SlideShare a Scribd company logo
1 of 82
Download to read offline
BIBIN CHIDAMBARANATHAN
THICK CYLINDER
1 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
2 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Thick cylinders
โ€ข If the ratio of thickness to internal diameter of a cylindrical shell is less than about
1/20, the cylindrical shell is known as thin cylinders.
โ€ข The hoop and longitudinal stresses are constant over the thickness and the radial
stress is small and can be neglected.
โ€ข If the ratio of thickness to internal diameter is more than 1/20, then cylindrical
shell is known as thick cylinders.
โ€ข The hoop stress in case of a thick cylinder will not be uniform across the thickness.
โ€ข Actually, the hoop stress will vary from a maximum value at the inner
circumference to a minimum value at the outer circumference.
3 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
STRESSES IN A THICK CYLINDRICAL SHELL
Fig. shows a thick cylinder subjected to an internal fluid pressure.
4 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Let
๐‘Ÿ2 = External radius of the cylinder,
๐‘Ÿ1 = Internal radius of the cylinder, and
๐ฟ = Length of cylinder.
Consider an elementary ring of the cylinder of radius ๐‘ฅ and thickness ๐‘‘๐‘ฅ as shown in Fig
5 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Let ๐‘๐‘ฅ = Radial pressure on the inner surface of the ring
๐‘๐‘ฅ + ๐‘‘๐‘๐‘ฅ = Radial pressure on the outer surface of the ring
๐œŽ๐‘ฅ = Hoop stress induced in the ring.
Take a longitudinal section ๐‘ฅ โˆ’ ๐‘ฅ and consider the equilibrium of half of the ring of Fig.
6 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐ต๐‘ข๐‘Ÿ๐‘ ๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘๐‘ฅ (2๐‘ฅ๐ฟ) โˆ’ (๐‘๐‘ฅ + ๐‘‘๐‘๐‘ฅ) ร— 2(๐‘ฅ + ๐‘‘๐‘ฅ) . ๐ฟ
= 2๐ฟ[๐‘๐‘ฅ . ๐‘ฅ โˆ’ (๐‘๐‘ฅ . ๐‘ฅ + ๐‘๐‘ฅ . ๐‘‘๐‘ฅ + ๐‘ฅ๐‘‘๐‘๐‘ฅ + ๐‘‘๐‘๐‘ฅ โˆ’ ๐‘‘๐‘ฅ)] .
(Neglecting ๐‘‘๐‘ . ๐‘‘๐‘ฅ which is a small quantity)
= 2๐ฟ[โˆ’๐‘๐‘ฅ ๐‘‘๐‘ฅ โˆ’ ๐‘ฅ๐‘‘๐‘๐‘ฅ]
= 2๐ฟ[๐‘๐‘ฅ ๐‘‘๐‘ฅ + ๐‘ฅ๐‘‘๐‘๐‘ฅ]
๐‘…๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐ป๐‘œ๐‘œ๐‘ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  ร— ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘ก ๐‘Ž๐‘๐‘ก๐‘ 
๐‘…๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐œŽ๐‘ฅ ร— 2๐‘‘๐‘ฅ. ๐ฟ
7 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Equating the resisting force to the bursting force, we get
๐œŽ๐‘ฅ ร— 2๐‘‘๐‘ฅ. ๐ฟ = 2๐ฟ[๐‘๐‘ฅ ๐‘‘๐‘ฅ + ๐‘ฅ๐‘‘๐‘๐‘ฅ]
๐œŽ๐‘ฅ = โˆ’๐‘๐‘ฅ โˆ’ ๐‘ฅ
๐‘‘๐‘๐‘ฅ
๐‘‘๐‘ฅ
The longitudinal strain at any point in the section is constant and is independent of the radius. This
means that cross sections remain plane after straining and this is true for sections, remote from any end
fixing. As longitudinal strain is constant, hence longitudinal stress will also be constant.
8 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Let
๐œŽ๐‘ฅ = ๐ฟ๐‘œ๐‘›๐‘”๐‘–๐‘ก๐‘ข๐‘‘๐‘–๐‘›๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘ 
Hence at any point at a distance ๐‘ฅ from the centre, three principal stresses are acting
They are:
(i) the radial compressive stress, ๐‘ƒ๐‘ฅ
(ii) the hoop (or circumferential) tensile stress, ๐œŽ๐‘ฅ
(iii) the longitudinal tensile stress ๐œŽ2
9 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
The longitudinal strain (๐‘’2) at this point is given by,
๐‘’2 =
๐œŽ2
๐ธ
โˆ’
๐œ‡๐œŽ๐‘ฅ
๐ธ
+
๐œ‡ ๐‘๐‘ฅ
๐ธ
But longitudinal strain is constant.
๐œŽ2
๐ธ
โˆ’
๐œ‡๐œŽ๐‘ฅ
๐ธ
+
๐œ‡ ๐‘๐‘ฅ
๐ธ
= ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
But ๐œŽ2 is also constant, and for the material of the cylinder ๐ธ and ฮผ are constant.
๐œŽ๐‘ฅ โˆ’ ๐‘ƒ๐‘ฅ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐œŽ๐‘ฅ โˆ’ ๐‘ƒ๐‘ฅ = 2๐‘Ž
10 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
where a is constant
๐œŽ๐‘ฅ = ๐‘ƒ๐‘ฅ + 2๐‘Ž
Equating the two values of ๐œŽ๐‘ฅ given by equations (iii) and (iv), we get
๐‘ƒ๐‘ฅ + 2๐‘Ž = โˆ’๐‘๐‘ฅ โˆ’ ๐‘ฅ
๐‘‘๐‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฅ
๐‘‘๐‘๐‘ฅ
๐‘‘๐‘ฅ
= โˆ’๐‘๐‘ฅ โˆ’ ๐‘๐‘ฅ โˆ’ 2๐‘Ž
๐‘ฅ
๐‘‘๐‘๐‘ฅ
๐‘‘๐‘ฅ
= โˆ’๐‘๐‘ฅ โˆ’ ๐‘๐‘ฅ โˆ’ 2๐‘Ž
11 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘ฅ
๐‘‘๐‘๐‘ฅ
๐‘‘๐‘ฅ
= โˆ’2๐‘๐‘ฅ โˆ’ 2๐‘Ž
๐‘‘๐‘๐‘ฅ
๐‘‘๐‘ฅ
= โˆ’
2๐‘๐‘ฅ
๐‘ฅ
โˆ’
2๐‘Ž
๐‘ฅ
๐‘‘๐‘๐‘ฅ
๐‘‘๐‘ฅ
= โˆ’
2(๐‘๐‘ฅ + ๐‘Ž)
๐‘ฅ
๐‘‘๐‘๐‘ฅ
(๐‘๐‘ฅ+๐‘Ž)
= โˆ’
2๐‘‘๐‘ฅ
๐‘ฅ
12 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Integrating the above equation, we get
log๐‘’(๐‘๐‘ฅ + ๐‘Ž) = โˆ’ 2 log๐‘’ ๐‘ฅ + log๐‘’ ๐‘
Where
log๐‘’ ๐‘ is a constant of integration
The above equation can also be written as
log๐‘’(๐‘๐‘ฅ + ๐‘Ž) = โˆ’ log๐‘’ ๐‘ฅ2
+ log๐‘’ ๐‘
log๐‘’(๐‘๐‘ฅ + ๐‘Ž) = โˆ’ log๐‘’
๐‘
๐‘ฅ2
13 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘๐‘ฅ + ๐‘Ž =
๐‘
๐‘ฅ2
๐‘๐‘ฅ =
๐‘
๐‘ฅ2
โˆ’ ๐‘Ž
This equation gives the radial pressure ๐‘๐‘ฅ
Substituting the values of ๐‘ƒ๐‘ฅ in equation (iv), we get
๐œŽ๐‘ฅ =
๐‘
๐‘ฅ2
โˆ’ ๐‘Ž + 2๐‘Ž
๐œŽ๐‘ฅ =
๐‘
๐‘ฅ2
+ ๐‘Ž
14 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
This equation gives the hoop stress at any radius x. These two equations are called Lame's
equations. The constants 'a' and 'b' are obtained from boundary conditions, which are:
(i) at ๐‘ฅ = ๐‘Ÿ1, ๐‘๐‘ฅ = ๐‘0 or the pressure of fluid inside the cylinder and
(ii) at ๐‘ฅ = ๐‘Ÿ2, ๐‘๐‘ฅ = 0 or atmosphere pressure.
After knowing the values of 'a' and 'b', the hoop stress can be calculated at any radius.
15 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Alternate Method for finding stresses in a thick-
cylinder
In case of thick cylinders, due to internal fluid pressure, the three principal stresses acting at a point
are:
(i) radial pressure (p) which is compressive,
(ii) circumferential stress or hoop stress (๐œŽ1) which is tensile, and
(iii) longitudinal stress (๐œŽ2), which is also tensile.
Let
๐‘’1 = ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›,
๐‘’2 = ๐‘™๐‘œ๐‘›๐‘”๐‘–๐‘ก๐‘ข๐‘‘๐‘–๐‘›๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›, ๐‘Ž๐‘›๐‘‘
๐‘’๐‘Ÿ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›
16 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
In case of thick-cylinder, it may be assumed that longitudinal strain (๐‘’2) is constant,
which means that cross-section remain plane after straining.
Consider a circular ring of radius rand thickness '๐‘‘๐‘Ÿ'. Due to internal fluid pressure, let
the radius r increases to (๐‘Ÿ + ๐‘ข) and increase in the thickness ๐‘‘๐‘Ÿ be ๐‘‘๐‘ข.
Initial radius = r
whereas final radius = (r + u)
๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› =
๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ โˆ’ ๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’
๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’
17 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› =
2๐œ‹(๐‘Ÿ + ๐‘ข) โˆ’ 2๐œ‹๐‘Ÿ
2๐œ‹๐‘Ÿ
๐‘’1 =
2๐œ‹๐‘ข
2๐œ‹๐‘Ÿ
=
๐‘ข
๐‘Ÿ
๐‘’1 =
๐‘ข
๐‘Ÿ
๐‘๐‘œ๐‘ค ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‘๐‘Ÿ
๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‘๐‘Ÿ + ๐‘‘๐‘ข
18 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› =
๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘›๐‘” โˆ’ ๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ 
๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘ 
๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› =
(๐‘‘๐‘Ÿ + ๐‘‘๐‘ข) โˆ’ ๐‘‘๐‘Ÿ
๐‘‘๐‘Ÿ
๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› =
๐‘‘๐‘ข
๐‘‘๐‘Ÿ
๐‘’๐‘Ÿ =
๐‘‘๐‘ข
๐‘‘๐‘Ÿ
19 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
The circumferential strain, longitudinal strain and radial strains in terms of stresses
and Poisson's ratio are also given by,
๐‘’1 =
๐œŽ1
๐ธ
โˆ’
๐œ‡๐œŽ2
๐ธ
โˆ’
โˆ’๐œ‡ ๐‘
๐ธ
(P is compressive)
๐‘’1 =
๐œŽ1
๐ธ
โˆ’
๐œ‡๐œŽ2
๐ธ
+
๐œ‡ ๐‘
๐ธ
20 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘’2 =
๐œŽ2
๐ธ
โˆ’
๐œ‡๐œŽ1
๐ธ
+
๐œ‡ ๐‘
๐ธ
๐‘’๐‘Ÿ =
โˆ’๐‘
๐ธ
โˆ’
๐œ‡๐œŽ1
๐ธ
+
๐œ‡๐œŽ2
๐ธ
Equating the two values of circumferential strain (๐‘’1) given by equations (i) and (iii).
Also equate the two values of radial strain (๐‘’๐‘Ÿ) given by equations (ii) and (v), we get
๐‘ข
๐‘Ÿ
=
๐œŽ1
๐ธ
โˆ’
๐œ‡๐œŽ2
๐ธ
+
๐œ‡ ๐‘
๐ธ
21 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘‘๐‘ข
๐‘‘๐‘Ÿ
=
โˆ’๐‘
๐ธ
โˆ’
๐œ‡๐œŽ1
๐ธ
+
๐œ‡๐œŽ2
๐ธ
Let us first eliminate 'u' from equations (vi) and (vii). From equation (vi),
๐‘ข = [
๐œŽ1
๐ธ
โˆ’
๐œ‡๐œŽ2
๐ธ
+
๐œ‡ ๐‘
๐ธ
] ร— ๐‘Ÿ
Differentiating the above equation with respect to r, we get
๐‘‘๐‘ข
๐‘‘๐‘Ÿ
=
๐œŽ1
๐ธ
โˆ’
๐œ‡๐œŽ2
๐ธ
+
๐œ‡ ๐‘
๐ธ
+
๐‘Ÿ
๐ธ
(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
22 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
(๐œŽ1, ๐œŽ2 and ๐‘ are function of r)
๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘  ๐‘œ๐‘“
๐‘‘๐‘ข
๐‘‘๐‘Ÿ
๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  (๐‘ฃ๐‘–๐‘–) ๐‘Ž๐‘›๐‘‘ (๐‘ฃ๐‘–๐‘–๐‘–),
โˆ’๐‘
๐ธ
โˆ’
๐œ‡๐œŽ1
๐ธ
+
๐œ‡๐œŽ2
๐ธ
=
๐œŽ1
๐ธ
โˆ’
๐œ‡๐œŽ2
๐ธ
+
๐œ‡ ๐‘
๐ธ
+
๐‘Ÿ
๐ธ
(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
โˆ’๐‘ โˆ’ ๐œ‡๐œŽ1 + ๐œ‡๐œŽ2 = ๐œŽ1 โˆ’ ๐œ‡๐œŽ2 + ๐œ‡๐‘ + ๐‘Ÿ(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
23 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
(Cancelling E to both sides)
0 = ๐‘ + ๐œ‡๐œŽ1 + ๐œ‡๐œŽ2 +๐œŽ1 โˆ’๐œ‡๐œŽ2 + ๐œ‡๐‘ + ๐‘Ÿ(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
0 = ๐‘(1 + ๐œ‡) + ๐œŽ1(1 + ๐œ‡) + ๐‘Ÿ(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
24 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
To find the value of ๐œŽ1 in terms of p, the value of
๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
must be substituted in the above
equation (ix).
Longitudinal strain (๐‘’2) is given by equation (iv) as
๐‘’2 =
๐œŽ2
๐ธ
โˆ’
๐œ‡๐œŽ1
๐ธ
+
๐œ‡ ๐‘
๐ธ
Since longitudinal strain (๐‘’2) is assumed constant. Its differentiation with respect to r will be
zero. D1fferentiating the above equation with respect to 'r', we get
0 =
1
๐ธ
[
๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
โˆ’
๐œ‡๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
]
25 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
0 =
๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
โˆ’
๐œ‡๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
=
๐œ‡๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
Substituting the value of
๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
in equation (ix), we get
0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐œŽ2
๐‘‘๐‘Ÿ
+
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
26 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’ ๐œ‡(
๐œ‡๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
) +
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
)
0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
(1 โˆ’ ๐œ‡2
) +
๐œ‡ ๐‘‘๐‘
๐‘‘๐‘Ÿ
(1 + ๐œ‡)
0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(1 โˆ’ ๐œ‡2
)
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+ ๐œ‡๐‘Ÿ(1 + ๐œ‡)
๐‘‘๐‘
๐‘‘๐‘Ÿ
0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(1 + ๐œ‡)(1 โˆ’ ๐œ‡)
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+ ๐œ‡๐‘Ÿ(1 + ๐œ‡)
๐‘‘๐‘
๐‘‘๐‘Ÿ
27 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(1 + ๐œ‡)(1 โˆ’ ๐œ‡)
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+ ๐œ‡๐‘Ÿ(1 + ๐œ‡)
๐‘‘๐‘
๐‘‘๐‘Ÿ
0 = 1 + ๐œ‡ [(๐‘ + ๐œŽ1) + ๐‘Ÿ(1 โˆ’ ๐œ‡)
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+ ๐œ‡๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
]
(1 + ๐œ‡) โ‰  0
0 = (๐‘ + ๐œŽ1) + ๐‘Ÿ(1 โˆ’ ๐œ‡)
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+ ๐œ‡๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
28 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
For the equilibrium of the element, resolving the forces acting on the element in the
radial direction we get
0 = ๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ ๐›ฟ๐œƒ + 2๐œŽ1 ร— ๐‘‘๐‘Ÿ ร— ๐‘ ๐‘–๐‘›
๐›ฟ๐œƒ
2
As ๐›ฟ๐œƒ is small, hence ๐‘ ๐‘–๐‘›
๐›ฟ๐œƒ
2
=
๐›ฟ๐œƒ
2
Now the above equation becomes
0 = ๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ ๐›ฟ๐œƒ + 2๐œŽ1 ร— ๐‘‘๐‘Ÿ ร— ๐‘ ๐‘–๐‘›
๐›ฟ๐œƒ
2
29 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
30 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ ๐›ฟ๐œƒ + ๐‘๐‘Ÿ๐›ฟ๐œƒ + 2๐œŽ1 ร— ๐‘‘๐‘Ÿ ร—
๐›ฟ๐œƒ
2
= 0
๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ โˆ’ ๐‘๐‘Ÿ + ๐œŽ1 ร— ๐‘‘๐‘Ÿ = 0
๐‘๐‘Ÿ + ๐‘๐‘‘๐‘Ÿ + ๐‘Ÿ๐‘‘๐‘ + ๐‘‘๐‘ ร— ๐‘‘๐‘Ÿ โˆ’ ๐‘๐‘Ÿ + ๐œŽ1 ร— ๐‘‘๐‘Ÿ = 0
๐‘๐‘‘๐‘Ÿ + ๐‘Ÿ๐‘‘๐‘ + ๐œŽ1๐‘‘๐‘Ÿ = 0
[dp x dr is the product of two small quantities and can be neglected]
31 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘ + ๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
+ ๐œŽ1 = 0
๐‘ + ๐œŽ1 = โˆ’๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
Substituting the value of ๐‘ + ๐œŽ1 in equation (๐‘ฅ), we get
0 = (๐‘ + ๐œŽ1) + ๐‘Ÿ(1 โˆ’ ๐œ‡)
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
+ ๐œ‡๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
0 = โˆ’๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
1 โˆ’ ๐œ‡ + ๐‘Ÿ(1 โˆ’ ๐œ‡)
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
[Cancelling ๐‘Ÿ(1 โ€“ ๐œ‡) to both sides]
32 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
0 = โˆ’
๐‘‘๐‘
๐‘‘๐‘Ÿ
+
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
โˆ’
๐‘‘๐‘
๐‘‘๐‘Ÿ
+
๐‘‘๐œŽ1
๐‘‘๐‘Ÿ
= 0
Integrating, we get
๐œŽ1 โˆ’ ๐‘ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐œŽ1 โˆ’ ๐‘ = 2๐‘Ž
33 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
In equations (xii) and (xi), the two unknowns are ๐œŽ1 and ๐‘. Let us find the value of
๐œŽ1 from equation (xii) and substitute this value in equation (xi).
๐‘ + (2๐‘Ž + ๐‘) = โˆ’๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
2๐‘Ž + 2๐‘ = โˆ’๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
2๐‘ + ๐‘Ÿ
๐‘‘๐‘
๐‘‘๐‘Ÿ
= โˆ’2๐‘Ž
34 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
1
๐‘Ÿ
ร—
๐‘‘(๐‘๐‘Ÿ2
)
๐‘‘๐‘Ÿ
= โˆ’2๐‘Ž
๐‘‘(๐‘๐‘Ÿ2
)
๐‘‘๐‘Ÿ
= โˆ’2๐‘Ž๐‘Ÿ
Integrating, we get
๐‘๐‘Ÿ2
=
โˆ’2๐‘Ž๐‘Ÿ2
2
+ ๐‘
where b is another constant.
35 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘๐‘Ÿ2
= ๐‘Ž๐‘Ÿ2
+ ๐‘
๐‘ =
โˆ’๐‘Ž๐‘Ÿ2
๐‘Ÿ2
+
๐‘
๐‘Ÿ2
๐‘ =
๐‘
๐‘Ÿ2
โˆ’ ๐‘Ž
The above equation gives the radial pressure at radius 'r'. This equation is same as
equation. To find the value of ๐œŽ1 at any radius, substitute this value of p in equation (xiii).
36 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐œŽ1 โˆ’
๐‘
๐‘Ÿ2
โˆ’ ๐‘Ž = 2๐‘Ž
๐œŽ1 โˆ’
๐‘
๐‘Ÿ2
+ ๐‘Ž = 2๐‘Ž
๐œŽ1 =
๐‘
๐‘Ÿ2
+ 2๐‘Ž โˆ’ ๐‘Ž
๐œŽ1 =
๐‘
๐‘Ÿ2
+ ๐‘Ž
The above equation gives the circumferential stress (or hoop stress) at any radius r.
This equation is same as equation
37 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
38 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
39 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
40 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Problem 1.
Determine the maximum and minimum hoop stress across the section of a pipe of 400 mm
internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of 8 ๐‘/๐‘š๐‘š2
.
Also sketch the radial pressure distribution and hoop stress distribution across the section.
Internal dia. = 400 mm
Internal radius = 200 mm
Thickness = 100 mm
External dia. = 600 mm
External radius = 300 mm
41 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Fluid pressure, p = 8 ๐‘/๐‘š๐‘š2
The radial pressure (px) is given by equation
๐‘๐‘ฅ =
๐‘
๐‘Ÿ2
โˆ’ ๐‘Ž
Now apply the boundary conditions to the above equations. The boundary
conditions
(i) at ๐‘ฅ = ๐‘Ÿ1, ๐‘๐‘ฅ = ๐‘0 or the pressure of fluid inside the cylinder and
(ii) at ๐‘ฅ = ๐‘Ÿ2, ๐‘๐‘ฅ = 0 or atmosphere pressure.
Substituting these boundary conditions in equation (i), we get
42 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
8 =
๐‘
2002
โˆ’ ๐‘Ž
0 =
๐‘
3002
โˆ’ ๐‘Ž
8 =
๐‘
40000
โˆ’ ๐‘Ž
0 =
๐‘
90000
โˆ’ ๐‘Ž
Subtracting equation (iii) from equation (ii), we get
43 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
8 =
๐‘
40000
โˆ’ ๐‘Ž โˆ’
๐‘
90000
+ ๐‘Ž
8 =
๐‘
40000
โˆ’
๐‘
90000
8 =
9๐‘ โˆ’ 4๐‘
360000
8 =
5๐‘
360000
44 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
8 =
5๐‘
360000
๐‘ =
36000 ร— 8
5
๐‘ = 576000
Substituting this value in equation (iii), we get
0 =
576000
90000
โˆ’ ๐‘Ž
45 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘Ž =
576000
90000
๐‘Ž = 6.4
The values of 'a' and 'b' are substituted in the hoop stress.
๐œŽ๐‘ฅ =
๐‘
๐‘ฅ2
+ ๐‘Ž
๐œŽ๐‘ฅ =
576000
๐‘ฅ2
+ 6.4
46 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘ฅ = 200๐‘š๐‘š
๐œŽ200 =
576000
2002
+ 6.4
๐œŽ200 = 14.4 + 6.4
๐œŽ200 = 20.8
๐‘
๐‘š๐‘š2
๐‘ฅ = 300๐‘š๐‘š
47 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐œŽ300 =
576000
3002
+ 6.4
๐œŽ300 = 6.4 + 6.4
๐œŽ300 = 12.8 ๐‘/๐‘š๐‘š2
Fig. 18.3 shows the radial pressure distribution and hoop stress distribution across the
section. AB is taken a horizontal line. AC= 8 ๐‘/๐‘š๐‘š2
. The variation between B and C is
parabolic. The curve BC shows the variation of radial pressure across AB.
48 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
The curve DE which is also parabolic, shows the variation of hoop stress across AB.
Values BD = 12.8 ๐‘/๐‘š๐‘š2
and AE = 20.8 ๐‘/๐‘š๐‘š2
. The radial pressure is compressive whereas the
hoop stress is tensile.
49 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Problem 2.
Find the thickness of metal necessary for a cylindrical shell of internal diameter 160 mm to
withstand an internal pressure of 8 ๐‘/๐‘š๐‘š2
. The maximum hoop stress in the section is not to
exceed 35 ๐‘/๐‘š๐‘š2
.
Internal dia. = 160 mm
Internal radius =80 mm
Internal pressure = 8 ๐‘/๐‘š๐‘š2
This means at x = 80 mm,
๐‘๐‘ฅ = 8 ๐‘/๐‘š๐‘š2
50 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Maximum hoop stress
๐œŽ๐‘ฅ = 35 ๐‘/๐‘š๐‘š2
The maximum hoop stress is at the inner radius of the shell.
Let
๐‘Ÿ2 = External radius.
The radial pressure and hoop stress at any radius ๐‘ฅ are given by equations
๐‘๐‘ฅ =
๐‘
๐‘Ÿ2
โˆ’ ๐‘Ž
๐œŽ๐‘ฅ =
๐‘
๐‘ฅ2
+ ๐‘Ž
51 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Now apply the boundary conditions to the above equations. The boundary conditions
(i) at ๐‘ฅ = ๐‘Ÿ1, ๐‘๐‘ฅ = ๐‘0 or the pressure of fluid inside the cylinder and
(ii) at ๐‘ฅ = ๐‘Ÿ2, ๐‘๐‘ฅ = 0 or atmosphere pressure.
Substituting these boundary conditions in equation (i), we get
8 =
๐‘
802
โˆ’ ๐‘Ž
8 =
๐‘
6400
โˆ’ ๐‘Ž
52 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Subtracting equation (iii) from equation (ii), we get
35 =
๐‘
802
+ ๐‘Ž
35 =
๐‘
6400
+ ๐‘Ž
Subtracting equation (iii) from equation (iv), we get
27 = 2๐‘Ž
๐‘Ž = 13.5
53 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Substituting the value of a in equation (iii), we get
8 =
๐‘
6400
โˆ’ 13.5
๐‘ = 21.5 ร— 6400
Substituting the values of 'a' and 'b' in equation (i),
๐‘๐‘ฅ =
21.5 ร— 6400
๐‘ฅ2
โˆ’ 13.5
54 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
But at the outer surface, the pressure is zero. Hence at ๐‘ฅ = ๐‘Ÿ2, ๐‘ƒ๐‘ฅ = 0.
Substituting these values in the above equation, we get
0 =
21.5 ร— 6400
๐‘Ÿ1
2 โˆ’ 13.5
๐‘Ÿ2
2
=
21.5 ร— 6400
13.5
๐‘Ÿ2 =
21.5 ร— 6400
13.5
55 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
๐‘Ÿ2 = 100.96 ๐‘š๐‘š
Thickness of the shell, ๐‘ก = ๐‘Ÿ2 โˆ’ ๐‘Ÿ1
๐‘ก = 100.96 โ€“ 80
๐‘ก = 20.96 ๐‘š๐‘š
56 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
57 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
58 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
59 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
60 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
61 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
62 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
63 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
64 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
65 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
66 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
BIBIN CHIDAMBARANATHAN
COMPOUND
CYLINDER
67 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
68 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
69 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
70 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
71 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
72 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
73 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
74 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
75 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
76 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
77 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
78 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
79 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
80 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
81 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
Thank You
82 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7

More Related Content

Similar to Lecture 37 som 07.05.2021

Composite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072RComposite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Lee Ramsay
ย 

Similar to Lecture 37 som 07.05.2021 (20)

Lecture 14 som 12.03.2021
Lecture 14 som 12.03.2021Lecture 14 som 12.03.2021
Lecture 14 som 12.03.2021
ย 
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfFUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
ย 
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfFLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
ย 
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
ย 
New name-400-4
New name-400-4New name-400-4
New name-400-4
ย 
Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)
ย 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
ย 
Lecture 12 som 10.03.2021
Lecture 12 som 10.03.2021Lecture 12 som 10.03.2021
Lecture 12 som 10.03.2021
ย 
Influence line structural analysis engineering
Influence line structural analysis  engineeringInfluence line structural analysis  engineering
Influence line structural analysis engineering
ย 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
ย 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
ย 
Vectors in mechanics
Vectors in mechanicsVectors in mechanics
Vectors in mechanics
ย 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
ย 
Differentiation
DifferentiationDifferentiation
Differentiation
ย 
Chapter nine.pptx
Chapter nine.pptxChapter nine.pptx
Chapter nine.pptx
ย 
bisector-and-perpendicular-line-lesson-19.pptx
bisector-and-perpendicular-line-lesson-19.pptxbisector-and-perpendicular-line-lesson-19.pptx
bisector-and-perpendicular-line-lesson-19.pptx
ย 
Unidad 2 paso 3
Unidad 2   paso 3Unidad 2   paso 3
Unidad 2 paso 3
ย 
Neo_Phase_1_Vectors_HN_S10_PPT.pptx
Neo_Phase_1_Vectors_HN_S10_PPT.pptxNeo_Phase_1_Vectors_HN_S10_PPT.pptx
Neo_Phase_1_Vectors_HN_S10_PPT.pptx
ย 
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
ย 
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072RComposite_AirFrame_Structures_LeeCatherineRamsay_1103072R
Composite_AirFrame_Structures_LeeCatherineRamsay_1103072R
ย 

More from BIBIN CHIDAMBARANATHAN

More from BIBIN CHIDAMBARANATHAN (20)

ME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT II (SCANNED).pdf
ย 
ME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT V (SCANNED).pdf
ย 
ME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT III (SCANNED).pdf
ย 
ME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT IV (SCANNED).pdf
ย 
ME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdfME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdf
ME8391 ENGINEERING THERMODYNAMICS UNIT I (SCANNED).pdf
ย 
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdfTHERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 1.pdf
ย 
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdfTHERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdf
THERMODYNAMICS NOTES - HAND WRITTEN - unit - 1 - PART 2.pdf
ย 
X10885 (omf751)
X10885 (omf751)X10885 (omf751)
X10885 (omf751)
ย 
X10884 (omf551)
X10884 (omf551)X10884 (omf551)
X10884 (omf551)
ย 
X10732 (mg8591)
X10732 (mg8591)X10732 (mg8591)
X10732 (mg8591)
ย 
X10730 (mg8091)
X10730 (mg8091)X10730 (mg8091)
X10730 (mg8091)
ย 
X10730 (mg8091)
X10730 (mg8091)X10730 (mg8091)
X10730 (mg8091)
ย 
X10713 (me8793)
X10713 (me8793)X10713 (me8793)
X10713 (me8793)
ย 
X10712 (me8792)
X10712 (me8792)X10712 (me8792)
X10712 (me8792)
ย 
X10711 (me8791)
X10711 (me8791)X10711 (me8791)
X10711 (me8791)
ย 
X10710 (me8694)
X10710 (me8694)X10710 (me8694)
X10710 (me8694)
ย 
X10709 (me8693)
X10709 (me8693)X10709 (me8693)
X10709 (me8693)
ย 
X10708 (me8692)
X10708 (me8692)X10708 (me8692)
X10708 (me8692)
ย 
X10707 (me8691)
X10707 (me8691)X10707 (me8691)
X10707 (me8691)
ย 
X10706 (me8651)
X10706 (me8651)X10706 (me8651)
X10706 (me8651)
ย 

Recently uploaded

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
ย 
Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...
Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...
Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...
Nguyen Thanh Tu Collection
ย 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
ย 

Recently uploaded (20)

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
ย 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
ย 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
ย 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
ย 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
ย 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
ย 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
ย 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
ย 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
ย 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
ย 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
ย 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
ย 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
ย 
Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...
Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...
Tแป”NG ร”N TแบฌP THI Vร€O LแปšP 10 Mร”N TIแบพNG ANH Nฤ‚M HแปŒC 2023 - 2024 Cร“ ฤรP รN (NGแปฎ ร‚...
ย 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
ย 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
ย 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
ย 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ย 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
ย 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
ย 

Lecture 37 som 07.05.2021

  • 1. BIBIN CHIDAMBARANATHAN THICK CYLINDER 1 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 2. 2 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 3. Thick cylinders โ€ข If the ratio of thickness to internal diameter of a cylindrical shell is less than about 1/20, the cylindrical shell is known as thin cylinders. โ€ข The hoop and longitudinal stresses are constant over the thickness and the radial stress is small and can be neglected. โ€ข If the ratio of thickness to internal diameter is more than 1/20, then cylindrical shell is known as thick cylinders. โ€ข The hoop stress in case of a thick cylinder will not be uniform across the thickness. โ€ข Actually, the hoop stress will vary from a maximum value at the inner circumference to a minimum value at the outer circumference. 3 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 4. STRESSES IN A THICK CYLINDRICAL SHELL Fig. shows a thick cylinder subjected to an internal fluid pressure. 4 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 5. Let ๐‘Ÿ2 = External radius of the cylinder, ๐‘Ÿ1 = Internal radius of the cylinder, and ๐ฟ = Length of cylinder. Consider an elementary ring of the cylinder of radius ๐‘ฅ and thickness ๐‘‘๐‘ฅ as shown in Fig 5 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 6. Let ๐‘๐‘ฅ = Radial pressure on the inner surface of the ring ๐‘๐‘ฅ + ๐‘‘๐‘๐‘ฅ = Radial pressure on the outer surface of the ring ๐œŽ๐‘ฅ = Hoop stress induced in the ring. Take a longitudinal section ๐‘ฅ โˆ’ ๐‘ฅ and consider the equilibrium of half of the ring of Fig. 6 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 7. ๐ต๐‘ข๐‘Ÿ๐‘ ๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐‘๐‘ฅ (2๐‘ฅ๐ฟ) โˆ’ (๐‘๐‘ฅ + ๐‘‘๐‘๐‘ฅ) ร— 2(๐‘ฅ + ๐‘‘๐‘ฅ) . ๐ฟ = 2๐ฟ[๐‘๐‘ฅ . ๐‘ฅ โˆ’ (๐‘๐‘ฅ . ๐‘ฅ + ๐‘๐‘ฅ . ๐‘‘๐‘ฅ + ๐‘ฅ๐‘‘๐‘๐‘ฅ + ๐‘‘๐‘๐‘ฅ โˆ’ ๐‘‘๐‘ฅ)] . (Neglecting ๐‘‘๐‘ . ๐‘‘๐‘ฅ which is a small quantity) = 2๐ฟ[โˆ’๐‘๐‘ฅ ๐‘‘๐‘ฅ โˆ’ ๐‘ฅ๐‘‘๐‘๐‘ฅ] = 2๐ฟ[๐‘๐‘ฅ ๐‘‘๐‘ฅ + ๐‘ฅ๐‘‘๐‘๐‘ฅ] ๐‘…๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐ป๐‘œ๐‘œ๐‘ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  ร— ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘› ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘ก ๐‘Ž๐‘๐‘ก๐‘  ๐‘…๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’ = ๐œŽ๐‘ฅ ร— 2๐‘‘๐‘ฅ. ๐ฟ 7 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 8. Equating the resisting force to the bursting force, we get ๐œŽ๐‘ฅ ร— 2๐‘‘๐‘ฅ. ๐ฟ = 2๐ฟ[๐‘๐‘ฅ ๐‘‘๐‘ฅ + ๐‘ฅ๐‘‘๐‘๐‘ฅ] ๐œŽ๐‘ฅ = โˆ’๐‘๐‘ฅ โˆ’ ๐‘ฅ ๐‘‘๐‘๐‘ฅ ๐‘‘๐‘ฅ The longitudinal strain at any point in the section is constant and is independent of the radius. This means that cross sections remain plane after straining and this is true for sections, remote from any end fixing. As longitudinal strain is constant, hence longitudinal stress will also be constant. 8 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 9. Let ๐œŽ๐‘ฅ = ๐ฟ๐‘œ๐‘›๐‘”๐‘–๐‘ก๐‘ข๐‘‘๐‘–๐‘›๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  Hence at any point at a distance ๐‘ฅ from the centre, three principal stresses are acting They are: (i) the radial compressive stress, ๐‘ƒ๐‘ฅ (ii) the hoop (or circumferential) tensile stress, ๐œŽ๐‘ฅ (iii) the longitudinal tensile stress ๐œŽ2 9 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 10. The longitudinal strain (๐‘’2) at this point is given by, ๐‘’2 = ๐œŽ2 ๐ธ โˆ’ ๐œ‡๐œŽ๐‘ฅ ๐ธ + ๐œ‡ ๐‘๐‘ฅ ๐ธ But longitudinal strain is constant. ๐œŽ2 ๐ธ โˆ’ ๐œ‡๐œŽ๐‘ฅ ๐ธ + ๐œ‡ ๐‘๐‘ฅ ๐ธ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก But ๐œŽ2 is also constant, and for the material of the cylinder ๐ธ and ฮผ are constant. ๐œŽ๐‘ฅ โˆ’ ๐‘ƒ๐‘ฅ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐œŽ๐‘ฅ โˆ’ ๐‘ƒ๐‘ฅ = 2๐‘Ž 10 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 11. where a is constant ๐œŽ๐‘ฅ = ๐‘ƒ๐‘ฅ + 2๐‘Ž Equating the two values of ๐œŽ๐‘ฅ given by equations (iii) and (iv), we get ๐‘ƒ๐‘ฅ + 2๐‘Ž = โˆ’๐‘๐‘ฅ โˆ’ ๐‘ฅ ๐‘‘๐‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฅ ๐‘‘๐‘๐‘ฅ ๐‘‘๐‘ฅ = โˆ’๐‘๐‘ฅ โˆ’ ๐‘๐‘ฅ โˆ’ 2๐‘Ž ๐‘ฅ ๐‘‘๐‘๐‘ฅ ๐‘‘๐‘ฅ = โˆ’๐‘๐‘ฅ โˆ’ ๐‘๐‘ฅ โˆ’ 2๐‘Ž 11 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 12. ๐‘ฅ ๐‘‘๐‘๐‘ฅ ๐‘‘๐‘ฅ = โˆ’2๐‘๐‘ฅ โˆ’ 2๐‘Ž ๐‘‘๐‘๐‘ฅ ๐‘‘๐‘ฅ = โˆ’ 2๐‘๐‘ฅ ๐‘ฅ โˆ’ 2๐‘Ž ๐‘ฅ ๐‘‘๐‘๐‘ฅ ๐‘‘๐‘ฅ = โˆ’ 2(๐‘๐‘ฅ + ๐‘Ž) ๐‘ฅ ๐‘‘๐‘๐‘ฅ (๐‘๐‘ฅ+๐‘Ž) = โˆ’ 2๐‘‘๐‘ฅ ๐‘ฅ 12 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 13. Integrating the above equation, we get log๐‘’(๐‘๐‘ฅ + ๐‘Ž) = โˆ’ 2 log๐‘’ ๐‘ฅ + log๐‘’ ๐‘ Where log๐‘’ ๐‘ is a constant of integration The above equation can also be written as log๐‘’(๐‘๐‘ฅ + ๐‘Ž) = โˆ’ log๐‘’ ๐‘ฅ2 + log๐‘’ ๐‘ log๐‘’(๐‘๐‘ฅ + ๐‘Ž) = โˆ’ log๐‘’ ๐‘ ๐‘ฅ2 13 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 14. ๐‘๐‘ฅ + ๐‘Ž = ๐‘ ๐‘ฅ2 ๐‘๐‘ฅ = ๐‘ ๐‘ฅ2 โˆ’ ๐‘Ž This equation gives the radial pressure ๐‘๐‘ฅ Substituting the values of ๐‘ƒ๐‘ฅ in equation (iv), we get ๐œŽ๐‘ฅ = ๐‘ ๐‘ฅ2 โˆ’ ๐‘Ž + 2๐‘Ž ๐œŽ๐‘ฅ = ๐‘ ๐‘ฅ2 + ๐‘Ž 14 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 15. This equation gives the hoop stress at any radius x. These two equations are called Lame's equations. The constants 'a' and 'b' are obtained from boundary conditions, which are: (i) at ๐‘ฅ = ๐‘Ÿ1, ๐‘๐‘ฅ = ๐‘0 or the pressure of fluid inside the cylinder and (ii) at ๐‘ฅ = ๐‘Ÿ2, ๐‘๐‘ฅ = 0 or atmosphere pressure. After knowing the values of 'a' and 'b', the hoop stress can be calculated at any radius. 15 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 16. Alternate Method for finding stresses in a thick- cylinder In case of thick cylinders, due to internal fluid pressure, the three principal stresses acting at a point are: (i) radial pressure (p) which is compressive, (ii) circumferential stress or hoop stress (๐œŽ1) which is tensile, and (iii) longitudinal stress (๐œŽ2), which is also tensile. Let ๐‘’1 = ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›, ๐‘’2 = ๐‘™๐‘œ๐‘›๐‘”๐‘–๐‘ก๐‘ข๐‘‘๐‘–๐‘›๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›, ๐‘Ž๐‘›๐‘‘ ๐‘’๐‘Ÿ = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› 16 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 17. In case of thick-cylinder, it may be assumed that longitudinal strain (๐‘’2) is constant, which means that cross-section remain plane after straining. Consider a circular ring of radius rand thickness '๐‘‘๐‘Ÿ'. Due to internal fluid pressure, let the radius r increases to (๐‘Ÿ + ๐‘ข) and increase in the thickness ๐‘‘๐‘Ÿ be ๐‘‘๐‘ข. Initial radius = r whereas final radius = (r + u) ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› = ๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ โˆ’ ๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ 17 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 18. ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› = 2๐œ‹(๐‘Ÿ + ๐‘ข) โˆ’ 2๐œ‹๐‘Ÿ 2๐œ‹๐‘Ÿ ๐‘’1 = 2๐œ‹๐‘ข 2๐œ‹๐‘Ÿ = ๐‘ข ๐‘Ÿ ๐‘’1 = ๐‘ข ๐‘Ÿ ๐‘๐‘œ๐‘ค ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‘๐‘Ÿ ๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‘๐‘Ÿ + ๐‘‘๐‘ข 18 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 19. ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› = ๐น๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘œ๐‘“ ๐‘Ÿ๐‘–๐‘›๐‘” โˆ’ ๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘‚๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘กโ„Ž๐‘–๐‘๐‘˜๐‘›๐‘’๐‘ ๐‘  ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› = (๐‘‘๐‘Ÿ + ๐‘‘๐‘ข) โˆ’ ๐‘‘๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› = ๐‘‘๐‘ข ๐‘‘๐‘Ÿ ๐‘’๐‘Ÿ = ๐‘‘๐‘ข ๐‘‘๐‘Ÿ 19 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 20. The circumferential strain, longitudinal strain and radial strains in terms of stresses and Poisson's ratio are also given by, ๐‘’1 = ๐œŽ1 ๐ธ โˆ’ ๐œ‡๐œŽ2 ๐ธ โˆ’ โˆ’๐œ‡ ๐‘ ๐ธ (P is compressive) ๐‘’1 = ๐œŽ1 ๐ธ โˆ’ ๐œ‡๐œŽ2 ๐ธ + ๐œ‡ ๐‘ ๐ธ 20 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 21. ๐‘’2 = ๐œŽ2 ๐ธ โˆ’ ๐œ‡๐œŽ1 ๐ธ + ๐œ‡ ๐‘ ๐ธ ๐‘’๐‘Ÿ = โˆ’๐‘ ๐ธ โˆ’ ๐œ‡๐œŽ1 ๐ธ + ๐œ‡๐œŽ2 ๐ธ Equating the two values of circumferential strain (๐‘’1) given by equations (i) and (iii). Also equate the two values of radial strain (๐‘’๐‘Ÿ) given by equations (ii) and (v), we get ๐‘ข ๐‘Ÿ = ๐œŽ1 ๐ธ โˆ’ ๐œ‡๐œŽ2 ๐ธ + ๐œ‡ ๐‘ ๐ธ 21 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 22. ๐‘‘๐‘ข ๐‘‘๐‘Ÿ = โˆ’๐‘ ๐ธ โˆ’ ๐œ‡๐œŽ1 ๐ธ + ๐œ‡๐œŽ2 ๐ธ Let us first eliminate 'u' from equations (vi) and (vii). From equation (vi), ๐‘ข = [ ๐œŽ1 ๐ธ โˆ’ ๐œ‡๐œŽ2 ๐ธ + ๐œ‡ ๐‘ ๐ธ ] ร— ๐‘Ÿ Differentiating the above equation with respect to r, we get ๐‘‘๐‘ข ๐‘‘๐‘Ÿ = ๐œŽ1 ๐ธ โˆ’ ๐œ‡๐œŽ2 ๐ธ + ๐œ‡ ๐‘ ๐ธ + ๐‘Ÿ ๐ธ ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) 22 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 23. (๐œŽ1, ๐œŽ2 and ๐‘ are function of r) ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘  ๐‘œ๐‘“ ๐‘‘๐‘ข ๐‘‘๐‘Ÿ ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘๐‘ฆ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  (๐‘ฃ๐‘–๐‘–) ๐‘Ž๐‘›๐‘‘ (๐‘ฃ๐‘–๐‘–๐‘–), โˆ’๐‘ ๐ธ โˆ’ ๐œ‡๐œŽ1 ๐ธ + ๐œ‡๐œŽ2 ๐ธ = ๐œŽ1 ๐ธ โˆ’ ๐œ‡๐œŽ2 ๐ธ + ๐œ‡ ๐‘ ๐ธ + ๐‘Ÿ ๐ธ ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) โˆ’๐‘ โˆ’ ๐œ‡๐œŽ1 + ๐œ‡๐œŽ2 = ๐œŽ1 โˆ’ ๐œ‡๐œŽ2 + ๐œ‡๐‘ + ๐‘Ÿ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) 23 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 24. (Cancelling E to both sides) 0 = ๐‘ + ๐œ‡๐œŽ1 + ๐œ‡๐œŽ2 +๐œŽ1 โˆ’๐œ‡๐œŽ2 + ๐œ‡๐‘ + ๐‘Ÿ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) 0 = ๐‘(1 + ๐œ‡) + ๐œŽ1(1 + ๐œ‡) + ๐‘Ÿ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) 0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) 24 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 25. To find the value of ๐œŽ1 in terms of p, the value of ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ must be substituted in the above equation (ix). Longitudinal strain (๐‘’2) is given by equation (iv) as ๐‘’2 = ๐œŽ2 ๐ธ โˆ’ ๐œ‡๐œŽ1 ๐ธ + ๐œ‡ ๐‘ ๐ธ Since longitudinal strain (๐‘’2) is assumed constant. Its differentiation with respect to r will be zero. D1fferentiating the above equation with respect to 'r', we get 0 = 1 ๐ธ [ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ] 25 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 26. 0 = ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ = ๐œ‡๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ Substituting the value of ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ in equation (ix), we get 0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐œŽ2 ๐‘‘๐‘Ÿ + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) 26 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 27. 0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡( ๐œ‡๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ) 0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ( ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ (1 โˆ’ ๐œ‡2 ) + ๐œ‡ ๐‘‘๐‘ ๐‘‘๐‘Ÿ (1 + ๐œ‡) 0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(1 โˆ’ ๐œ‡2 ) ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡๐‘Ÿ(1 + ๐œ‡) ๐‘‘๐‘ ๐‘‘๐‘Ÿ 0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(1 + ๐œ‡)(1 โˆ’ ๐œ‡) ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡๐‘Ÿ(1 + ๐œ‡) ๐‘‘๐‘ ๐‘‘๐‘Ÿ 27 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 28. 0 = (๐‘ + ๐œŽ1)(1 + ๐œ‡) + ๐‘Ÿ(1 + ๐œ‡)(1 โˆ’ ๐œ‡) ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡๐‘Ÿ(1 + ๐œ‡) ๐‘‘๐‘ ๐‘‘๐‘Ÿ 0 = 1 + ๐œ‡ [(๐‘ + ๐œŽ1) + ๐‘Ÿ(1 โˆ’ ๐œ‡) ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ ] (1 + ๐œ‡) โ‰  0 0 = (๐‘ + ๐œŽ1) + ๐‘Ÿ(1 โˆ’ ๐œ‡) ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ 28 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 29. For the equilibrium of the element, resolving the forces acting on the element in the radial direction we get 0 = ๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ ๐›ฟ๐œƒ + 2๐œŽ1 ร— ๐‘‘๐‘Ÿ ร— ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ 2 As ๐›ฟ๐œƒ is small, hence ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ 2 = ๐›ฟ๐œƒ 2 Now the above equation becomes 0 = ๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ ๐›ฟ๐œƒ + 2๐œŽ1 ร— ๐‘‘๐‘Ÿ ร— ๐‘ ๐‘–๐‘› ๐›ฟ๐œƒ 2 29 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 30. 30 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 31. ๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ ๐›ฟ๐œƒ + ๐‘๐‘Ÿ๐›ฟ๐œƒ + 2๐œŽ1 ร— ๐‘‘๐‘Ÿ ร— ๐›ฟ๐œƒ 2 = 0 ๐‘ + ๐‘‘๐‘ ๐‘Ÿ + ๐‘‘๐‘Ÿ โˆ’ ๐‘๐‘Ÿ + ๐œŽ1 ร— ๐‘‘๐‘Ÿ = 0 ๐‘๐‘Ÿ + ๐‘๐‘‘๐‘Ÿ + ๐‘Ÿ๐‘‘๐‘ + ๐‘‘๐‘ ร— ๐‘‘๐‘Ÿ โˆ’ ๐‘๐‘Ÿ + ๐œŽ1 ร— ๐‘‘๐‘Ÿ = 0 ๐‘๐‘‘๐‘Ÿ + ๐‘Ÿ๐‘‘๐‘ + ๐œŽ1๐‘‘๐‘Ÿ = 0 [dp x dr is the product of two small quantities and can be neglected] 31 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 32. ๐‘ + ๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ + ๐œŽ1 = 0 ๐‘ + ๐œŽ1 = โˆ’๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ Substituting the value of ๐‘ + ๐œŽ1 in equation (๐‘ฅ), we get 0 = (๐‘ + ๐œŽ1) + ๐‘Ÿ(1 โˆ’ ๐œ‡) ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ + ๐œ‡๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ 0 = โˆ’๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ 1 โˆ’ ๐œ‡ + ๐‘Ÿ(1 โˆ’ ๐œ‡) ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ [Cancelling ๐‘Ÿ(1 โ€“ ๐œ‡) to both sides] 32 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 33. 0 = โˆ’ ๐‘‘๐‘ ๐‘‘๐‘Ÿ + ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ โˆ’ ๐‘‘๐‘ ๐‘‘๐‘Ÿ + ๐‘‘๐œŽ1 ๐‘‘๐‘Ÿ = 0 Integrating, we get ๐œŽ1 โˆ’ ๐‘ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐œŽ1 โˆ’ ๐‘ = 2๐‘Ž 33 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 34. In equations (xii) and (xi), the two unknowns are ๐œŽ1 and ๐‘. Let us find the value of ๐œŽ1 from equation (xii) and substitute this value in equation (xi). ๐‘ + (2๐‘Ž + ๐‘) = โˆ’๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ 2๐‘Ž + 2๐‘ = โˆ’๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ 2๐‘ + ๐‘Ÿ ๐‘‘๐‘ ๐‘‘๐‘Ÿ = โˆ’2๐‘Ž 34 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 35. 1 ๐‘Ÿ ร— ๐‘‘(๐‘๐‘Ÿ2 ) ๐‘‘๐‘Ÿ = โˆ’2๐‘Ž ๐‘‘(๐‘๐‘Ÿ2 ) ๐‘‘๐‘Ÿ = โˆ’2๐‘Ž๐‘Ÿ Integrating, we get ๐‘๐‘Ÿ2 = โˆ’2๐‘Ž๐‘Ÿ2 2 + ๐‘ where b is another constant. 35 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 36. ๐‘๐‘Ÿ2 = ๐‘Ž๐‘Ÿ2 + ๐‘ ๐‘ = โˆ’๐‘Ž๐‘Ÿ2 ๐‘Ÿ2 + ๐‘ ๐‘Ÿ2 ๐‘ = ๐‘ ๐‘Ÿ2 โˆ’ ๐‘Ž The above equation gives the radial pressure at radius 'r'. This equation is same as equation. To find the value of ๐œŽ1 at any radius, substitute this value of p in equation (xiii). 36 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 37. ๐œŽ1 โˆ’ ๐‘ ๐‘Ÿ2 โˆ’ ๐‘Ž = 2๐‘Ž ๐œŽ1 โˆ’ ๐‘ ๐‘Ÿ2 + ๐‘Ž = 2๐‘Ž ๐œŽ1 = ๐‘ ๐‘Ÿ2 + 2๐‘Ž โˆ’ ๐‘Ž ๐œŽ1 = ๐‘ ๐‘Ÿ2 + ๐‘Ž The above equation gives the circumferential stress (or hoop stress) at any radius r. This equation is same as equation 37 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 38. 38 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 39. 39 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 40. 40 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 41. Problem 1. Determine the maximum and minimum hoop stress across the section of a pipe of 400 mm internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of 8 ๐‘/๐‘š๐‘š2 . Also sketch the radial pressure distribution and hoop stress distribution across the section. Internal dia. = 400 mm Internal radius = 200 mm Thickness = 100 mm External dia. = 600 mm External radius = 300 mm 41 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 42. Fluid pressure, p = 8 ๐‘/๐‘š๐‘š2 The radial pressure (px) is given by equation ๐‘๐‘ฅ = ๐‘ ๐‘Ÿ2 โˆ’ ๐‘Ž Now apply the boundary conditions to the above equations. The boundary conditions (i) at ๐‘ฅ = ๐‘Ÿ1, ๐‘๐‘ฅ = ๐‘0 or the pressure of fluid inside the cylinder and (ii) at ๐‘ฅ = ๐‘Ÿ2, ๐‘๐‘ฅ = 0 or atmosphere pressure. Substituting these boundary conditions in equation (i), we get 42 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 43. 8 = ๐‘ 2002 โˆ’ ๐‘Ž 0 = ๐‘ 3002 โˆ’ ๐‘Ž 8 = ๐‘ 40000 โˆ’ ๐‘Ž 0 = ๐‘ 90000 โˆ’ ๐‘Ž Subtracting equation (iii) from equation (ii), we get 43 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 44. 8 = ๐‘ 40000 โˆ’ ๐‘Ž โˆ’ ๐‘ 90000 + ๐‘Ž 8 = ๐‘ 40000 โˆ’ ๐‘ 90000 8 = 9๐‘ โˆ’ 4๐‘ 360000 8 = 5๐‘ 360000 44 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 45. 8 = 5๐‘ 360000 ๐‘ = 36000 ร— 8 5 ๐‘ = 576000 Substituting this value in equation (iii), we get 0 = 576000 90000 โˆ’ ๐‘Ž 45 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 46. ๐‘Ž = 576000 90000 ๐‘Ž = 6.4 The values of 'a' and 'b' are substituted in the hoop stress. ๐œŽ๐‘ฅ = ๐‘ ๐‘ฅ2 + ๐‘Ž ๐œŽ๐‘ฅ = 576000 ๐‘ฅ2 + 6.4 46 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 47. ๐‘ฅ = 200๐‘š๐‘š ๐œŽ200 = 576000 2002 + 6.4 ๐œŽ200 = 14.4 + 6.4 ๐œŽ200 = 20.8 ๐‘ ๐‘š๐‘š2 ๐‘ฅ = 300๐‘š๐‘š 47 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 48. ๐œŽ300 = 576000 3002 + 6.4 ๐œŽ300 = 6.4 + 6.4 ๐œŽ300 = 12.8 ๐‘/๐‘š๐‘š2 Fig. 18.3 shows the radial pressure distribution and hoop stress distribution across the section. AB is taken a horizontal line. AC= 8 ๐‘/๐‘š๐‘š2 . The variation between B and C is parabolic. The curve BC shows the variation of radial pressure across AB. 48 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 49. The curve DE which is also parabolic, shows the variation of hoop stress across AB. Values BD = 12.8 ๐‘/๐‘š๐‘š2 and AE = 20.8 ๐‘/๐‘š๐‘š2 . The radial pressure is compressive whereas the hoop stress is tensile. 49 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 50. Problem 2. Find the thickness of metal necessary for a cylindrical shell of internal diameter 160 mm to withstand an internal pressure of 8 ๐‘/๐‘š๐‘š2 . The maximum hoop stress in the section is not to exceed 35 ๐‘/๐‘š๐‘š2 . Internal dia. = 160 mm Internal radius =80 mm Internal pressure = 8 ๐‘/๐‘š๐‘š2 This means at x = 80 mm, ๐‘๐‘ฅ = 8 ๐‘/๐‘š๐‘š2 50 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 51. Maximum hoop stress ๐œŽ๐‘ฅ = 35 ๐‘/๐‘š๐‘š2 The maximum hoop stress is at the inner radius of the shell. Let ๐‘Ÿ2 = External radius. The radial pressure and hoop stress at any radius ๐‘ฅ are given by equations ๐‘๐‘ฅ = ๐‘ ๐‘Ÿ2 โˆ’ ๐‘Ž ๐œŽ๐‘ฅ = ๐‘ ๐‘ฅ2 + ๐‘Ž 51 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 52. Now apply the boundary conditions to the above equations. The boundary conditions (i) at ๐‘ฅ = ๐‘Ÿ1, ๐‘๐‘ฅ = ๐‘0 or the pressure of fluid inside the cylinder and (ii) at ๐‘ฅ = ๐‘Ÿ2, ๐‘๐‘ฅ = 0 or atmosphere pressure. Substituting these boundary conditions in equation (i), we get 8 = ๐‘ 802 โˆ’ ๐‘Ž 8 = ๐‘ 6400 โˆ’ ๐‘Ž 52 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 53. Subtracting equation (iii) from equation (ii), we get 35 = ๐‘ 802 + ๐‘Ž 35 = ๐‘ 6400 + ๐‘Ž Subtracting equation (iii) from equation (iv), we get 27 = 2๐‘Ž ๐‘Ž = 13.5 53 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 54. Substituting the value of a in equation (iii), we get 8 = ๐‘ 6400 โˆ’ 13.5 ๐‘ = 21.5 ร— 6400 Substituting the values of 'a' and 'b' in equation (i), ๐‘๐‘ฅ = 21.5 ร— 6400 ๐‘ฅ2 โˆ’ 13.5 54 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 55. But at the outer surface, the pressure is zero. Hence at ๐‘ฅ = ๐‘Ÿ2, ๐‘ƒ๐‘ฅ = 0. Substituting these values in the above equation, we get 0 = 21.5 ร— 6400 ๐‘Ÿ1 2 โˆ’ 13.5 ๐‘Ÿ2 2 = 21.5 ร— 6400 13.5 ๐‘Ÿ2 = 21.5 ร— 6400 13.5 55 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 56. ๐‘Ÿ2 = 100.96 ๐‘š๐‘š Thickness of the shell, ๐‘ก = ๐‘Ÿ2 โˆ’ ๐‘Ÿ1 ๐‘ก = 100.96 โ€“ 80 ๐‘ก = 20.96 ๐‘š๐‘š 56 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 57. 57 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 58. 58 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 59. 59 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 60. 60 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 61. 61 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 62. 62 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 63. 63 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 64. 64 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 65. 65 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 66. 66 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 67. BIBIN CHIDAMBARANATHAN COMPOUND CYLINDER 67 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 68. 68 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 69. 69 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 70. 70 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 71. 71 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 72. 72 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 73. 73 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 74. 74 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 75. 75 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 76. 76 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 77. 77 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 78. 78 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 79. 79 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 80. 80 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 81. 81 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7
  • 82. Thank You 82 BIBIN CHIDAMBARANATHAN, ASP/MECH, RMKCET 5/7