Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Video: https://www.youtube.com/watch?v=Rt2oHibJT4k
Technologies such as Hadoop have addressed the "Volume" problem of Big Data, and technologies such as Spark have recently addressed the "Velocity" problem – but the "Variety" problem is largely unaddressed – there is a lot of manual "data wrangling" to mange data models.
These manual processes do not scale well. Not only is the variety of data increasing, also the rate of change in the data definitions is increasing. We can’t keep up. NoSQL data repositories can handle storage, but we need effective models of the data to fully utilize it.
This talk will present tools and a methodology to manage Big Data Models in a rapidly changing world. This talk covers:
Creating Semantic Metadata Models of Big Data Resources
Graphical UI Tools for Big Data Models
Tools to synchronize Big Data Models and Application Code
Using NoSQL Databases, such as Amazon DynamoDB, with Big Data Models
Using Big Data Models with Hadoop, Storm, Spark, Giraph, and Inference
Using Big Data Models with Machine Learning to generate Predictive Models
Developer Collaborative/Coordination processes using Big Data Models and Git
Managing change – Big Data Models with rapidly changing Data Resources
Login to see the comments