Why I don't use Semantic Web technologies anymore, event if they still influence me ?

Gautier Poupeau
Gautier PoupeauData Architect at INA - Institut national de l'audiovisuel
Why I don’t use anymore semantic Web
technologies, even if they still influence me ?
12th December 2019
Linked Pasts, Bordeaux
Gautier Poupeau ,
gautier.poupeau@gmail.com
@lespetitescases
http://www.lespetitescases.net
Plan
A quick history of
(semantic) Web
Feedback Conclusions and
perspectives
A QUICK HISTORY OF (SEMANTIC)
WEB
Initial purpose of the Web
Document encoding
language
HTML
Communication
protocol
Identification
mechanism
HTTP URL
Web of documents
Principle
Hypertext
Success factors of
Web of documents
Web standards are
open and free
Web standards are
robust
Web standards are
easy to implement
Differents names, same technologies
1994-2004
Semantic Web
Era
2006-2014
Linked Open Data
era
2014-????
Knowledge graph
era
SEMANTIC WEB TECHNOLOGIES, A
FEEDBACK
SPAR PROJECT (BnF)
Flexibility and linking of heterogeneous data
Producteur
Utilisateur
The system strictly follows the principles of the OAIS model (Open Archival
Information System), including in its architecture.
SPAR Architecture
How to store and query metadata ?
A powerfull query
language, accessible
to non-IT staff
Flexibility to describe all the
data and to query them
without any preconceived
idea
Standard, independant of
any software
implementation
RDF model and SPARQL Query Language
How metadata is handled within SPAR ?
Step 1
Ingest of digital item
Update manager
Type detection of update
and automatic merge
Control and audit Enrichment
Customizable for the different types
of digital item
Vocabularies
Formats Agents
Service Level
Agreement
Result
A set of files compliant
with SLA
All metadata usefull to
manage file for long term
Step 2
Inventory
Storage and indexation of digital item
Repository
sparstructure:group
sparstructure:set
oai-ore:isAggregatedBy
sparstructure:object
sparstructure:file
owl:Thing
sparstructure:structuralMap
sparprovenance:event
sparprovenance:hasEvent
sparprovenance:hasEvent
sparprovenance:hasEvent
sparprovenance:hasEvent
oai-ore:isAggregatedBy
oai-ore:aggregates
oai-ore:aggregates
dc:format
sparcontext:channel
sparcontext:isMemberOf
dc:source
owl:Thing
sparcontext:hasLastVersion
sparcontext:hasLastVersion
xsd:string
sparagent:agent
sparprovenance:hasAuthorizer
sparprovenance:hasImplementer
sparprovenance:hasIssuer
sparprovenance:hasPerformer
dc:date
sparprovenance:eventDetail
xsd:dateTime
sparrepresentation:format
sparrepresentation:property
sparrepresentation:hasProperty
xsd:string
sparrepresentation:propertyXpath
rdfs:label
rdf:value
xsd:string
rdfs:label dc:publisher dc:descriptiondc:date
xsd:string xsd:string
xsd:string xsd:string xsd:string
owl:Thing
owl:Thingowl:Thing
sparcontext:hasLastRelease
sparcontext:hasLastRelease
sparstructure:fileGroup oai-ore:isAggregatedBy
xsd:stringsparrepresentation:hasMimetype
sparrepresentation:characterizationFormat
xsd:string
foaf:name
xsd:string
xsd:string
sparprovenance:outcomeInformation
sparprovenance:hasProduct doap:category
sparagent:outcome
sparagent:hasOutcomeProcessing
dc:description
sparagent:hasOutcome
xsd:stringsparcontext:isMemberOf
dc:title
xsd:string xsd:string
sparprovenance:eventOutcome
sparprovenance:eventOutcomeDetailNote
sparagent:hasOutcomeFormat
sparagent:contains
doap:Version
doap:release
xsd:string
sparagent:entryPoint
Liste des espaces de noms utilisés
PREFIX oai-ore: <http://www.openarchives.org/ore/terms/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX doap: <http://usefulinc.com/ns/doap#>
PREFIX sparstructure : <info:bnf/spar/structure#>
PREFIX sparprovenance: <info:bnf/spar/provenance#>
PREFIX sparrepresentation : <info:bnf/spar/representation#>
PREFIX sparcontext: <info:bnf/spar/context#>
PREFIX sparagent: <info:bnf/spar/agent#>
SPAR Macro Model
Metadata repositories in SPAR
• All master data
• all metadata from METS
manifest
• Rules to store in Selective
repository
• All master data
• a choice of metadata from
METS manifest ;
•All master data
Complete
repository
Selective
repository
Master data
repository
To fix performance issues, we had to adapt our architecture…
Outcome of this project
Performance issues
Flexibility
System still in place
BnF remains convinced
of this choice
ISIDORE PROJECT
Data retrieval and dissemination
What is Isidore ?
http://isidore.science
• Managed by TGIR Huma-NUM
• 6 445 data sources
• 6 millions of resources indexed in french,
english, spanish
• Use of vocabularies
• Enrichment of resources : automatic
annotation, classification, attribution of
normalized identifiers
Isidore macro architecture
Data dissemination with RDFa
http://blog.stephanepouyllau.org/624
VS
Linked vocabularies in RDF
ISIDORE
Référentiel
Disciplines
HAL-SHS
Référentiel
Auteurs
HAL-SHS
Référentiel
Organisation
HAL-SHS
Référentiel
Catégories
Calenda
Référentiel
Pactols
Référentiel
Geonames Référentiel
Rameau
Référentiel
Lexvo
Référentiel
Thésaurus W
SIAF
Make Isidore data available
Enrichment
by Isidore
Data publication
by Isidore
Retrieving by
producers
Processing
by
producers
Data
publication
by producers
Harvesting
by Isidore
to allow a positive feedback
Outcome of this project
Complexity issues
Knowledge issues
Appropriation by the
community
Project is an example
"We mostly get in touch with the researchers when things go wrong with the data. And it
often goes wrong for several reasons. But, indeed, there was the question of these standards
giving the researchers a hard time [...] they tell us: but why don’t you just use csv rather than
bother with your semantic web business? " Raphaëlle Lapotre, product manager data.bnf.fr
FROM MASHUPS TO LINKED
ENTERPRISE DATA
Breaking silos / linking and bringing consistency to
heterogeneous data
Data mashup
Tim Berners Lee, Ora Lassila, James Hendler,
« Semantic Web », Scientific american, 2001
« The real power of semantic
Web will be realized when
people create many programs
that collect Web content from
diverses sources, process the
information and exchange the
results with other programs »
Data model for
Historical monuments mashup
Architecture of historical
monuments mashup
Source
principale
Sources complémentaires
Web Service de
géo localisation
AIF
normalisation et
enrichissement
AFS
moteur de
recherche
AFS
Application
Monuments
Historiques
Linked Enterprise Data
Data Mashup of « legacy »
IS to separate data from use
Architecture before LED project
SQL Server
DBMS
Structured Data
• Best sales
• Buzz
• Awards
• Reserved Titles
• Events
Professional Directory
• Publishers
• Distributors
• Managers
Quark XPRESS
CMS
File Maker
DBMS
Editorial content
• Articles
• Visuals
Livres Hebdo.fr Web site
Electre.com Web site
• Books
• Authors
• Publishers
• Articles (Reviews)
• Best Sales
• Media relays
• Events
• Articles (web)
• Blogs posts
• Visuals
• Documents
• Events
• Articles (Print)
• Authors
• Books
• Best sales
• Media relays
• Awards
• Reserved Titles
• Events
• Directory
Books
Awards
Articles (Reviews)
Best Sales
Media relays
Architecture with LED
SQL Server
DBMS
Structured Data
• Best sales
• Buzz
• Awards
• Reserved Titles
• Events
Professional Directory
• Publishers
• Distributors
• Managers
Quark XPRESS
CMS
File Maker
DBMS
Editorial content
• Articles
• Visuals
Livres Hebdo.fr Web site
Electre.com Web site
• Books
• Authors
• Publishers
• Articles (Reviews)
• Best Sales
• Media relays
• Events
• Articles (web)
• Blogs posts
• Visuals
• Documents
• Events
• Articles (Print)
• Authors
• Books
• Best sales
• Media relays
• Awards
• Reserved Titles
• Events
• Directory
 Other internal sources
(works)
 Other external sources
free or paid model
 New services
 New customers
RDF DW
 Transform
 Agregate
 Link
 Annotate
Outcome of this project
Scalability issues
Complexity/update issues
Skills issues
Maintenability issues
Cost issues
All data are linked and
consistent
Flexibility to manipulate
RDF data
CONCLUSIONS AND PERSPECTIVES
The flexibility of the graph model
Benefits and limits of Semantic Web technologies
RDF Graph = absolute freedom
compared with the rigidity of
relational databases
Linking of heterogeneous entities
easily
Graph can evolve over time and its
growth is potentially infinite
Maintainability issues
Model issues
The flexibility of the graph model
RDF vs property graph
RDF Property graph
RDF model are based on triple model :
subject-predicat-object
Property graph are based on nodes, edges
and properties of nodes or edges.
The flexibility of the graph model
Beyond the limits
Reconciliation between
RDF and property graph ?
Example of RDF*
<<:bob foaf:age 23>> ex:certainty 0.9 .
Example of SPARQL*
SELECT ?p ?a ?c WHERE {
<<?p foaf:age ?a>> ex:certainty ?c .
}
RDF* / SPARQL*
Do you really need RDF model to store data ?
Data dissemination / Interoperability / Decentralisation
Contributions and limits of semantic Web technologies
Best solution to achieve
interoperability of data
Linking heterogeneous data
Create bridges between worlds
impossible to reconcile
SPARQL as powerful tool for
querying data
Asynchronous data retrieval
Costs of maintenability
Knowledge issues
Full text search not possible
Structural interoperability
impossible  data mappings
Data dissemination / Interoperability / Decentralisation
Overcoming the limits
Easy-to-use ontologies
Simple CSV
or JSON/XML dumps
Simple API
What are the possibles
uses ? Who are the users ?
Do we need this level of interoperability?
DATA MANAGEMENT AT FRENCH
NATIONAL AUDIOVISUAL INSTITUTE
Functionally separate data from their use
• To rethink data models in relation to their
logics and not theiru use
• To acknowledge that some data models are
dedicated to production and storage while
several other models are designed
specifically for data dissemination
Technically separate data from their use
• Information System is
organized in layers and
not anymore in silos
• The storage and process
of data are separated
from business
applications
An infrastructure to store and process data
4 types of database system to
store all types of data and to
address all types of usage
A process module to interact with
the data and synchronize data
between the different databases
A management module to
abstract the technical
infrastructure and expose logical
data to business applications
Thank you for your attention !
Do you have some questions ?
And sorry for this…
I would like to thank very much Emmanuelle Bermès (@figoblog) for the translation of
this keynote !
1 of 41

Recommended

Applying Digital Library Metadata Standards by
Applying Digital Library Metadata StandardsApplying Digital Library Metadata Standards
Applying Digital Library Metadata StandardsJenn Riley
1.9K views66 slides
Thinking BIG by
Thinking BIGThinking BIG
Thinking BIGLilia Sfaxi
4.3K views29 slides
Semantic Technologies for Big Data by
Semantic Technologies for Big DataSemantic Technologies for Big Data
Semantic Technologies for Big DataMarin Dimitrov
13.4K views38 slides
Big Data to SMART Data : Process Scenario by
Big Data to SMART Data : Process ScenarioBig Data to SMART Data : Process Scenario
Big Data to SMART Data : Process ScenarioCHAKER ALLAOUI
2.1K views70 slides
Going local with a world-class data infrastructure: Enabling SDMX for researc... by
Going local with a world-class data infrastructure: Enabling SDMX for researc...Going local with a world-class data infrastructure: Enabling SDMX for researc...
Going local with a world-class data infrastructure: Enabling SDMX for researc...Rob Grim
832 views14 slides
Introduction to Big Data and Hadoop by
Introduction to Big Data and HadoopIntroduction to Big Data and Hadoop
Introduction to Big Data and HadoopFebiyan Rachman
745 views17 slides

More Related Content

What's hot

Cni research data_oxford_horstmann_jefferies by
Cni research data_oxford_horstmann_jefferiesCni research data_oxford_horstmann_jefferies
Cni research data_oxford_horstmann_jefferiesBDLSS
302 views24 slides
Gilbane Boston 2011 big data by
Gilbane Boston 2011 big dataGilbane Boston 2011 big data
Gilbane Boston 2011 big dataPeter O'Kelly
2K views53 slides
Introduction to metadata management by
Introduction to metadata managementIntroduction to metadata management
Introduction to metadata managementOpen Data Support
48.5K views42 slides
Metadata Use Cases You Can Use by
Metadata Use Cases You Can UseMetadata Use Cases You Can Use
Metadata Use Cases You Can Usedmurph4
5.1K views38 slides
Bigdata overview by
Bigdata overviewBigdata overview
Bigdata overviewAllsoftSolutions
28 views25 slides
Big Data Final Presentation by
Big Data Final PresentationBig Data Final Presentation
Big Data Final Presentation17aroumougamh
1.9K views74 slides

What's hot(20)

Cni research data_oxford_horstmann_jefferies by BDLSS
Cni research data_oxford_horstmann_jefferiesCni research data_oxford_horstmann_jefferies
Cni research data_oxford_horstmann_jefferies
BDLSS302 views
Gilbane Boston 2011 big data by Peter O'Kelly
Gilbane Boston 2011 big dataGilbane Boston 2011 big data
Gilbane Boston 2011 big data
Peter O'Kelly2K views
Introduction to metadata management by Open Data Support
Introduction to metadata managementIntroduction to metadata management
Introduction to metadata management
Open Data Support48.5K views
Metadata Use Cases You Can Use by dmurph4
Metadata Use Cases You Can UseMetadata Use Cases You Can Use
Metadata Use Cases You Can Use
dmurph45.1K views
Big Data Final Presentation by 17aroumougamh
Big Data Final PresentationBig Data Final Presentation
Big Data Final Presentation
17aroumougamh1.9K views
HiTIME project by vty
HiTIME projectHiTIME project
HiTIME project
vty345 views
Challenging Problems for Scalable Mining of Heterogeneous Social and Informat... by BigMine
Challenging Problems for Scalable Mining of Heterogeneous Social and Informat...Challenging Problems for Scalable Mining of Heterogeneous Social and Informat...
Challenging Problems for Scalable Mining of Heterogeneous Social and Informat...
BigMine4.9K views
Information and Integration Management Vision by Colin Bell
Information and Integration Management VisionInformation and Integration Management Vision
Information and Integration Management Vision
Colin Bell166 views
THE 3V's OF BIG DATA: VARIETY, VELOCITY, AND VOLUME from Structure:Data 2012 by Gigaom
THE 3V's OF BIG DATA: VARIETY, VELOCITY, AND VOLUME from Structure:Data 2012THE 3V's OF BIG DATA: VARIETY, VELOCITY, AND VOLUME from Structure:Data 2012
THE 3V's OF BIG DATA: VARIETY, VELOCITY, AND VOLUME from Structure:Data 2012
Gigaom29.9K views
Enterprise Data Lake - Scalable Digital by sambiswal
Enterprise Data Lake - Scalable DigitalEnterprise Data Lake - Scalable Digital
Enterprise Data Lake - Scalable Digital
sambiswal99 views
Introduction to Big Data Hadoop Training Online by www.itjobzone.biz by ITJobZone.biz
Introduction to Big Data Hadoop Training Online by www.itjobzone.bizIntroduction to Big Data Hadoop Training Online by www.itjobzone.biz
Introduction to Big Data Hadoop Training Online by www.itjobzone.biz
ITJobZone.biz607 views
Büyük Veriyle Büyük Resmi Görmek by ideaport
Büyük Veriyle Büyük Resmi GörmekBüyük Veriyle Büyük Resmi Görmek
Büyük Veriyle Büyük Resmi Görmek
ideaport335 views
Big data analytics with Apache Hadoop by Suman Saurabh
Big data analytics with Apache  HadoopBig data analytics with Apache  Hadoop
Big data analytics with Apache Hadoop
Suman Saurabh3.1K views

Similar to Why I don't use Semantic Web technologies anymore, event if they still influence me ?

Intro to-technologies-Green-City-Hackathon-Athens by
Intro to-technologies-Green-City-Hackathon-AthensIntro to-technologies-Green-City-Hackathon-Athens
Intro to-technologies-Green-City-Hackathon-AthensStoitsis Giannis
513 views59 slides
Scaling up Linked Data by
Scaling up Linked DataScaling up Linked Data
Scaling up Linked DataMarin Dimitrov
1.9K views67 slides
Enterprise knowledge graphs by
Enterprise knowledge graphsEnterprise knowledge graphs
Enterprise knowledge graphsSören Auer
3.9K views49 slides
Usage of Linked Data: Introduction and Application Scenarios by
Usage of Linked Data: Introduction and Application ScenariosUsage of Linked Data: Introduction and Application Scenarios
Usage of Linked Data: Introduction and Application ScenariosEUCLID project
33.2K views84 slides
Wed roman tut_open_datapub by
Wed roman tut_open_datapubWed roman tut_open_datapub
Wed roman tut_open_datapubeswcsummerschool
433 views36 slides
Ifla swsig meeting - Puerto Rico - 20110817 by
Ifla swsig meeting - Puerto Rico - 20110817Ifla swsig meeting - Puerto Rico - 20110817
Ifla swsig meeting - Puerto Rico - 20110817Figoblog
1.6K views23 slides

Similar to Why I don't use Semantic Web technologies anymore, event if they still influence me ?(20)

Intro to-technologies-Green-City-Hackathon-Athens by Stoitsis Giannis
Intro to-technologies-Green-City-Hackathon-AthensIntro to-technologies-Green-City-Hackathon-Athens
Intro to-technologies-Green-City-Hackathon-Athens
Stoitsis Giannis513 views
Enterprise knowledge graphs by Sören Auer
Enterprise knowledge graphsEnterprise knowledge graphs
Enterprise knowledge graphs
Sören Auer3.9K views
Usage of Linked Data: Introduction and Application Scenarios by EUCLID project
Usage of Linked Data: Introduction and Application ScenariosUsage of Linked Data: Introduction and Application Scenarios
Usage of Linked Data: Introduction and Application Scenarios
EUCLID project33.2K views
Ifla swsig meeting - Puerto Rico - 20110817 by Figoblog
Ifla swsig meeting - Puerto Rico - 20110817Ifla swsig meeting - Puerto Rico - 20110817
Ifla swsig meeting - Puerto Rico - 20110817
Figoblog1.6K views
Linked data for Enterprise Data Integration by Sören Auer
Linked data for Enterprise Data IntegrationLinked data for Enterprise Data Integration
Linked data for Enterprise Data Integration
Sören Auer3.9K views
The Web of data and web data commons by Jesse Wang
The Web of data and web data commonsThe Web of data and web data commons
The Web of data and web data commons
Jesse Wang4.3K views
Scaling up Linked Data by EUCLID project
Scaling up Linked DataScaling up Linked Data
Scaling up Linked Data
EUCLID project18.5K views
ISWC GoodRelations Tutorial Part 2 by Martin Hepp
ISWC GoodRelations Tutorial Part 2ISWC GoodRelations Tutorial Part 2
ISWC GoodRelations Tutorial Part 2
Martin Hepp866 views
GoodRelations Tutorial Part 2 by guestecacad2
GoodRelations Tutorial Part 2GoodRelations Tutorial Part 2
GoodRelations Tutorial Part 2
guestecacad21K views
emantic web technologies and applications for Ins by TemesgenHabtamu
emantic web technologies and applications for Insemantic web technologies and applications for Ins
emantic web technologies and applications for Ins
TemesgenHabtamu10 views
RDF Graph Data Management in Oracle Database and NoSQL Platforms by Graph-TA
RDF Graph Data Management in Oracle Database and NoSQL PlatformsRDF Graph Data Management in Oracle Database and NoSQL Platforms
RDF Graph Data Management in Oracle Database and NoSQL Platforms
Graph-TA 1.5K views
Sigma EE: Reaping low-hanging fruits in RDF-based data integration by Richard Cyganiak
Sigma EE: Reaping low-hanging fruits in RDF-based data integrationSigma EE: Reaping low-hanging fruits in RDF-based data integration
Sigma EE: Reaping low-hanging fruits in RDF-based data integration
Richard Cyganiak1K views
SWIB14 Weaving repository contents into the Semantic Web by Pascal-Nicolas Becker
SWIB14 Weaving repository contents into the Semantic WebSWIB14 Weaving repository contents into the Semantic Web
SWIB14 Weaving repository contents into the Semantic Web
Linked Data Tutorial by Sören Auer
Linked Data TutorialLinked Data Tutorial
Linked Data Tutorial
Sören Auer9.2K views
Knowledge Graph Introduction by Sören Auer
Knowledge Graph IntroductionKnowledge Graph Introduction
Knowledge Graph Introduction
Sören Auer613 views
Change Management for Libraries by Thomas King
Change Management for LibrariesChange Management for Libraries
Change Management for Libraries
Thomas King3.7K views

More from Gautier Poupeau

Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or... by
Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or...Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or...
Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or...Gautier Poupeau
4.4K views21 slides
Visite guidée au pays de la donnée - Du modèle conceptuel au modèle physique by
Visite guidée au pays de la donnée - Du modèle conceptuel au modèle physiqueVisite guidée au pays de la donnée - Du modèle conceptuel au modèle physique
Visite guidée au pays de la donnée - Du modèle conceptuel au modèle physiqueGautier Poupeau
2.2K views71 slides
Visite guidée au pays de la donnée - Traitement automatique des données by
Visite guidée au pays de la donnée - Traitement automatique des donnéesVisite guidée au pays de la donnée - Traitement automatique des données
Visite guidée au pays de la donnée - Traitement automatique des donnéesGautier Poupeau
2.8K views70 slides
Visite guidée au pays de la donnée - Introduction et tour d'horizon by
Visite guidée au pays de la donnée - Introduction et tour d'horizonVisite guidée au pays de la donnée - Introduction et tour d'horizon
Visite guidée au pays de la donnée - Introduction et tour d'horizonGautier Poupeau
3.1K views34 slides
Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ? by
Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ?Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ?
Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ?Gautier Poupeau
1.1K views46 slides
Big data, Intelligence artificielle, quelles conséquences pour les profession... by
Big data, Intelligence artificielle, quelles conséquences pour les profession...Big data, Intelligence artificielle, quelles conséquences pour les profession...
Big data, Intelligence artificielle, quelles conséquences pour les profession...Gautier Poupeau
1.7K views15 slides

More from Gautier Poupeau(20)

Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or... by Gautier Poupeau
Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or...Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or...
Le "Lac de données" de l'Ina, un projet pour placer la donnée au cœur de l'or...
Gautier Poupeau4.4K views
Visite guidée au pays de la donnée - Du modèle conceptuel au modèle physique by Gautier Poupeau
Visite guidée au pays de la donnée - Du modèle conceptuel au modèle physiqueVisite guidée au pays de la donnée - Du modèle conceptuel au modèle physique
Visite guidée au pays de la donnée - Du modèle conceptuel au modèle physique
Gautier Poupeau2.2K views
Visite guidée au pays de la donnée - Traitement automatique des données by Gautier Poupeau
Visite guidée au pays de la donnée - Traitement automatique des donnéesVisite guidée au pays de la donnée - Traitement automatique des données
Visite guidée au pays de la donnée - Traitement automatique des données
Gautier Poupeau2.8K views
Visite guidée au pays de la donnée - Introduction et tour d'horizon by Gautier Poupeau
Visite guidée au pays de la donnée - Introduction et tour d'horizonVisite guidée au pays de la donnée - Introduction et tour d'horizon
Visite guidée au pays de la donnée - Introduction et tour d'horizon
Gautier Poupeau3.1K views
Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ? by Gautier Poupeau
Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ?Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ?
Un modèle de données unique pour les collections de l'Ina, pourquoi ? Comment ?
Gautier Poupeau1.1K views
Big data, Intelligence artificielle, quelles conséquences pour les profession... by Gautier Poupeau
Big data, Intelligence artificielle, quelles conséquences pour les profession...Big data, Intelligence artificielle, quelles conséquences pour les profession...
Big data, Intelligence artificielle, quelles conséquences pour les profession...
Gautier Poupeau1.7K views
Aligner vos données avec Wikidata grâce à l'outil Open Refine by Gautier Poupeau
Aligner vos données avec Wikidata grâce à l'outil Open RefineAligner vos données avec Wikidata grâce à l'outil Open Refine
Aligner vos données avec Wikidata grâce à l'outil Open Refine
Gautier Poupeau6.1K views
Découverte du SPARQL endpoint de HAL by Gautier Poupeau
Découverte du SPARQL endpoint de HALDécouverte du SPARQL endpoint de HAL
Découverte du SPARQL endpoint de HAL
Gautier Poupeau1.2K views
Réalisation d'un mashup de données avec DSS de Dataiku et visualisation avec ... by Gautier Poupeau
Réalisation d'un mashup de données avec DSS de Dataiku et visualisation avec ...Réalisation d'un mashup de données avec DSS de Dataiku et visualisation avec ...
Réalisation d'un mashup de données avec DSS de Dataiku et visualisation avec ...
Gautier Poupeau4.5K views
Réalisation d'un mashup de données avec DSS de Dataiku - Première partie by Gautier Poupeau
Réalisation d'un mashup de données avec DSS de Dataiku - Première partieRéalisation d'un mashup de données avec DSS de Dataiku - Première partie
Réalisation d'un mashup de données avec DSS de Dataiku - Première partie
Gautier Poupeau5.3K views
Data in the center of the Information System by Gautier Poupeau
Data in the center of the Information SystemData in the center of the Information System
Data in the center of the Information System
Gautier Poupeau15.1K views
Les technologies du Web appliquées aux données structurées (1ère partie : Enc... by Gautier Poupeau
Les technologies du Web appliquées aux données structurées (1ère partie : Enc...Les technologies du Web appliquées aux données structurées (1ère partie : Enc...
Les technologies du Web appliquées aux données structurées (1ère partie : Enc...
Gautier Poupeau2.3K views
Les technologies du Web appliquées aux données structurées (2ème partie : Rel... by Gautier Poupeau
Les technologies du Web appliquées aux données structurées (2ème partie : Rel...Les technologies du Web appliquées aux données structurées (2ème partie : Rel...
Les technologies du Web appliquées aux données structurées (2ème partie : Rel...
Gautier Poupeau5K views
Information numérique : défintions et enjeux by Gautier Poupeau
Information numérique : défintions et enjeuxInformation numérique : défintions et enjeux
Information numérique : défintions et enjeux
Gautier Poupeau34.8K views
Les professionnels de l'information face aux défis du Web de données by Gautier Poupeau
Les professionnels de l'information face aux défis du Web de donnéesLes professionnels de l'information face aux défis du Web de données
Les professionnels de l'information face aux défis du Web de données
Gautier Poupeau4.8K views
L’apport des technologies du Web sémantique à la gestion des données structur... by Gautier Poupeau
L’apport des technologies du Web sémantique à la gestion des données structur...L’apport des technologies du Web sémantique à la gestion des données structur...
L’apport des technologies du Web sémantique à la gestion des données structur...
Gautier Poupeau6.2K views
Le Web de données et les bibliothèques by Gautier Poupeau
Le Web de données et les bibliothèquesLe Web de données et les bibliothèques
Le Web de données et les bibliothèques
Gautier Poupeau1.7K views
A la découverte du Web sémantique by Gautier Poupeau
A la découverte du Web sémantiqueA la découverte du Web sémantique
A la découverte du Web sémantique
Gautier Poupeau9.9K views

Recently uploaded

[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... by
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...DataScienceConferenc1
6 views11 slides
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx by
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptxDataScienceConferenc1
5 views16 slides
CRM stick or twist.pptx by
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptxinfo828217
10 views16 slides
SAP-TCodes.pdf by
SAP-TCodes.pdfSAP-TCodes.pdf
SAP-TCodes.pdfmustafaghulam8181
10 views285 slides
Advanced_Recommendation_Systems_Presentation.pptx by
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptxneeharikasingh29
5 views9 slides
Chapter 3b- Process Communication (1) (1)(1) (1).pptx by
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptxayeshabaig2004
6 views30 slides

Recently uploaded(20)

[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... by DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx by DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
CRM stick or twist.pptx by info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info82821710 views
Advanced_Recommendation_Systems_Presentation.pptx by neeharikasingh29
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx by ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
ayeshabaig20046 views
3196 The Case of The East River by ErickANDRADE90
3196 The Case of The East River3196 The Case of The East River
3196 The Case of The East River
ErickANDRADE9016 views
Short Story Assignment by Kelly Nguyen by kellynguyen01
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyen
kellynguyen0119 views
Data about the sector workshop by info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821712 views
Data Journeys Hard Talk workshop final.pptx by info828217
Data Journeys Hard Talk workshop final.pptxData Journeys Hard Talk workshop final.pptx
Data Journeys Hard Talk workshop final.pptx
info82821710 views
Ukraine Infographic_22NOV2023_v2.pdf by AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurin1.4K views
SUPER STORE SQL PROJECT.pptx by khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862012 views
Cross-network in Google Analytics 4.pdf by GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 views
CRM stick or twist workshop by info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info8282179 views
UNEP FI CRS Climate Risk Results.pptx by pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 views

Why I don't use Semantic Web technologies anymore, event if they still influence me ?

  • 1. Why I don’t use anymore semantic Web technologies, even if they still influence me ? 12th December 2019 Linked Pasts, Bordeaux Gautier Poupeau , gautier.poupeau@gmail.com @lespetitescases http://www.lespetitescases.net
  • 2. Plan A quick history of (semantic) Web Feedback Conclusions and perspectives
  • 3. A QUICK HISTORY OF (SEMANTIC) WEB
  • 6. Success factors of Web of documents Web standards are open and free Web standards are robust Web standards are easy to implement
  • 7. Differents names, same technologies 1994-2004 Semantic Web Era 2006-2014 Linked Open Data era 2014-???? Knowledge graph era
  • 9. SPAR PROJECT (BnF) Flexibility and linking of heterogeneous data
  • 10. Producteur Utilisateur The system strictly follows the principles of the OAIS model (Open Archival Information System), including in its architecture. SPAR Architecture
  • 11. How to store and query metadata ? A powerfull query language, accessible to non-IT staff Flexibility to describe all the data and to query them without any preconceived idea Standard, independant of any software implementation RDF model and SPARQL Query Language
  • 12. How metadata is handled within SPAR ? Step 1 Ingest of digital item Update manager Type detection of update and automatic merge Control and audit Enrichment Customizable for the different types of digital item Vocabularies Formats Agents Service Level Agreement Result A set of files compliant with SLA All metadata usefull to manage file for long term Step 2 Inventory Storage and indexation of digital item Repository
  • 13. sparstructure:group sparstructure:set oai-ore:isAggregatedBy sparstructure:object sparstructure:file owl:Thing sparstructure:structuralMap sparprovenance:event sparprovenance:hasEvent sparprovenance:hasEvent sparprovenance:hasEvent sparprovenance:hasEvent oai-ore:isAggregatedBy oai-ore:aggregates oai-ore:aggregates dc:format sparcontext:channel sparcontext:isMemberOf dc:source owl:Thing sparcontext:hasLastVersion sparcontext:hasLastVersion xsd:string sparagent:agent sparprovenance:hasAuthorizer sparprovenance:hasImplementer sparprovenance:hasIssuer sparprovenance:hasPerformer dc:date sparprovenance:eventDetail xsd:dateTime sparrepresentation:format sparrepresentation:property sparrepresentation:hasProperty xsd:string sparrepresentation:propertyXpath rdfs:label rdf:value xsd:string rdfs:label dc:publisher dc:descriptiondc:date xsd:string xsd:string xsd:string xsd:string xsd:string owl:Thing owl:Thingowl:Thing sparcontext:hasLastRelease sparcontext:hasLastRelease sparstructure:fileGroup oai-ore:isAggregatedBy xsd:stringsparrepresentation:hasMimetype sparrepresentation:characterizationFormat xsd:string foaf:name xsd:string xsd:string sparprovenance:outcomeInformation sparprovenance:hasProduct doap:category sparagent:outcome sparagent:hasOutcomeProcessing dc:description sparagent:hasOutcome xsd:stringsparcontext:isMemberOf dc:title xsd:string xsd:string sparprovenance:eventOutcome sparprovenance:eventOutcomeDetailNote sparagent:hasOutcomeFormat sparagent:contains doap:Version doap:release xsd:string sparagent:entryPoint Liste des espaces de noms utilisés PREFIX oai-ore: <http://www.openarchives.org/ore/terms/> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX doap: <http://usefulinc.com/ns/doap#> PREFIX sparstructure : <info:bnf/spar/structure#> PREFIX sparprovenance: <info:bnf/spar/provenance#> PREFIX sparrepresentation : <info:bnf/spar/representation#> PREFIX sparcontext: <info:bnf/spar/context#> PREFIX sparagent: <info:bnf/spar/agent#> SPAR Macro Model
  • 14. Metadata repositories in SPAR • All master data • all metadata from METS manifest • Rules to store in Selective repository • All master data • a choice of metadata from METS manifest ; •All master data Complete repository Selective repository Master data repository To fix performance issues, we had to adapt our architecture…
  • 15. Outcome of this project Performance issues Flexibility System still in place BnF remains convinced of this choice
  • 16. ISIDORE PROJECT Data retrieval and dissemination
  • 17. What is Isidore ? http://isidore.science • Managed by TGIR Huma-NUM • 6 445 data sources • 6 millions of resources indexed in french, english, spanish • Use of vocabularies • Enrichment of resources : automatic annotation, classification, attribution of normalized identifiers
  • 19. Data dissemination with RDFa http://blog.stephanepouyllau.org/624 VS
  • 20. Linked vocabularies in RDF ISIDORE Référentiel Disciplines HAL-SHS Référentiel Auteurs HAL-SHS Référentiel Organisation HAL-SHS Référentiel Catégories Calenda Référentiel Pactols Référentiel Geonames Référentiel Rameau Référentiel Lexvo Référentiel Thésaurus W SIAF
  • 21. Make Isidore data available Enrichment by Isidore Data publication by Isidore Retrieving by producers Processing by producers Data publication by producers Harvesting by Isidore to allow a positive feedback
  • 22. Outcome of this project Complexity issues Knowledge issues Appropriation by the community Project is an example "We mostly get in touch with the researchers when things go wrong with the data. And it often goes wrong for several reasons. But, indeed, there was the question of these standards giving the researchers a hard time [...] they tell us: but why don’t you just use csv rather than bother with your semantic web business? " Raphaëlle Lapotre, product manager data.bnf.fr
  • 23. FROM MASHUPS TO LINKED ENTERPRISE DATA Breaking silos / linking and bringing consistency to heterogeneous data
  • 24. Data mashup Tim Berners Lee, Ora Lassila, James Hendler, « Semantic Web », Scientific american, 2001 « The real power of semantic Web will be realized when people create many programs that collect Web content from diverses sources, process the information and exchange the results with other programs »
  • 25. Data model for Historical monuments mashup
  • 26. Architecture of historical monuments mashup Source principale Sources complémentaires Web Service de géo localisation AIF normalisation et enrichissement AFS moteur de recherche AFS Application Monuments Historiques
  • 27. Linked Enterprise Data Data Mashup of « legacy » IS to separate data from use
  • 28. Architecture before LED project SQL Server DBMS Structured Data • Best sales • Buzz • Awards • Reserved Titles • Events Professional Directory • Publishers • Distributors • Managers Quark XPRESS CMS File Maker DBMS Editorial content • Articles • Visuals Livres Hebdo.fr Web site Electre.com Web site • Books • Authors • Publishers • Articles (Reviews) • Best Sales • Media relays • Events • Articles (web) • Blogs posts • Visuals • Documents • Events • Articles (Print) • Authors • Books • Best sales • Media relays • Awards • Reserved Titles • Events • Directory Books Awards Articles (Reviews) Best Sales Media relays
  • 29. Architecture with LED SQL Server DBMS Structured Data • Best sales • Buzz • Awards • Reserved Titles • Events Professional Directory • Publishers • Distributors • Managers Quark XPRESS CMS File Maker DBMS Editorial content • Articles • Visuals Livres Hebdo.fr Web site Electre.com Web site • Books • Authors • Publishers • Articles (Reviews) • Best Sales • Media relays • Events • Articles (web) • Blogs posts • Visuals • Documents • Events • Articles (Print) • Authors • Books • Best sales • Media relays • Awards • Reserved Titles • Events • Directory  Other internal sources (works)  Other external sources free or paid model  New services  New customers RDF DW  Transform  Agregate  Link  Annotate
  • 30. Outcome of this project Scalability issues Complexity/update issues Skills issues Maintenability issues Cost issues All data are linked and consistent Flexibility to manipulate RDF data
  • 32. The flexibility of the graph model Benefits and limits of Semantic Web technologies RDF Graph = absolute freedom compared with the rigidity of relational databases Linking of heterogeneous entities easily Graph can evolve over time and its growth is potentially infinite Maintainability issues Model issues
  • 33. The flexibility of the graph model RDF vs property graph RDF Property graph RDF model are based on triple model : subject-predicat-object Property graph are based on nodes, edges and properties of nodes or edges.
  • 34. The flexibility of the graph model Beyond the limits Reconciliation between RDF and property graph ? Example of RDF* <<:bob foaf:age 23>> ex:certainty 0.9 . Example of SPARQL* SELECT ?p ?a ?c WHERE { <<?p foaf:age ?a>> ex:certainty ?c . } RDF* / SPARQL* Do you really need RDF model to store data ?
  • 35. Data dissemination / Interoperability / Decentralisation Contributions and limits of semantic Web technologies Best solution to achieve interoperability of data Linking heterogeneous data Create bridges between worlds impossible to reconcile SPARQL as powerful tool for querying data Asynchronous data retrieval Costs of maintenability Knowledge issues Full text search not possible Structural interoperability impossible  data mappings
  • 36. Data dissemination / Interoperability / Decentralisation Overcoming the limits Easy-to-use ontologies Simple CSV or JSON/XML dumps Simple API What are the possibles uses ? Who are the users ? Do we need this level of interoperability?
  • 37. DATA MANAGEMENT AT FRENCH NATIONAL AUDIOVISUAL INSTITUTE
  • 38. Functionally separate data from their use • To rethink data models in relation to their logics and not theiru use • To acknowledge that some data models are dedicated to production and storage while several other models are designed specifically for data dissemination
  • 39. Technically separate data from their use • Information System is organized in layers and not anymore in silos • The storage and process of data are separated from business applications
  • 40. An infrastructure to store and process data 4 types of database system to store all types of data and to address all types of usage A process module to interact with the data and synchronize data between the different databases A management module to abstract the technical infrastructure and expose logical data to business applications
  • 41. Thank you for your attention ! Do you have some questions ? And sorry for this… I would like to thank very much Emmanuelle Bermès (@figoblog) for the translation of this keynote !