_suction_blast_cabinetJane Smith
 
Bnp double 220_pressure_blast_cabinet
Bnp double 220_pressure_blast_cabinetBnp double 220_pressure_blast_cabinet
Bnp double 220_pressure_blast_cabinetJane Smith
 
Heat Seal Characteristics of COC/PE Blends
Heat Seal Characteristics of COC/PE BlendsHeat Seal Characteristics of COC/PE Blends
Heat Seal Characteristics of COC/PE BlendsTopasAdvancedPolymers
 
Non-Migrating Polymeric Slip Additive In LDPE Films
Non-Migrating Polymeric Slip Additive In LDPE Films Non-Migrating Polymeric Slip Additive In LDPE Films
Non-Migrating Polymeric Slip Additive In LDPE Films TopasAdvancedPolymers
 
11.50 dhr Meyer
11.50 dhr Meyer11.50 dhr Meyer
11.50 dhr MeyerThemadagen
 
Polyolefin Film Enhancement Using COC for Retort Applications
Polyolefin Film Enhancement Using COC for Retort ApplicationsPolyolefin Film Enhancement Using COC for Retort Applications
Polyolefin Film Enhancement Using COC for Retort ApplicationsTopasAdvancedPolymers
 
Bnp double 220_suction_blast_cabinet
Bnp double 220_suction_blast_cabinetBnp double 220_suction_blast_cabinet
Bnp double 220_suction_blast_cabinetJane Smith
 
Bnp 220 suction blast cabinet
Bnp 220 suction blast cabinetBnp 220 suction blast cabinet
Bnp 220 suction blast cabinetJane Smith
 
Sas ibac presentation
Sas  ibac presentationSas  ibac presentation
Sas ibac presentationOsama Bekhit
 
Micro nano technology center virtual tour
Micro nano technology center virtual tourMicro nano technology center virtual tour
Micro nano technology center virtual tourbradwest05
 

What's hot (20)

Pulp
PulpPulp
Pulp
 
3 D Packaging 2007 For Emc3d
3 D Packaging 2007 For Emc3d3 D Packaging 2007 For Emc3d
3 D Packaging 2007 For Emc3d
 
ELMARCO - Company overview
ELMARCO - Company overviewELMARCO - Company overview
ELMARCO - Company overview
 
803 diamond fiche produit
803 diamond fiche produit803 diamond fiche produit
803 diamond fiche produit
 
Ehud tzuri 3 d challanges new
Ehud tzuri 3 d challanges    newEhud tzuri 3 d challanges    new
Ehud tzuri 3 d challanges new
 
Bg 20
Bg 20Bg 20
Bg 20
 
802D fiche produit
802D fiche produit802D fiche produit
802D fiche produit
 
Bnp double 65_suction_blast_cabinet
Bnp double 65_suction_blast_cabinetBnp double 65_suction_blast_cabinet
Bnp double 65_suction_blast_cabinet
 
Bnp double 220_pressure_blast_cabinet
Bnp double 220_pressure_blast_cabinetBnp double 220_pressure_blast_cabinet
Bnp double 220_pressure_blast_cabinet
 
804 diamond fiche produit
804 diamond fiche produit804 diamond fiche produit
804 diamond fiche produit
 
Heat Seal Characteristics of COC/PE Blends
Heat Seal Characteristics of COC/PE BlendsHeat Seal Characteristics of COC/PE Blends
Heat Seal Characteristics of COC/PE Blends
 
Non-Migrating Polymeric Slip Additive In LDPE Films
Non-Migrating Polymeric Slip Additive In LDPE Films Non-Migrating Polymeric Slip Additive In LDPE Films
Non-Migrating Polymeric Slip Additive In LDPE Films
 
Aroma Barrier & Low Extractables
Aroma Barrier & Low ExtractablesAroma Barrier & Low Extractables
Aroma Barrier & Low Extractables
 
11.50 dhr Meyer
11.50 dhr Meyer11.50 dhr Meyer
11.50 dhr Meyer
 
Polyolefin Film Enhancement Using COC for Retort Applications
Polyolefin Film Enhancement Using COC for Retort ApplicationsPolyolefin Film Enhancement Using COC for Retort Applications
Polyolefin Film Enhancement Using COC for Retort Applications
 
11122 Data
11122 Data11122 Data
11122 Data
 
Bnp double 220_suction_blast_cabinet
Bnp double 220_suction_blast_cabinetBnp double 220_suction_blast_cabinet
Bnp double 220_suction_blast_cabinet
 
Bnp 220 suction blast cabinet
Bnp 220 suction blast cabinetBnp 220 suction blast cabinet
Bnp 220 suction blast cabinet
 
Sas ibac presentation
Sas  ibac presentationSas  ibac presentation
Sas ibac presentation
 
Micro nano technology center virtual tour
Micro nano technology center virtual tourMicro nano technology center virtual tour
Micro nano technology center virtual tour
 

Viewers also liked

Lampiran pk 09
Lampiran   pk 09Lampiran   pk 09
Lampiran pk 09sham
 
[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...
[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...
[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...Satria Denta
 
Olahraga
OlahragaOlahraga
Olahragasham
 
5 Musts to be an Uber Cool Doctor
5 Musts to be an Uber Cool Doctor5 Musts to be an Uber Cool Doctor
5 Musts to be an Uber Cool DoctorSatria Denta
 
Force 1 10 08 03 Negotiation In The Difficult Time
Force 1   10 08 03 Negotiation In The Difficult TimeForce 1   10 08 03 Negotiation In The Difficult Time
Force 1 10 08 03 Negotiation In The Difficult Timerogertanios
 

Viewers also liked (10)

CATÁLOGO DE RECURSOS TIC
CATÁLOGO DE RECURSOS TICCATÁLOGO DE RECURSOS TIC
CATÁLOGO DE RECURSOS TIC
 
Lampiran pk 09
Lampiran   pk 09Lampiran   pk 09
Lampiran pk 09
 
[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...
[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...
[CIMSA] Maintaining Organization | Lobbying, Agreement, and External Communic...
 
Isae 3402 Abstract
Isae 3402   AbstractIsae 3402   Abstract
Isae 3402 Abstract
 
Olahraga
OlahragaOlahraga
Olahraga
 
5 Musts to be an Uber Cool Doctor
5 Musts to be an Uber Cool Doctor5 Musts to be an Uber Cool Doctor
5 Musts to be an Uber Cool Doctor
 
Force 1 10 08 03 Negotiation In The Difficult Time
Force 1   10 08 03 Negotiation In The Difficult TimeForce 1   10 08 03 Negotiation In The Difficult Time
Force 1 10 08 03 Negotiation In The Difficult Time
 
Inspection of-pressure-vessels
Inspection of-pressure-vesselsInspection of-pressure-vessels
Inspection of-pressure-vessels
 
Passage Of The Heart
Passage Of The HeartPassage Of The Heart
Passage Of The Heart
 
Gods Great Gifts
Gods Great GiftsGods Great Gifts
Gods Great Gifts
 

Similar to NanoMas_FlexTech

2012 11-27-masterclass-conductive-inks-sirris
2012 11-27-masterclass-conductive-inks-sirris2012 11-27-masterclass-conductive-inks-sirris
2012 11-27-masterclass-conductive-inks-sirrisSirris
 
2012 11-27-masterclass-conductive-inks-nanogap
2012 11-27-masterclass-conductive-inks-nanogap2012 11-27-masterclass-conductive-inks-nanogap
2012 11-27-masterclass-conductive-inks-nanogapSirris
 
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)Alexander Novichkov
 
[Startup Nations Summit 2014] Competition - Israel
[Startup Nations Summit 2014] Competition - Israel[Startup Nations Summit 2014] Competition - Israel
[Startup Nations Summit 2014] Competition - IsraelStartupNations
 
Thermal Sprayed Silicon Microstructure
Thermal Sprayed Silicon MicrostructureThermal Sprayed Silicon Microstructure
Thermal Sprayed Silicon MicrostructureDamon Jackson
 
ePIXfab Technology and Partners
ePIXfab Technology and PartnersePIXfab Technology and Partners
ePIXfab Technology and Partnersamitkhanna49
 
intel PDF 32nm Technology Update Mark Bohr
intel  PDF  	32nm Technology Update Mark Bohrintel  PDF  	32nm Technology Update Mark Bohr
intel PDF 32nm Technology Update Mark Bohrfinance6
 
Presentation Impact2009
Presentation Impact2009Presentation Impact2009
Presentation Impact2009ckyang
 
Singularit University presentation Nanotechnology nextbigfuture.com
Singularit University presentation Nanotechnology nextbigfuture.comSingularit University presentation Nanotechnology nextbigfuture.com
Singularit University presentation Nanotechnology nextbigfuture.comBrian Wang
 
PlasmaChem GmbH
PlasmaChem GmbHPlasmaChem GmbH
PlasmaChem GmbHplasmachem
 
zazzera.Larry Zazzera 3M
zazzera.Larry Zazzera 3Mzazzera.Larry Zazzera 3M
zazzera.Larry Zazzera 3Mguest1f1b27
 
Prolink r500 3000
Prolink r500 3000Prolink r500 3000
Prolink r500 3000biolink
 
IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...
IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...
IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...ponencias.eurosurfas2011
 

Similar to NanoMas_FlexTech (20)

2012 11-27-masterclass-conductive-inks-sirris
2012 11-27-masterclass-conductive-inks-sirris2012 11-27-masterclass-conductive-inks-sirris
2012 11-27-masterclass-conductive-inks-sirris
 
2012 11-27-masterclass-conductive-inks-nanogap
2012 11-27-masterclass-conductive-inks-nanogap2012 11-27-masterclass-conductive-inks-nanogap
2012 11-27-masterclass-conductive-inks-nanogap
 
Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab”
Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab”Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab”
Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab”
 
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
 
Mp fine linetape, spec
Mp fine linetape, specMp fine linetape, spec
Mp fine linetape, spec
 
Fcipt Overview
Fcipt OverviewFcipt Overview
Fcipt Overview
 
Fcipt Overview
Fcipt OverviewFcipt Overview
Fcipt Overview
 
poster
posterposter
poster
 
[Startup Nations Summit 2014] Competition - Israel
[Startup Nations Summit 2014] Competition - Israel[Startup Nations Summit 2014] Competition - Israel
[Startup Nations Summit 2014] Competition - Israel
 
Thermal Sprayed Silicon Microstructure
Thermal Sprayed Silicon MicrostructureThermal Sprayed Silicon Microstructure
Thermal Sprayed Silicon Microstructure
 
ePIXfab Technology and Partners
ePIXfab Technology and PartnersePIXfab Technology and Partners
ePIXfab Technology and Partners
 
intel PDF 32nm Technology Update Mark Bohr
intel  PDF  	32nm Technology Update Mark Bohrintel  PDF  	32nm Technology Update Mark Bohr
intel PDF 32nm Technology Update Mark Bohr
 
Presentation Impact2009
Presentation Impact2009Presentation Impact2009
Presentation Impact2009
 
Singularit University presentation Nanotechnology nextbigfuture.com
Singularit University presentation Nanotechnology nextbigfuture.comSingularit University presentation Nanotechnology nextbigfuture.com
Singularit University presentation Nanotechnology nextbigfuture.com
 
PlasmaChem GmbH
PlasmaChem GmbHPlasmaChem GmbH
PlasmaChem GmbH
 
J Zazzera L
J Zazzera LJ Zazzera L
J Zazzera L
 
zazzera.Larry Zazzera 3M
zazzera.Larry Zazzera 3Mzazzera.Larry Zazzera 3M
zazzera.Larry Zazzera 3M
 
Prolink r500 3000
Prolink r500 3000Prolink r500 3000
Prolink r500 3000
 
5 mahjabin mobarak 7
5 mahjabin mobarak 75 mahjabin mobarak 7
5 mahjabin mobarak 7
 
IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...
IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...
IP. Lacharmoise - InnovativeThin Film Devices for Photovoltaic Automotive App...
 

NanoMas_FlexTech

  • 1. Conductive Nanoparticle Inks for Flexible and Printed Electronics Zhihao Yang, Ph.D. & CTO NanoMas Technologies, Inc. 1093 Clark Street Endicott, N E di tt New York 13760 Y k Phone: 607-755-4121 Fax: 866-367-1128 Website: www.nanomastech.com 3rd Annual Flexible Electronics Symposium 3rd Annual Flexible Electronics Symposium August 17‐18, 2010, Binghamton, New York
  • 2. Printed Electronics: Fabricating Electronic Devices with Printing • Low equipment cost • Continuous roll to roll processing • Additive deposition and p p patterning g
  • 3. Application Market (by IDTechEX projection)
  • 4. Conductive Inks for Printed Electronics Highly conductive and high resolution patterns fabricated using low cost and roll-to-roll processes (such as inkjet and low-cost roll to roll gravure printing) are one of the most critical technology components in making printed electronics and displays What are the requirements: High performance: high conductivity (close to pure metal) Low temperature processing: plastic compatible Printability: solution processed with “high” resolution patterning High throughput: R2R and fast curing Mechanically robust: adhesion to substrates, tolerance to mechanical deformation Low cost
  • 5. Nanoparticle Inks for Printed Electronics • Nanoparticles can be stabilized in ink solutions by organic ligand shells, which can be removed after printing. • N Nanoparticles can b f th cured or sintered t hi hl conductive fil ti l be further d i t d to highly d ti films at low temperatures. 70-90°C 70 90°C 100-150°C 100 150°C Deposited Ag nanoparticles Conductive Ag film on PET cured from printed nanoparticle inks 150°C 200 nm
  • 6. NanoMas Proprietary Technology: Producing High Quality Nanoparticles with Large-Scale and Low-Cost Processes g NanoMas silver nanoparticles with 5 6 nm ith 5-6 in size (SEM) 50L pilot production reactor at NanoMas NanoMas Ag nanoparticle powders and inks
  • 7. NanoMas Conductive Nanoparticle Inks Technology gy • Patented unique nanoparticle synthesis technology, widely q p y gy y compatible with the low cost production processes in the chemical industry • Low cost and fully scalable to large scale mass production • Ultra-small nanoparticle size (2 to 10 nm) with specially designed surface chemistry allows low annealing temperature, short process time, and high conductivity • Variety of surface chemistry for different solvent dispersion and applications • Low resistivity (as low as ~2.4 μΩ-cm, 1.5x of pure Ag) • Low process temperature (as low as ~70°C) compatible with most p ast c substrates plastic subst ates • Also curable by laser or UV light at room temperature
  • 8. Fully Scalable Process y • NanoMas patented process built around traditional wet chemistry manufacturing – Lowest cost method of nanoparticle production – Superior quality and reproducibility p q y p y 2000L HV Production 8
  • 9. NanoMas Metal Nanoparticles (Ag, Au, Pd, Pt) Silver (~5 nm) Gold ( 3-4 nm) Platinum ( ~2 nm) Palladium ( ~3 nm)
  • 10. Thermal Curing Profile of NanoMas Silver & Gold Nanoparticles 40 NanoMas NanoSilver Ink (~5 nm) NanoMas NanoGold Ink (3-4 nm) 30 m) Resistiv (μΩ-cm 20 vity 10 Bulk Silver Resistivity 0 80 100 120 140 160 180 200 Annealing Temperature (C)
  • 11. In-Situ Resistance Measurements The measurements show the evolution of the electrical resistance of Ag‐NP films over  more than 5 decades upon sintering.  The final resistance is relatively invariant, whereas kinetics vary dramatically. Three characteristic times, the onset, the peak rate, and the terminal times, have been  identified.   Arrhenius analysis reveals an activation energy of ca. 600 meV.
  • 12. Morphology of Sintered Silver NP Films 5s 10 s 20 s 30 s 60 s 300 s Ag-NP thin films sintered at 120oC
  • 13. Control Film Morphology by Formulation and Processing g Film processed with normal NanoSilver ink formulation Film processed with a special NanoSilver ink formulation
  • 14. Mechanical Performance of NanoSilver Films Stretching apparatus Printed Ag-NP films before & after stretching ~ 6 inch 6 inch 3 inch II Regime  Regime  IV III I Regio n II Resistance increases with elongation Still conducting with >200% elongation  PET substrate fails first 
  • 15. NanoSilver Ink for Inkjet Printing Dimatix DMP2800 used for development df d l 15
  • 16. Inkjet Printing Advantages Ink Jet Printing g g Challenges g • Inexpensive system • Depositing thick materials • Proven high volume • Inks require nanoparticles production tool and for stability (free of technology aggregations) • Digital flexible can make Digital, flexible, • Depositing on three- changes on the fly dimensional objects • 50-100 micron line resolution with 10 pl heads
  • 17. NanoMas Inkjet Inks Properties Value % Loading 10‐50% Viscosity Vi it 5‐ 16 cps 5 16 Surface tension 27‐35 dynes/cm Trace height up to 400nm/per pass Curing Temperature <180⁰C Conductivity 5 µΩ‐cm • Customizable to meet customer needs 17
  • 18. Inkjet Printing using NanoMas Inks Line width ~200 μm ~100 μm Jetting from 10pL head at 5KHz NanoSilver ink printed on glass &  cured at 150⁰C 18
  • 19. NanoSilver Ink for  Pneumatic Aerosol Jet  Printing Optomec Aerosol  Jet Printer   used for Development 19
  • 20. 20
  • 21. 3D Multi‐Chip Stack Packaging • 3D multi-chip stack packaging enables portable devices with more functions that consumers are looking for (such as smart phones). • Printed vertical interconnects to replace wire bonding ertical ire • Lower cost, higher yield, better device performance and reliability… 21
  • 22. Aerosol Jet Printing Advantages Aerosol Jet Printing Challenges (ink): • Capable of depositing traces on • Loss of solvent from ink during 3-dimensional packages aerosol formation • High deposition rates g p • Agglomeration of p gg particles • High throughput tools currently during aerosol formation being developed • Depositing thick materials • Does not require <100nm particles in ink • Very high resolution can be achieved (<10 micron)
  • 23. Example of Target Material Specification for Optomec Ink Physical Property Target Spec. Formulated Ink Particle Size <100nm 5nm Solids Loading 50wt% (or greater required),  >66% >70wt%  preferred Resistivity <5x10‐8 ohm.m < 5x10‐8 ohm.m Sintered trace  Sintered trace Several microns thick Several microns thick Demonstrated several microns thick Demonstrated several microns thick traces Agglomerates Very few required, none preferred None observed Sedimentation No cake formation in 1‐2 hours  None observed required, no cake formation preferred Multiple  No preferential sedimentation Single component Components Pot Life Pot Life > 12 hr shift > 12 hr shift >8 hour operation with no measurable >8 hour operation with no measurable change in total dispersed solids level Shelf Life 6 months required,  Projected to be > 6months  12 months preferred (under testing) Viscosity 1 30cP 1‐30cP 5 6cP 5‐6cP Solvent Systems High boiling point/low evaporation BP 240 C , 0.07mmHg @ 20C rate  (e.g. BP 193C, 0.06mmHg @ 20C)  23
  • 25. Cross-Section of Printed Trace High conductive (~5  uohm‐cm), high  resolution (<30 um line  width), high aspect ratio  width), high aspect ratio (20‐30 um height)  printing can be achieved 25
  • 26. NanoSilver Ink for High Throughput  Commercial Gravure Printing 26
  • 27. High Throughput Gravure Printing of RFID Antenna g • Demonstrated low cost production of RFID antenna using a commercial gravure printing press • 25-50 m/s roll-to-roll printing p g
  • 28. Applications in Fabricating Printed Electronic Devices with NanoMas Nanoparticle Inks 28
  • 29. Solar Cell Metallization Advantages of using NanoMas special solar inks and pastes: • Low temperature processing (<250˚C) compatible with most thin-film and organic solar cell technologies g g • High resolution printing enables better efficiency • Excellent electric contact and mechanical adhesion with silicon, glass ITO, etc. 29
  • 30. Fine Line Solar Cell Metallization Printed with Aerosol Jet 30
  • 31. All-Printed Hydrogen Sensors on Plastics • Sensing hydrogen as low as 200 ppm • Response time less than 1s Response time less than 1s • Low cost for large area sensing  31
  • 32. Printed Organic TFTs (a) Ag OSC Ag (b) Silicon dioxide gate dielectric Single crystal silicon gate (a) (b) Optical microscopy of fabricated bottom- gate-bottom-contact polythiophene IV I-V characterization of OTFT based on OTFTs with (a) evaporated Au and (b) polythiophene as the organic SC and printed printed Ag as the electrode materials, Ag electrodes. (on/off ratio ~ 103 and carrier respectively. mobility ~ 0.02 cm2 V-1 S-1) 32
  • 33. Printed Silver Contacts on Single Walled Carbon Nanotube FET Vsd SEM on SWNT‐FET Source S SWCNTs Drain D i SiO2 P‐Si Vgate SWNT FET SWNT‐FET 33
  • 34. Summary • NanoMas has developed a low cost process for producing A A P and Pd nanoparticles d i Ag, Au, Pt d i l • The particles are some of the smallest and most stable commercially available, while allowing low temperature sintering compatible with most flexible substrates for printed electronics • The nanoparticles can be formulated into inks suited to p a number of printing techniques including gravure, ink- jet, Aerosol-Jet printing. • The printed traces can be sintered at low temperatures p p to produce low resistivity, adherent, mechanically robust conductive patterns suitable for use in the printed electronics applications. 34
  • 35. Acknowledgements NanoMas Technologies, Inc. Dr. David van Heerden Dr. Hichang Yoon Dr. Yu Du Dr. Jalal Salami D J l lS l i Binghamton University Prof. Prof Howard Wang Liwei Huang Dr. Yayong Liu (SiPix now) Nano Material LINX‐CONSULTING Investors, LLC C