SlideShare a Scribd company logo
1 of 17
My presentation Wilma B. dela Punta
hydrosphere
    HYDROSPHERE A hydrosphere (from Greekὕδωρ - hydor, "water" and σφαῖρα - sphaira, "sphere") in physical geography describes the combined mass of water found on, under, and over the surface of a planet. The total mass of the Earth's hydrosphere is about 1.4 × 1018tonnes, which is about 0.023% of the Earth's total mass. About 20 × 1012tonnes of this is in the Earth's atmosphere (the volume of one tonne of water is approximately 1 cubic metre). Approximately 75% of the Earth's surface, an area of some 361 million square kilometres (139.5 million square miles), is covered by ocean. The average salinity of the Earth's oceans is about 35 grams of salt per kilogram of sea water
Other hydrospheres A thick hydrosphere is thought to exist around the Jovian moon Europa. The outer layer of this hydrosphere is almost entirely ice, but current models predict that there is an ocean up to 100 km in depth underneath the ice. This ocean remains in a liquid form because of tidal flexing of the moon in its orbit around Jupiter. The volume of Europa's hydrosphere is 3 × 1018 m3, 2.3 times that of Earth. It has been suggested that the Jovian moon Ganymede and the Saturnian moon Enceladus may also possess sub-surface oceans. However the ice covering is expected to be thicker on Jupiter's Ganymede than on Europa.
Hydrological cycle Hydrological cycle Insolation, or energy (in the form of heat and light) from the sun, provides the energy necessary to cause evaporation from all wet surfaces including oceans, rivers, lakes, soil and the leaves of plants. Water vapor is further released as transpiration from vegetation and from humans and other animals. Aquifer drawdown or overdrafting and the pumping of fossil water increases the total amount of water in the hydrosphere[2] that is subject to transpiration and evaporation thereby causing accretion in water vapour and cloud cover which are the primary absorbers of infrared radiation in the earth's atmosphere. Adding water to the system has a forcing effect on the whole earth system, an accurate estimate of which hydrogeological fact is yet to be quantified.
Water cycle
The water cycle, also known as the hydrologic cycle or H2O cycle, describes the continuous movement of water on, above and below the surface of the Earth. Water can change states among liquid, vapour, and ice at various places in the water cycle. Although the balance of water on Earth remains fairly constant over time, individual water molecules can come and go, in and out of the atmosphere. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere, by the physical processes of evaporation, condensation, precipitation, infiltration, runoff, and subsurface flow. In so doing, the water goes through different phases: liquid, solid, and gas. The hydrologic cycle also involves the exchange of heat energy, which leads to temperature changes. For instance, in the process of evaporation, water takes up energy from the surroundings and cools the environment. Conversely, in the process of condensation, water releases energy to its surroundings, warming the environment.
Description of water cycle he sun, which drives the water cycle, heats water in oceans and seas. Water evaporates as water vapor into the air. Ice and snow can sublimate directly into water vapor. Evapotranspiration is water transpired from plants and evaporated from the soil. Rising air currents take the vapor up into the atmosphere where cooler temperatures cause it to condense into clouds. Air currents move water vapor around the globe, cloud particles collide, grow, and fall out of the sky as precipitation. Some precipitation falls as snow or hail, and can accumulate as ice caps and glaciers, which can store frozen water for thousands of years. Snowpacks can thaw and melt, and the melted water flows over land as snowmelt. Most water falls back into the oceans or onto land as rain, where the water flows over the ground as surface runoff. A portion of runoff enters rivers in valleys in the landscape, with streamflow moving water towards the oceans. Runoff and groundwater are stored as freshwater in lakes
Water pollution
Water pollution Water pollution is the contamination of water bodies (e.g. lakes, rivers, oceans and groundwater). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove harmful compounds. Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities.
Introduction Water pollution is a major global problem. It has been suggested that it is the leading worldwide cause of deaths and diseases,[1][2] and that it accounts for the deaths of more than 14,000 people daily.[2] An estimated 700 million Indians have no acces s to a proper toilet, and 1,000 Indian children die of diarrheal sickness every day.[3] Some 90% of China's cities suffer from some degree of water pollution,[4] and nearly 500 million people lack access to safe drinking water.[5] In addition to the acute problems of water pollution in developing countries, industrialized countries continue to struggle with pollution problems as well. In the most recent national report on water quality in the United States, 45 percent of assessed streammiles, 47 percent of assessed lake acres, and 32 percent of assessed bay and estuarinesquare miles were classified as polluted.[6] Water is typically referred to as polluted when it is impaired by anthropogenic contaminants and either does not support a human use, such as drinking water, and/or undergoes a marked shift in its ability to support its constituent biotic communities, such as fish. Natural phenomena such as volcanoes, algae blooms, storms, and earthquakes also cause major changes in water quality and the ecological status of water.
Ground water Interactions between groundwater and surface water are complex. Consequently, groundwater pollution, sometimes referred to as groundwater contamination, is not as easily classified as surface water pollution.[7] By its very nature, groundwater aquifers are susceptible to contamination from sources that may not directly affect surface water bodies, and the distinction of point vs. non-point source may be irrelevant. A spill or ongoing releases of chemical or radionuclide contaminants into soil (located away from a surface water body) may not create point source or non-point source pollution, but can contaminate the aquifer below, defined as a toxin plume. The movement of the plume, called a plume front, may be analyzed through a hydrological transport model or groundwater model. Analysis of groundwater contamination may focus on the soil characteristics and site geology, hydrogeology, hydrology, and the nature of the contaminants.
causes of water pollution The specific contaminants leading to pollution in water include a wide spectrum of chemicals, pathogens, and physical or sensory changes such as elevated temperature and discoloration. While many of the chemicals and substances that are regulated may be naturally occurring (calcium, sodium, iron, manganese, etc.) the concentration is often the key in determining what is a natural component of water, and what is a contaminant. High concentrations of naturally-occurring substances can have negative impacts on aquatic flora and fauna. Oxygen-depleting substances may be natural materials, such as plant matter (e.g. leaves and grass) as well as man-made chemicals. Other natural and anthropogenic substances may cause turbidity (cloudiness) which blocks light and disrupts plant growth, and clogs the gills of some fish species.[10] Many of the chemical substances are toxic. Pathogens can produce waterborne diseases in either human or animal hosts.[11] Alteration of water's physical chemistry includes acidity (change in pH), electrical conductivity, temperature, and eutrophication. Eutrophication is an increase in the concentration of chemical nutrients in an ecosystem to an extent that increases in the primary productivity of the ecosystem. Depending on the degree of eutrophication, subsequent negative environmental effects such as anoxia (oxygen depletion) and severe reductions in water quality may occur, affecting fish and other animal populations.
Wheng wheng

More Related Content

What's hot

Earth’s hydrosphere & water pollution 2
Earth’s hydrosphere & water pollution 2Earth’s hydrosphere & water pollution 2
Earth’s hydrosphere & water pollution 2
Jomar Aban
 
U09 Hydrosphere
U09 HydrosphereU09 Hydrosphere
U09 Hydrosphere
Alkor
 
Hydrosphere and water pollution
Hydrosphere and water pollutionHydrosphere and water pollution
Hydrosphere and water pollution
chona02
 
Earth’s hydrosphere mylene
Earth’s hydrosphere myleneEarth’s hydrosphere mylene
Earth’s hydrosphere mylene
lynnxie
 
Earth’s hydrosphere
Earth’s hydrosphereEarth’s hydrosphere
Earth’s hydrosphere
moradoghie09
 
Earth's hydrosphere SanDiego
Earth's hydrosphere SanDiegoEarth's hydrosphere SanDiego
Earth's hydrosphere SanDiego
Emz Sandiego
 

What's hot (18)

earth's hydrosphere and water pollution
earth's hydrosphere and water pollutionearth's hydrosphere and water pollution
earth's hydrosphere and water pollution
 
Earth’s hydrosphere & water pollution 2
Earth’s hydrosphere & water pollution 2Earth’s hydrosphere & water pollution 2
Earth’s hydrosphere & water pollution 2
 
Earth’s hydrosphere & water pollution
Earth’s hydrosphere & water pollutionEarth’s hydrosphere & water pollution
Earth’s hydrosphere & water pollution
 
U09 Hydrosphere
U09 HydrosphereU09 Hydrosphere
U09 Hydrosphere
 
Climate change impact on Hydrology
Climate change impact on Hydrology Climate change impact on Hydrology
Climate change impact on Hydrology
 
Hydrosphere and water pollution
Hydrosphere and water pollutionHydrosphere and water pollution
Hydrosphere and water pollution
 
hydrosphere
hydrospherehydrosphere
hydrosphere
 
Earth’s hydrosphere mylene
Earth’s hydrosphere myleneEarth’s hydrosphere mylene
Earth’s hydrosphere mylene
 
Climatic drought
Climatic droughtClimatic drought
Climatic drought
 
Earth’s hydrosphere
Earth’s hydrosphereEarth’s hydrosphere
Earth’s hydrosphere
 
Unit 9
Unit 9Unit 9
Unit 9
 
Earth's hydrosphere SanDiego
Earth's hydrosphere SanDiegoEarth's hydrosphere SanDiego
Earth's hydrosphere SanDiego
 
Drought
DroughtDrought
Drought
 
WaTer
WaTerWaTer
WaTer
 
IGCSE Environment Management Hydrosphere
IGCSE Environment Management HydrosphereIGCSE Environment Management Hydrosphere
IGCSE Environment Management Hydrosphere
 
Drought
DroughtDrought
Drought
 
Drought & Desertification measures of mitigation ,Types of drought
Drought & Desertification measures of mitigation ,Types of drought Drought & Desertification measures of mitigation ,Types of drought
Drought & Desertification measures of mitigation ,Types of drought
 
Ubana sarah jane
Ubana sarah janeUbana sarah jane
Ubana sarah jane
 

Similar to Wheng wheng

Power point presentation
Power point presentationPower point presentation
Power point presentation
Mark Zaldua
 
Kathlyn Jacobe
Kathlyn JacobeKathlyn Jacobe
Kathlyn Jacobe
kathjacobe
 
Hydrosphere and water pollution
Hydrosphere and water pollutionHydrosphere and water pollution
Hydrosphere and water pollution
Mary Ann Borromeo
 
Earth’s hydrosphere mylene
Earth’s hydrosphere myleneEarth’s hydrosphere mylene
Earth’s hydrosphere mylene
myleneragiles
 
Mischelleyadao
MischelleyadaoMischelleyadao
Mischelleyadao
pamahiin
 

Similar to Wheng wheng (20)

Power point presentation
Power point presentationPower point presentation
Power point presentation
 
earths hydrosphere and water pollution
earths hydrosphere and water pollutionearths hydrosphere and water pollution
earths hydrosphere and water pollution
 
Hydrosphere Presentation
Hydrosphere PresentationHydrosphere Presentation
Hydrosphere Presentation
 
Hydrosphere Presentation
Hydrosphere PresentationHydrosphere Presentation
Hydrosphere Presentation
 
Earth's Hydrosphere :)
Earth's Hydrosphere :)Earth's Hydrosphere :)
Earth's Hydrosphere :)
 
Kathlyn Jacobe
Kathlyn JacobeKathlyn Jacobe
Kathlyn Jacobe
 
Hydrosphere and water pollution
Hydrosphere and water pollutionHydrosphere and water pollution
Hydrosphere and water pollution
 
Water cycle
Water cycle Water cycle
Water cycle
 
Earth’s hydrosphere mylene
Earth’s hydrosphere myleneEarth’s hydrosphere mylene
Earth’s hydrosphere mylene
 
Bituin
BituinBituin
Bituin
 
Earth Science: Water Resources
Earth Science: Water ResourcesEarth Science: Water Resources
Earth Science: Water Resources
 
Mischelleyadao
MischelleyadaoMischelleyadao
Mischelleyadao
 
My presentation
My presentationMy presentation
My presentation
 
Acal anita
Acal anitaAcal anita
Acal anita
 
Acal anita
Acal anitaAcal anita
Acal anita
 
Acal anita
Acal anitaAcal anita
Acal anita
 
Acal anita
Acal anitaAcal anita
Acal anita
 
A typicla hydrological report for engineering projects
A typicla hydrological report for engineering projects A typicla hydrological report for engineering projects
A typicla hydrological report for engineering projects
 
Water by Anjali
Water by AnjaliWater by Anjali
Water by Anjali
 
arame
aramearame
arame
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Recently uploaded (20)

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

Wheng wheng

  • 1. My presentation Wilma B. dela Punta
  • 3.
  • 4. HYDROSPHERE A hydrosphere (from Greekὕδωρ - hydor, "water" and σφαῖρα - sphaira, "sphere") in physical geography describes the combined mass of water found on, under, and over the surface of a planet. The total mass of the Earth's hydrosphere is about 1.4 × 1018tonnes, which is about 0.023% of the Earth's total mass. About 20 × 1012tonnes of this is in the Earth's atmosphere (the volume of one tonne of water is approximately 1 cubic metre). Approximately 75% of the Earth's surface, an area of some 361 million square kilometres (139.5 million square miles), is covered by ocean. The average salinity of the Earth's oceans is about 35 grams of salt per kilogram of sea water
  • 5. Other hydrospheres A thick hydrosphere is thought to exist around the Jovian moon Europa. The outer layer of this hydrosphere is almost entirely ice, but current models predict that there is an ocean up to 100 km in depth underneath the ice. This ocean remains in a liquid form because of tidal flexing of the moon in its orbit around Jupiter. The volume of Europa's hydrosphere is 3 × 1018 m3, 2.3 times that of Earth. It has been suggested that the Jovian moon Ganymede and the Saturnian moon Enceladus may also possess sub-surface oceans. However the ice covering is expected to be thicker on Jupiter's Ganymede than on Europa.
  • 6. Hydrological cycle Hydrological cycle Insolation, or energy (in the form of heat and light) from the sun, provides the energy necessary to cause evaporation from all wet surfaces including oceans, rivers, lakes, soil and the leaves of plants. Water vapor is further released as transpiration from vegetation and from humans and other animals. Aquifer drawdown or overdrafting and the pumping of fossil water increases the total amount of water in the hydrosphere[2] that is subject to transpiration and evaporation thereby causing accretion in water vapour and cloud cover which are the primary absorbers of infrared radiation in the earth's atmosphere. Adding water to the system has a forcing effect on the whole earth system, an accurate estimate of which hydrogeological fact is yet to be quantified.
  • 8. The water cycle, also known as the hydrologic cycle or H2O cycle, describes the continuous movement of water on, above and below the surface of the Earth. Water can change states among liquid, vapour, and ice at various places in the water cycle. Although the balance of water on Earth remains fairly constant over time, individual water molecules can come and go, in and out of the atmosphere. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere, by the physical processes of evaporation, condensation, precipitation, infiltration, runoff, and subsurface flow. In so doing, the water goes through different phases: liquid, solid, and gas. The hydrologic cycle also involves the exchange of heat energy, which leads to temperature changes. For instance, in the process of evaporation, water takes up energy from the surroundings and cools the environment. Conversely, in the process of condensation, water releases energy to its surroundings, warming the environment.
  • 9.
  • 10. Description of water cycle he sun, which drives the water cycle, heats water in oceans and seas. Water evaporates as water vapor into the air. Ice and snow can sublimate directly into water vapor. Evapotranspiration is water transpired from plants and evaporated from the soil. Rising air currents take the vapor up into the atmosphere where cooler temperatures cause it to condense into clouds. Air currents move water vapor around the globe, cloud particles collide, grow, and fall out of the sky as precipitation. Some precipitation falls as snow or hail, and can accumulate as ice caps and glaciers, which can store frozen water for thousands of years. Snowpacks can thaw and melt, and the melted water flows over land as snowmelt. Most water falls back into the oceans or onto land as rain, where the water flows over the ground as surface runoff. A portion of runoff enters rivers in valleys in the landscape, with streamflow moving water towards the oceans. Runoff and groundwater are stored as freshwater in lakes
  • 12.
  • 13. Water pollution Water pollution is the contamination of water bodies (e.g. lakes, rivers, oceans and groundwater). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove harmful compounds. Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities.
  • 14. Introduction Water pollution is a major global problem. It has been suggested that it is the leading worldwide cause of deaths and diseases,[1][2] and that it accounts for the deaths of more than 14,000 people daily.[2] An estimated 700 million Indians have no acces s to a proper toilet, and 1,000 Indian children die of diarrheal sickness every day.[3] Some 90% of China's cities suffer from some degree of water pollution,[4] and nearly 500 million people lack access to safe drinking water.[5] In addition to the acute problems of water pollution in developing countries, industrialized countries continue to struggle with pollution problems as well. In the most recent national report on water quality in the United States, 45 percent of assessed streammiles, 47 percent of assessed lake acres, and 32 percent of assessed bay and estuarinesquare miles were classified as polluted.[6] Water is typically referred to as polluted when it is impaired by anthropogenic contaminants and either does not support a human use, such as drinking water, and/or undergoes a marked shift in its ability to support its constituent biotic communities, such as fish. Natural phenomena such as volcanoes, algae blooms, storms, and earthquakes also cause major changes in water quality and the ecological status of water.
  • 15. Ground water Interactions between groundwater and surface water are complex. Consequently, groundwater pollution, sometimes referred to as groundwater contamination, is not as easily classified as surface water pollution.[7] By its very nature, groundwater aquifers are susceptible to contamination from sources that may not directly affect surface water bodies, and the distinction of point vs. non-point source may be irrelevant. A spill or ongoing releases of chemical or radionuclide contaminants into soil (located away from a surface water body) may not create point source or non-point source pollution, but can contaminate the aquifer below, defined as a toxin plume. The movement of the plume, called a plume front, may be analyzed through a hydrological transport model or groundwater model. Analysis of groundwater contamination may focus on the soil characteristics and site geology, hydrogeology, hydrology, and the nature of the contaminants.
  • 16. causes of water pollution The specific contaminants leading to pollution in water include a wide spectrum of chemicals, pathogens, and physical or sensory changes such as elevated temperature and discoloration. While many of the chemicals and substances that are regulated may be naturally occurring (calcium, sodium, iron, manganese, etc.) the concentration is often the key in determining what is a natural component of water, and what is a contaminant. High concentrations of naturally-occurring substances can have negative impacts on aquatic flora and fauna. Oxygen-depleting substances may be natural materials, such as plant matter (e.g. leaves and grass) as well as man-made chemicals. Other natural and anthropogenic substances may cause turbidity (cloudiness) which blocks light and disrupts plant growth, and clogs the gills of some fish species.[10] Many of the chemical substances are toxic. Pathogens can produce waterborne diseases in either human or animal hosts.[11] Alteration of water's physical chemistry includes acidity (change in pH), electrical conductivity, temperature, and eutrophication. Eutrophication is an increase in the concentration of chemical nutrients in an ecosystem to an extent that increases in the primary productivity of the ecosystem. Depending on the degree of eutrophication, subsequent negative environmental effects such as anoxia (oxygen depletion) and severe reductions in water quality may occur, affecting fish and other animal populations.