SlideShare a Scribd company logo
1 of 13
vishnu.reddy12345@gmail.com

Iris Recognition
System.

G.Vishnu Vadhan Reddy
3rd ECE
vishnu.reddy12345@gmail.com

K.Vinod Kumar
3 ECE
kvinod444@gmail.com
rd
VIGNANA BHARATHI INSTITUTE OF TECHNOLOGY
Abstract:
The pressures on today’s system
administrators to have secure systems
are ever increasing. One area where
security can be improved is in
authentication
and
identification.
Biometrics provides a promising
solution meeting all demands. Biometric
identification utilizes physiological and
behavioral characteristics to authenticate
a person’s identity which include facial
recognition, fingerprints, palm prints,
hand geometry, retinal patterns and iris
patterns and signature, voice pattern and
key stroke dynamics. Many have
suffered
from
high
cost
and
unsatisfactory error rates.
The technology is accurate, easy to use,
non-intrusive, and difficult to forge and,
despite what many people may think is
actually quite a fast system once initial
enrollment has taken place With new
technologies the eyes are more than
“windows to your soul.” People are
carrying with them a living key or
password that will never be forgotten
and will always be there. The technology
is available now through work in
computer vision, pattern recognition, and
man-machine interface to create a
reliable lock that a person's iris pattern
will open. The randomness of iris
patterns has a very high dimensionality
making recognition decisions reliable
with a high level of confidence.
This paper, at the outset, throws light on
the technology involved in iris
recognition, the algorithms followed by
a statistical analysis highlighting its edge

over other biometric identification
systems and its applications in the
present day world. This paper is
intended for security practitioners who
are knowledgeable, but not technically
or scientifically oriented.

Introduction:
Iris recognition is a method of biometric
authentication
that
uses
pattern
recognition techniques based on highresolution images of the irides of an
individual's eyes. Not to be confused
with another less prevalent ocular-based
technology,
retina scanning, iris
recognition uses camera technology, and
subtle IR illumination to reduce specular
reflection from the convex cornea to
create images of the detail-rich, intricate
structures of the iris. These unique
structures
converted
into
digital
templates,
provide
mathematical
representations of the iris that yield
unambiguous positive identification of
an individual.
Iris recognition efficacy is rarely
impeded by glasses or contact lenses.
Iris technology has the smallest outlier
(those who cannot use/enroll) group of
all biometric technologies. The only
biometric authentication technology
designed for use in a one-to many search
environment, a key advantage of iris
recognition is its stability, or template
longevity as, barring trauma, a single
enrollment can last a lifetime.
Breakthrough work to create the iris
recognition algorithms required for
image acquisition and one-to-many
matching was pioneered by John G.
Daugman, Ph.D, OBE (University of
Cambridge Computer Laboratory), who
holds key patents on the method. These
were utilized to effectively debut
commercialization of the technology in
conjunction with an early version of the
Iris Access system designed and
manufactured
by
Korea's
LG
Electronics. Daugman's algorithms are
the basis of almost all currently (as of
2006) commercially deployed irisrecognition systems. It has a so far
unmatched practical false-accept rate of
zero; that is there is no known pair of
images of two different irises that the
Daughman algorithm in its deployed
configuration mistakenly identifies as
the same. (In tests where the matching
thresholds are – for better comparability
– changed from their default settings to
allow a false-accept rate in the region of
10−3 to 10−4, the Iris Code false-reject
rates are comparable to the most
accurate
single-finger
fingerprint
matchers.).

An Overview of Biometrics:
Biometrics refers to the automatic
identification of a person based on
his/her physiological or behavioral
characteristics.
This
method
of
identification offers several advantages
over traditional methods involving ID
cards (tokens)
or PIN numbers
(passwords) for various reasons: (i) the
person to be identified is required to be
physically present at the point-ofidentification; (ii) identification based on
biometric techniques obviates the need
to remember a password or carry a
token. With the increased integration of
computers and Internet into our
everyday lives, it is necessary to protect
sensitive and personal data. By replacing

PINs (or using biometrics in addition to
PINs), biometric techniques can
potentially prevent unauthorized access
to ATMs, cellular phones, laptops, and
computer networks. Unlike biometric
traits, PINs or passwords may be
forgotten, and tokens like passports and
driver's licenses may be forged, stolen,
or lost. Thus, biometric systems are
being deployed to enhance security and
reduce
financial
fraud.
Various
biometric traits are being used for realtime recognition, the most popular being
face, iris and fingerprint. However, there
are biometric systems that are based on
retinal scan, voice, signature and hand
geometry.
A biometric system is essentially a
pattern recognition system which
recognizes a user by determining the
authenticity of a specific physiological
or behavioral characteristic possessed by
the user. Several important issues must
be considered in designing a practical
biometric system. First, a user must be
enrolled in the system so that his
biometric template can be captured. This
template is securely stored in a central
database or a smart card issued to the
user. The template is retrieved when an
individual needs to be identified.
Depending on the context, a biometric
system can operate either in verification
(authentication) or an identification
mode.

Verification vs. Identification:
There are two different ways to
recognize a person: verification and
identification. Verification involves
confirming or denying a person's
claimed identity. On the other hand, in
identification, the system has to
recognize a person (Who am I ? ) from a
list of N users in the template database.
Identification is a more challenging
problem because it involves 1: N

matching compared to 1:1 matching for
verification.

Operating principle
An iris-recognition algorithm first has to identify the approximately concentric circular
outer boundaries of the iris and the pupil in a photo of an eye. The set of pixels covering
only the iris is then transformed into a bit pattern that preserves the information that is
essential for a statistically meaningful comparison between two iris images. The
mathematical methods used resemble those of modern lossy compression algorithms for
photographic images. In the case of Daugman's algorithms, a Gabor wavelet transform is
used in order to extract the spatial frequency range that contains a good best signal-tonoise ratio considering the focus quality of available cameras. The result are a set of
complex numbers that carry local amplitude and phase information for the iris image. In
Daugman's algorithms, all amplitude information is discarded, and the resulting 2048 bits
that represent an iris consist only of the complex sign bits of the Gabor-domain
representation of the iris image. Discarding the amplitude information ensures that the
template remains largely unaffected by changes in illumination and virtually negligibly
by iris color, which contributes significantly to the long-term stability of the biometric
template. To authenticate via identification (one-to many template matching) or
verification (one-to one template matching) a template created by imaging the iris, is
compared to a stored value template in a database. If the Hamming Distance is below the
decision threshold, a positive identification has effectively been made.
A practical problem of iris recognition is that the iris is usually partially covered by eye
lids and eye lashes. In order to reduce the false-reject risk in such cases, additional
algorithms are needed to identify the locations of eye lids and eye lashes, and exclude the
bits in the resulting code from the comparison operation.
How Iris works:
Reliable automatic recognition of
persons has long been an attractive
goal. As in all pattern recognition
problems, the key issue is the
relation between interclass and intraclass variability: objects can be
reliably classified only if the
variability among different instances
of a given class is less than the
variability between different classes.
For example in face recognition,
difficulties arise from the fact that
the face is a changeable social organ
displaying a variety of expressions,
as well as being an active 3D object
whose image varies with viewing
angle,
pose,
illumination,
accoutrements, and age. It has been
shown that for facial images taken at

least one year apart; even the best
current algorithms have error rates of
43%. Against this intra-class (same
face)
variability,
inter-class
variability is limited because
different faces possess the same
basic set of features, in the same
canonical geometry.
For all of these reasons, iris patterns
become interesting as an alternative
approach
to
reliable
visual
recognition of persons when imaging
can be done at distances of less than
a meter, and especially when there is
a need to search very large databases
without incurring any false matches
despite a huge number of
possibilities.
postnatal years. Its complex pattern can
contain many distinctive features such as
arching ligaments, furrows, ridges,
crypts, rings, corona, freckles, and a
zigzag collarets, some of which may be
seen in Figure2.

Figure 1: Example of an iris pattern,
imaged monochromatically at a distance
of about 35 cm. The outline overlay
shows results of the iris and pupil
localization and eyelid detection steps.
The bit stream in the top left is the result
of demodulation with
complex-valued 2D Gabor wavelets to
encode the phase sequence of the iris
pattern.
In addition, as an internal (yet externally
visible) organ of the eye, the iris is well
protected from the environment and
stable over time. As a planar object its
image is relatively insensitive to angle of
illumination and changes in viewing
angle cause only affine transformations;
even the nonfat net pattern distortion
caused by papillary dilation is readily
reversible. Finally, the ease of localizing
eyes in faces, and the distinctive annular
shape of the iris, Facilitate reliable and
precise isolation of this feature and the
creation
of
a
size-invariant
representation.

The iris begins to form in the third
month of gestation and the structures
creating its pattern are largely complete
by the eighth month, although pigment
accretion can continue into the first

Iris color is determined mainly by the
density of melanin pigment in its
anterior layer and stroma, with blue
irises resulting from an absence of
pigment:
long
wavelength
light
penetrates and is absorbed by the
pigment epithelium, while shorter
wavelengths are reflected and scattered
by the stroma. All testing organizations
have reported a false match rate of 0 in
their tests, some of which involved
millions of iris pairings. This paper
explains how the algorithms work, and
presents new data on the statistical
properties and singularity of iris patterns
based on 9.1 million comparisons.

Finding an Iris in an Image
To capture the rich details of iris
patterns, an imaging system should
resolve a minimum of 70 pixels in iris
radius. In the field trials to date, a
resolved iris radius of 100 to 140 pixels
has been more typical. Monochrome
CCD cameras (480 x 640) have been
used because NIR illumination in the
700nm -900nm band was required for
imaging to be invisible to humans. Some
imaging platforms deployed a wide
angle camera for coarse localization of
eyes in faces, to steer the optics of a
narrow-angle pan/tilt camera that
acquired higher resolution images of
eyes. There exist many alternative
methods for finding and tracking Facial
features such as the eyes
Images passing a minimum focus
criterion were then analyzed to find the
iris, with precise localization of its
boundaries using a coarse-to-fine
strategy terminating in single-pixel
precision estimates of the center
Coordinates and radius of both the iris
and the pupil. Although the results of the
iris search greatly constrain the pupil
search, concentricity of these boundaries
cannot be assumed. Very often the pupil
center is nasal, and inferior, to the iris
center. Its radius can range from 0.1 to
0.8 of the iris radius. Thus, all three
parameters defining the pupillary circle
must be estimated separately from those
of the iris. A very effective
integrodifferential
operator
for
determining these parameters is:

Where I(x; y) is an image such as Fig 1
containing an eye. The operator searches
over the image domain (x; y) for the
maximum in the blurred partial
derivative with respect to increasing
radius r, of the normalized contour
integral of I(x; y) along a circular arc

of radius r and center coordinates (x0;
y0). The result of all these localization
operations is the isolation of iris tissue
from other image regions, as illustrated
in Fig 1 by the graphical overlay on the
eye.

Phase-Quadrant
Code

Demodulation

Figure 3: The phase demodulation
process used to encode iris patterns.
Local regions of an iris are projected
(Eqt 2) onto quadrature 2D Gabor
wavelets, generating complex-valued
coefficients whose real and imaginary
parts specify the coordinates of a phasor
in the complex plane. The angle of each
phasor is quantized to one of the four
quadrants, setting two bits of phase
information. This process is repeated all
across the iris with many wavelet sizes,
frequencies, and orientations, to extract
2,048 bits.
Altogether 2,048 such phase bits (256
bytes) are computed for each iris, but in
a major improvement over the earlier
(Daugman 1993) algorithms, now an
equal number of masking bits are also
computed to signify whether any iris
region is obscured by eyelids, contains
any eyelash occlusions, specular
reflections, boundary artifacts of hard
contact lenses, or poor signal-to-noise
ratio and thus should be ignored in the
demodulation code as artifact.
Figure 4: Illustration that even for poorly
focused eye images, the bits of a
demodulation phase sequence are still
set, primarily by random CCD noise.
This prevents poorly focused eye images
from resembling each other in the
pattern matching stage, in the way that
(e.g.) poorly resolved face images look
alike and can be confused with each
other. Only phase information is used for
recognizing irises because amplitude
information is not very discriminating,
and it depends upon extraneous factors
such as imaging contrast, illumination,
and camera gain.

The
Test
Independence:

of

Statistical

The key to iris recognition is the failure
of a test of statistical independence,
which involves so many degrees-offreedom that this test is virtually
guaranteed to be passed whenever the
phase codes for two different eyes are
compared, but to be uniquely failed
when any eye's phase code is compared
with another version of itself. The test of
statistical independence is implemented
by the simple Boolean Exclusive-OR
operator (XOR) applied to the 2,048 bit
phase vectors that encode any two iris
patterns, masked (AND'ed) by both of
their corresponding mask bit vectors to
prevent
non-iris
artifacts
from
influencing iris comparisons. The XOR
operator N detects disagreement between
any corresponding pair of bits, while the
AND operator T ensures that the
compared bits are both deemed to have
been uncorrupted by eyelashes, eyelids,
specular reflections, or other noise.
Figure 4: Distribution of Hamming
Distances from all 9.1 million possible
comparisons between different pairs of
irises in the database. The histogram
forms a perfect binomial distribution
solid curve. The data implies that it is
extremely improbable for two different
irises to disagree in less than about a
third of their phase information.
Informative searches are performed at a
rate of about 100,000 irises per second.

Network Security: Authenticam
with PrivateID
•

•

•

Iris Scanning
Services:

Products

and

The iris recognition camera can
be integrated into a variety of
software applications to provide
security for information and
electronic commerce.
Authenticam incorporates highresolution
videoconference
ability. It is estimated that the
return on investment (ROI) can
be realized in less than a year
making this highly affordable.
This innovation will allow
companies to control access to
computer
workstations,
networks, and sensitive corporate
data, as well as positively
identifying system users.

Next-generation
IrisPass:
•

•

ATMs:

Built by Japan’s OKI Electric
Industry, IrisPass is currently
integrating iris scanning in ATM
machines in Asia and the US.
IrisPass will eliminate the need
for PINs to make identification
of account ownership.
This technology may also be
used for in-bank teller stations
for account verification.

Issues to Consider
•

Other biometrics recognition
systems include fingerprinting,
palm prints, hand geometry, nail
bed
identification,
facial
recognition, and retinal scan.
•

•

•

Behavioral characteristics used
for identification are signature
dynamics, keyboard dynamics,
and voice recognition.
Iris and retina scans are the most
accurate
of all
biometric
techniques and, currently, the
most costly.
The entire biometrics market is
projected to reach $10 billion by
2008.

Speed:
•

•

Iris recognition systems can
cycle through 1,500,000 matches
per minute, which is 20 times
greater processing speed than any
other biometrics systems.
In real-life applications this
translates into an identity
decision being made in seconds.
The enrollment process is also
speedily accomplished, typically
in three minutes or less.

•

•

•

•

Costs:
•

Safety and Perceived Invasiveness:
•

•

•

Enrollment and use of an iris
recognition system requires no
contact, only cooperation of the
user.
The devices capture images of
the eye from a comfortable
distance without bright lights or
lasers.
The Iris Code is hashed and
encrypted as a security measure
to prevent theft. If a person feels
their recognition patterns have
been
compromised,
reenrollment is possible an infinite
number of times by using a
permuted Iris Code.

Iris recognition because it looks
at the exterior part of the eye,
unlike retinal scans that look at
vascular patterns inside the eye,
is not invasive.
Also, there is no possibility of
gathering information such as
medical conditions, a possibility
with retinal scans.
Both irises and retinas are stable
throughout a lifetime, except in
the case of degenerative diseases
that may affect the retina.
There is no need to remove
glasses or contact lenses during
identification. As long as they do
not obscure the iris, recognition
can be made through them. Iris
recognition can be hampered by
partially occluded or drooping
eyelids.

•

•

•

•

Iris scanning can increase
profitability by minimizing both
costs
and
vulnerabilities
associated with password and
password management.
Research indicates US businesses
spend an average of $200 per
person a year on password
management.
The value proposition of
implementing an iris recognition
system is three-dimensional.
Cost, accuracy, and ease of use
are all important considerations.
Recent advances in camera
technology is bringing down the
cost of iris recognition. Camera
prices have gone down while
processing ability has gone up.
The size of the camera has
decreased also. With a strategic
•

partnership with Panasonic, the
costs
have
gone
down
significantly.
Both iris scanning and retina
scanning are at the upper end of
the scale in cost compared to
other biometric systems.

Ease of Use:
•

•
•

•

•

Many of the users who have
already encountered iris-scanning
technology
consider
it
a
convenience rather than an
intrusion, speeding the process of
identity verification.
Glasses or contact lens use does
not affect it.
Most eye surgeries do not change
the iris. In the few, such as
iridotomy and iridectomy, both
associated with glaucoma, reenrollment may be necessary.
These technologies can be
integrated into existing business
systems easing the installation
requirements.
In this instance, retina scanning
has an advantage over iris
scanning in that retina scanning
utilizes a very compact template.
Retina scanning requires 96 bytes
while iris scanning uses 512
bytes.
A greater number of templates
can be stored in a standalone
device if retina scanning is
employed.

Advantages:
The iris of the eye has been
described as the ideal part of the

human body for
biometric
identification for several reasons:
• It is an internal organ that is well
protected against damage and
wear by a highly transparent and
sensitive membrane (the cornea).
This distinguishes it from
fingerprints, which can be
difficult to recognize after years
of certain types of manual labor.
• The iris is mostly flat and its
geometric configuration is only
controlled
by
two
complementary muscles (the
sphincter pupillae and dilator
pupillae), which control the
diameter of the pupil. This makes
the iris shape far more
predictable than, for instance,
that of the face.
• The iris has a fine texture that –
like fingerprints – is determined
randomly during embryonic
gestation.
Even
genetically
identical
individuals
have
completely independent iris
textures, whereas DNA (genetic
"fingerprinting") is not unique
for the about 1.5% of the human
population
who
have
a
genetically
identical
monozygotic twin.
• An iris scan is similar to taking a
photograph and can be performed
from about 10 cm to a few
meters away. There is no need
for the person to be identified to
touch any equipment that has
recently been touched by a
stranger, thereby eliminating an
objection that has been raised in
some cultures against finger-print
scanners, where a finger has to
touch a surface, or retinal
scanning, where the eye can be
•

brought very close to a lens (like
looking into a microscope lens).
The only currently commercially
deployed
iris
recognition
algorithm,
John
Daugman's
IrisCode, has an unprecedented
false match rate (better than
10−11). Not a single false match
has ever been reported for this
algorithm, which has already
been used to cross-compare more
than 200 billion combinations of
iris pairs as part of the
immigration procedures in the
United Arab Emirates.

Disadvantages:
•

•

•

•

Iris scanning is a relatively new
technology and is incompatible
with the very substantial
investment
that
the
law
enforcement and immigration
authorities of some countries
have already made into fingerprint recognition.
Iris recognition is very difficult
to perform at a distance larger
than a few meters and if the
person to be identified is not
cooperating by holding the head
still and looking into the camera.
As with other photographic
biometric
technologies,
iris
recognition is susceptible to poor
image quality, with associated
failure to enroll rates.
As with other identification
infrastructure (national residents
databases, ID cards, etc.), civil
rights activists have voiced
concerns that iris-recognition
technology
might
help
governments to track individuals
beyond their will.

Security considerations:
Like with most other biometric
identification technology, a still not
satisfactorily solved problem with iris
recognition is the problem of "live tissue
verification". The reliability of any
biometric identification depends on
ensuring that the signal acquired and
compared has actually been recorded
from a live body part of the person to be
identified, and is not a manufactured
template. Many commercially available
iris recognition systems are easily fooled
by presenting a high-quality photograph
of a face instead of a real face, which
makes such devices unsuitable for
unsupervised applications, such as door
access-control systems. The problem of
live tissue verification is less of a
concern in supervised applications (e.g.,
immigration control), where a human
operator supervises the process of taking
the picture.Methods that have been
suggested to provide some defence
against the use of fake eyes and irises
include:
• Changing
ambient
lighting
during
the
identification
(switching on a bright lamp),
such that the pupillary reflex can
be verified and the iris image be
recorded at several different
pupil diameters
• Analysing the 2D spatial
frequency spectrum of the iris
image for the peaks caused by
the printer dither patterns found
on commercially available fakeiris contact lenses
• Using spectral analysis instead of
merely monochromatic cameras
•

•
•

•

to distinguish iris tissue from
other material
Observing the characteristic
natural movement of an eyeball
(measuring nystagmus, tracking
eye while text is read, etc.)
Testing for retinal retroreflection
(red-eye effect)
Testing for reflections from the
eye's four optical surfaces (front
and back of both cornea and lens)
to verify their presence, position
and shape
Using 3D imaging (e.g., stereo
cameras) to verify the position
and shape of the iris relative to
other eye features .

CONCLUSION
Highly accurate, positive personal
recognition is feasible today using the
iris of the human eye. This unique and
complex organ, which has more
dimensions (Measures) of variation than
any other biometric feature currently in
use, remains stable throughout a lifetime
and is readily available for sampling in a
nonintrusive way. And has the speed
required minimizing user frustration
when accessing company systems. The
process uses simple and non-threatening
video technology to take images of the
iris, digitize the features, and create a
512-byte code, which is then compared
against an entire database in less than
two seconds. Recognitions can then be
used to control access and entry, to
provide recognition information to an
existing entry control system or for any
other
purpose
where
positive
identification is needed. Recent testing,
under U.S. Government controlled
conditions,
in
three
real-world
environments, and in a variety of
operational applications have proven the

practicality and feasibility of the
extremely accurate iris recognition for
any
function
requiring
positive
recognition.

More Related Content

What's hot

IRIS &RETINAL SCANNING PPT
IRIS &RETINAL SCANNING PPTIRIS &RETINAL SCANNING PPT
IRIS &RETINAL SCANNING PPT
Ajay K
 
Iris by @run@$uj! final
Iris by @run@$uj!    finalIris by @run@$uj!    final
Iris by @run@$uj! final
ARUNASUJITHA
 
IRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATOR
IRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATORIRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATOR
IRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATOR
csitconf
 
Iris segmentation analysis using integro differential operator and hough tran...
Iris segmentation analysis using integro differential operator and hough tran...Iris segmentation analysis using integro differential operator and hough tran...
Iris segmentation analysis using integro differential operator and hough tran...
Nadeer Abu Jraerr
 

What's hot (20)

Iris scanning
Iris scanningIris scanning
Iris scanning
 
Iris recognition
Iris recognitionIris recognition
Iris recognition
 
Iris scanner technology
Iris scanner technologyIris scanner technology
Iris scanner technology
 
IRIS &RETINAL SCANNING PPT
IRIS &RETINAL SCANNING PPTIRIS &RETINAL SCANNING PPT
IRIS &RETINAL SCANNING PPT
 
Iris feature extraction
Iris feature extractionIris feature extraction
Iris feature extraction
 
Seminar
SeminarSeminar
Seminar
 
IRIS RECOGNITION
IRIS RECOGNITION IRIS RECOGNITION
IRIS RECOGNITION
 
iris recognition system as means of unique identification
iris recognition system as means of unique identification iris recognition system as means of unique identification
iris recognition system as means of unique identification
 
Final iris recognition
Final iris recognitionFinal iris recognition
Final iris recognition
 
Iris by @run@$uj! final
Iris by @run@$uj!    finalIris by @run@$uj!    final
Iris by @run@$uj! final
 
Iris Scan
Iris ScanIris Scan
Iris Scan
 
Retinal Recognition
Retinal RecognitionRetinal Recognition
Retinal Recognition
 
Pattern recognition IRIS recognition
Pattern recognition IRIS recognitionPattern recognition IRIS recognition
Pattern recognition IRIS recognition
 
IRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATOR
IRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATORIRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATOR
IRIS BIOMETRIC RECOGNITION SYSTEM EMPLOYING CANNY OPERATOR
 
Iris recognition
Iris recognitionIris recognition
Iris recognition
 
Iris Recognition Technology
Iris Recognition TechnologyIris Recognition Technology
Iris Recognition Technology
 
Iris segmentation analysis using integro differential operator and hough tran...
Iris segmentation analysis using integro differential operator and hough tran...Iris segmentation analysis using integro differential operator and hough tran...
Iris segmentation analysis using integro differential operator and hough tran...
 
Iris recognition seminar
Iris recognition seminarIris recognition seminar
Iris recognition seminar
 
Centerix Iris-Presentation
Centerix Iris-PresentationCenterix Iris-Presentation
Centerix Iris-Presentation
 
Iris scanning
Iris scanningIris scanning
Iris scanning
 

Viewers also liked

Viewers also liked (10)

Aadhar Based Electronic Voting Machine
Aadhar Based Electronic Voting MachineAadhar Based Electronic Voting Machine
Aadhar Based Electronic Voting Machine
 
Smart Voting System using Aadhar Card
Smart Voting System using Aadhar CardSmart Voting System using Aadhar Card
Smart Voting System using Aadhar Card
 
Real time voting system using face recognition for different expressions and ...
Real time voting system using face recognition for different expressions and ...Real time voting system using face recognition for different expressions and ...
Real time voting system using face recognition for different expressions and ...
 
Online Voting System
Online Voting SystemOnline Voting System
Online Voting System
 
Electronic voting system security
Electronic voting system securityElectronic voting system security
Electronic voting system security
 
Evaluation of Iris Recognition System on Multiple Feature Extraction Algorith...
Evaluation of Iris Recognition System on Multiple Feature Extraction Algorith...Evaluation of Iris Recognition System on Multiple Feature Extraction Algorith...
Evaluation of Iris Recognition System on Multiple Feature Extraction Algorith...
 
Mobile, Secure E - Voting Architecture for the Nigerian Electoral System
Mobile, Secure E - Voting Architecture for the Nigerian Electoral SystemMobile, Secure E - Voting Architecture for the Nigerian Electoral System
Mobile, Secure E - Voting Architecture for the Nigerian Electoral System
 
Mobile Voting System Using Advanced NFC Technology
Mobile Voting System Using Advanced NFC TechnologyMobile Voting System Using Advanced NFC Technology
Mobile Voting System Using Advanced NFC Technology
 
Comparison of various Biometric methods
Comparison of various Biometric methodsComparison of various Biometric methods
Comparison of various Biometric methods
 
Iris recognition and the challenge of homeland & border control security in UAE
Iris recognition and the challenge of homeland & border control security in UAEIris recognition and the challenge of homeland & border control security in UAE
Iris recognition and the challenge of homeland & border control security in UAE
 

Similar to 8 g iris-recognition_system

Facial recognition technology by vaibhav
Facial recognition technology by vaibhavFacial recognition technology by vaibhav
Facial recognition technology by vaibhav
Vaibhav P
 
A comparison of multiple wavelet algorithms for iris recognition 2
A comparison of multiple wavelet algorithms for iris recognition 2A comparison of multiple wavelet algorithms for iris recognition 2
A comparison of multiple wavelet algorithms for iris recognition 2
IAEME Publication
 
Fingerprint Authentication Using Biometric And Aadhar Card Fingerprint
Fingerprint Authentication Using Biometric And Aadhar Card FingerprintFingerprint Authentication Using Biometric And Aadhar Card Fingerprint
Fingerprint Authentication Using Biometric And Aadhar Card Fingerprint
SonuSawant
 

Similar to 8 g iris-recognition_system (20)

Security for Identity Based Identification using Water Marking and Visual Cry...
Security for Identity Based Identification using Water Marking and Visual Cry...Security for Identity Based Identification using Water Marking and Visual Cry...
Security for Identity Based Identification using Water Marking and Visual Cry...
 
A survey paper on various biometric security system methods
A survey paper on various biometric security system methodsA survey paper on various biometric security system methods
A survey paper on various biometric security system methods
 
A PROJECT REPORT ON IRIS RECOGNITION SYSTEM USING MATLAB
A PROJECT REPORT ON IRIS RECOGNITION SYSTEM USING MATLABA PROJECT REPORT ON IRIS RECOGNITION SYSTEM USING MATLAB
A PROJECT REPORT ON IRIS RECOGNITION SYSTEM USING MATLAB
 
IRJET- Secure Vault System using Iris Biometrics and PIC Microcontroller
IRJET-  	  Secure Vault System using Iris Biometrics and PIC MicrocontrollerIRJET-  	  Secure Vault System using Iris Biometrics and PIC Microcontroller
IRJET- Secure Vault System using Iris Biometrics and PIC Microcontroller
 
Face Recognition Technology by Vishal Garg
Face Recognition Technology by Vishal GargFace Recognition Technology by Vishal Garg
Face Recognition Technology by Vishal Garg
 
Facial recognition technology by vaibhav
Facial recognition technology by vaibhavFacial recognition technology by vaibhav
Facial recognition technology by vaibhav
 
A comparison of multiple wavelet algorithms for iris recognition 2
A comparison of multiple wavelet algorithms for iris recognition 2A comparison of multiple wavelet algorithms for iris recognition 2
A comparison of multiple wavelet algorithms for iris recognition 2
 
50120130406045
5012013040604550120130406045
50120130406045
 
Biometrics
BiometricsBiometrics
Biometrics
 
Attendance system based on face recognition using python by Raihan Sikdar
Attendance system based on face recognition using python by Raihan SikdarAttendance system based on face recognition using python by Raihan Sikdar
Attendance system based on face recognition using python by Raihan Sikdar
 
Biometric authentication system
Biometric authentication systemBiometric authentication system
Biometric authentication system
 
A secure architecture for m commerce users using biometerics and pin distribu...
A secure architecture for m commerce users using biometerics and pin distribu...A secure architecture for m commerce users using biometerics and pin distribu...
A secure architecture for m commerce users using biometerics and pin distribu...
 
Bw33449453
Bw33449453Bw33449453
Bw33449453
 
Bw33449453
Bw33449453Bw33449453
Bw33449453
 
IRJET- Deep Learning Based Card-Less Atm Using Fingerprint And Face Recogniti...
IRJET- Deep Learning Based Card-Less Atm Using Fingerprint And Face Recogniti...IRJET- Deep Learning Based Card-Less Atm Using Fingerprint And Face Recogniti...
IRJET- Deep Learning Based Card-Less Atm Using Fingerprint And Face Recogniti...
 
Scale Invariant Feature Transform Based Face Recognition from a Single Sample...
Scale Invariant Feature Transform Based Face Recognition from a Single Sample...Scale Invariant Feature Transform Based Face Recognition from a Single Sample...
Scale Invariant Feature Transform Based Face Recognition from a Single Sample...
 
Fingerprint detection
Fingerprint detectionFingerprint detection
Fingerprint detection
 
Poster on biometrics
Poster on biometricsPoster on biometrics
Poster on biometrics
 
Fingerprint Authentication Using Biometric And Aadhar Card Fingerprint
Fingerprint Authentication Using Biometric And Aadhar Card FingerprintFingerprint Authentication Using Biometric And Aadhar Card Fingerprint
Fingerprint Authentication Using Biometric And Aadhar Card Fingerprint
 
Biometric and cyber security 1
Biometric and cyber security 1Biometric and cyber security 1
Biometric and cyber security 1
 

More from sukanya thatamsetty

More from sukanya thatamsetty (10)

Virtualscreen
VirtualscreenVirtualscreen
Virtualscreen
 
Greendroid an architecture for dark silicon age
Greendroid   an architecture for dark silicon ageGreendroid   an architecture for dark silicon age
Greendroid an architecture for dark silicon age
 
Greendroid an architecture for dark silicon age
Greendroid   an architecture for dark silicon ageGreendroid   an architecture for dark silicon age
Greendroid an architecture for dark silicon age
 
Copy (4) of 5 wimax3424
Copy (4) of 5 wimax3424Copy (4) of 5 wimax3424
Copy (4) of 5 wimax3424
 
My presentation1
My presentation1My presentation1
My presentation1
 
5 wimax3424
5 wimax34245 wimax3424
5 wimax3424
 
Airborne internet
Airborne internetAirborne internet
Airborne internet
 
A paper presentation on sixth sense
A paper presentation on sixth senseA paper presentation on sixth sense
A paper presentation on sixth sense
 
5 wimax3424
5 wimax34245 wimax3424
5 wimax3424
 
4g magic communication
4g magic communication4g magic communication
4g magic communication
 

8 g iris-recognition_system

  • 1. vishnu.reddy12345@gmail.com Iris Recognition System. G.Vishnu Vadhan Reddy 3rd ECE vishnu.reddy12345@gmail.com K.Vinod Kumar 3 ECE kvinod444@gmail.com rd
  • 2. VIGNANA BHARATHI INSTITUTE OF TECHNOLOGY Abstract: The pressures on today’s system administrators to have secure systems are ever increasing. One area where security can be improved is in authentication and identification. Biometrics provides a promising solution meeting all demands. Biometric identification utilizes physiological and behavioral characteristics to authenticate a person’s identity which include facial recognition, fingerprints, palm prints, hand geometry, retinal patterns and iris patterns and signature, voice pattern and key stroke dynamics. Many have suffered from high cost and unsatisfactory error rates. The technology is accurate, easy to use, non-intrusive, and difficult to forge and, despite what many people may think is actually quite a fast system once initial enrollment has taken place With new technologies the eyes are more than “windows to your soul.” People are carrying with them a living key or password that will never be forgotten and will always be there. The technology is available now through work in computer vision, pattern recognition, and man-machine interface to create a reliable lock that a person's iris pattern will open. The randomness of iris patterns has a very high dimensionality making recognition decisions reliable with a high level of confidence. This paper, at the outset, throws light on the technology involved in iris recognition, the algorithms followed by a statistical analysis highlighting its edge over other biometric identification systems and its applications in the present day world. This paper is intended for security practitioners who are knowledgeable, but not technically or scientifically oriented. Introduction: Iris recognition is a method of biometric authentication that uses pattern recognition techniques based on highresolution images of the irides of an individual's eyes. Not to be confused with another less prevalent ocular-based technology, retina scanning, iris recognition uses camera technology, and subtle IR illumination to reduce specular reflection from the convex cornea to create images of the detail-rich, intricate structures of the iris. These unique structures converted into digital templates, provide mathematical representations of the iris that yield unambiguous positive identification of an individual. Iris recognition efficacy is rarely impeded by glasses or contact lenses. Iris technology has the smallest outlier (those who cannot use/enroll) group of all biometric technologies. The only biometric authentication technology designed for use in a one-to many search environment, a key advantage of iris recognition is its stability, or template longevity as, barring trauma, a single enrollment can last a lifetime. Breakthrough work to create the iris recognition algorithms required for image acquisition and one-to-many
  • 3. matching was pioneered by John G. Daugman, Ph.D, OBE (University of Cambridge Computer Laboratory), who holds key patents on the method. These were utilized to effectively debut commercialization of the technology in conjunction with an early version of the Iris Access system designed and manufactured by Korea's LG Electronics. Daugman's algorithms are the basis of almost all currently (as of 2006) commercially deployed irisrecognition systems. It has a so far unmatched practical false-accept rate of zero; that is there is no known pair of images of two different irises that the Daughman algorithm in its deployed configuration mistakenly identifies as the same. (In tests where the matching thresholds are – for better comparability – changed from their default settings to allow a false-accept rate in the region of 10−3 to 10−4, the Iris Code false-reject rates are comparable to the most accurate single-finger fingerprint matchers.). An Overview of Biometrics: Biometrics refers to the automatic identification of a person based on his/her physiological or behavioral characteristics. This method of identification offers several advantages over traditional methods involving ID cards (tokens) or PIN numbers (passwords) for various reasons: (i) the person to be identified is required to be physically present at the point-ofidentification; (ii) identification based on biometric techniques obviates the need to remember a password or carry a token. With the increased integration of computers and Internet into our everyday lives, it is necessary to protect sensitive and personal data. By replacing PINs (or using biometrics in addition to PINs), biometric techniques can potentially prevent unauthorized access to ATMs, cellular phones, laptops, and computer networks. Unlike biometric traits, PINs or passwords may be forgotten, and tokens like passports and driver's licenses may be forged, stolen, or lost. Thus, biometric systems are being deployed to enhance security and reduce financial fraud. Various biometric traits are being used for realtime recognition, the most popular being face, iris and fingerprint. However, there are biometric systems that are based on retinal scan, voice, signature and hand geometry. A biometric system is essentially a pattern recognition system which recognizes a user by determining the authenticity of a specific physiological or behavioral characteristic possessed by the user. Several important issues must be considered in designing a practical biometric system. First, a user must be enrolled in the system so that his biometric template can be captured. This template is securely stored in a central database or a smart card issued to the user. The template is retrieved when an individual needs to be identified. Depending on the context, a biometric system can operate either in verification (authentication) or an identification mode. Verification vs. Identification: There are two different ways to recognize a person: verification and identification. Verification involves confirming or denying a person's claimed identity. On the other hand, in identification, the system has to recognize a person (Who am I ? ) from a
  • 4. list of N users in the template database. Identification is a more challenging problem because it involves 1: N matching compared to 1:1 matching for verification. Operating principle An iris-recognition algorithm first has to identify the approximately concentric circular outer boundaries of the iris and the pupil in a photo of an eye. The set of pixels covering only the iris is then transformed into a bit pattern that preserves the information that is essential for a statistically meaningful comparison between two iris images. The mathematical methods used resemble those of modern lossy compression algorithms for photographic images. In the case of Daugman's algorithms, a Gabor wavelet transform is used in order to extract the spatial frequency range that contains a good best signal-tonoise ratio considering the focus quality of available cameras. The result are a set of complex numbers that carry local amplitude and phase information for the iris image. In Daugman's algorithms, all amplitude information is discarded, and the resulting 2048 bits that represent an iris consist only of the complex sign bits of the Gabor-domain representation of the iris image. Discarding the amplitude information ensures that the template remains largely unaffected by changes in illumination and virtually negligibly by iris color, which contributes significantly to the long-term stability of the biometric template. To authenticate via identification (one-to many template matching) or verification (one-to one template matching) a template created by imaging the iris, is compared to a stored value template in a database. If the Hamming Distance is below the decision threshold, a positive identification has effectively been made. A practical problem of iris recognition is that the iris is usually partially covered by eye lids and eye lashes. In order to reduce the false-reject risk in such cases, additional algorithms are needed to identify the locations of eye lids and eye lashes, and exclude the bits in the resulting code from the comparison operation.
  • 5. How Iris works: Reliable automatic recognition of persons has long been an attractive goal. As in all pattern recognition problems, the key issue is the relation between interclass and intraclass variability: objects can be reliably classified only if the variability among different instances of a given class is less than the variability between different classes. For example in face recognition, difficulties arise from the fact that the face is a changeable social organ displaying a variety of expressions, as well as being an active 3D object whose image varies with viewing angle, pose, illumination, accoutrements, and age. It has been shown that for facial images taken at least one year apart; even the best current algorithms have error rates of 43%. Against this intra-class (same face) variability, inter-class variability is limited because different faces possess the same basic set of features, in the same canonical geometry. For all of these reasons, iris patterns become interesting as an alternative approach to reliable visual recognition of persons when imaging can be done at distances of less than a meter, and especially when there is a need to search very large databases without incurring any false matches despite a huge number of possibilities.
  • 6. postnatal years. Its complex pattern can contain many distinctive features such as arching ligaments, furrows, ridges, crypts, rings, corona, freckles, and a zigzag collarets, some of which may be seen in Figure2. Figure 1: Example of an iris pattern, imaged monochromatically at a distance of about 35 cm. The outline overlay shows results of the iris and pupil localization and eyelid detection steps. The bit stream in the top left is the result of demodulation with complex-valued 2D Gabor wavelets to encode the phase sequence of the iris pattern. In addition, as an internal (yet externally visible) organ of the eye, the iris is well protected from the environment and stable over time. As a planar object its image is relatively insensitive to angle of illumination and changes in viewing angle cause only affine transformations; even the nonfat net pattern distortion caused by papillary dilation is readily reversible. Finally, the ease of localizing eyes in faces, and the distinctive annular shape of the iris, Facilitate reliable and precise isolation of this feature and the creation of a size-invariant representation. The iris begins to form in the third month of gestation and the structures creating its pattern are largely complete by the eighth month, although pigment accretion can continue into the first Iris color is determined mainly by the density of melanin pigment in its anterior layer and stroma, with blue irises resulting from an absence of pigment: long wavelength light penetrates and is absorbed by the pigment epithelium, while shorter wavelengths are reflected and scattered by the stroma. All testing organizations have reported a false match rate of 0 in their tests, some of which involved millions of iris pairings. This paper explains how the algorithms work, and presents new data on the statistical properties and singularity of iris patterns based on 9.1 million comparisons. Finding an Iris in an Image To capture the rich details of iris patterns, an imaging system should resolve a minimum of 70 pixels in iris radius. In the field trials to date, a resolved iris radius of 100 to 140 pixels has been more typical. Monochrome
  • 7. CCD cameras (480 x 640) have been used because NIR illumination in the 700nm -900nm band was required for imaging to be invisible to humans. Some imaging platforms deployed a wide angle camera for coarse localization of eyes in faces, to steer the optics of a narrow-angle pan/tilt camera that acquired higher resolution images of eyes. There exist many alternative methods for finding and tracking Facial features such as the eyes Images passing a minimum focus criterion were then analyzed to find the iris, with precise localization of its boundaries using a coarse-to-fine strategy terminating in single-pixel precision estimates of the center Coordinates and radius of both the iris and the pupil. Although the results of the iris search greatly constrain the pupil search, concentricity of these boundaries cannot be assumed. Very often the pupil center is nasal, and inferior, to the iris center. Its radius can range from 0.1 to 0.8 of the iris radius. Thus, all three parameters defining the pupillary circle must be estimated separately from those of the iris. A very effective integrodifferential operator for determining these parameters is: Where I(x; y) is an image such as Fig 1 containing an eye. The operator searches over the image domain (x; y) for the maximum in the blurred partial derivative with respect to increasing radius r, of the normalized contour integral of I(x; y) along a circular arc of radius r and center coordinates (x0; y0). The result of all these localization operations is the isolation of iris tissue from other image regions, as illustrated in Fig 1 by the graphical overlay on the eye. Phase-Quadrant Code Demodulation Figure 3: The phase demodulation process used to encode iris patterns. Local regions of an iris are projected (Eqt 2) onto quadrature 2D Gabor wavelets, generating complex-valued coefficients whose real and imaginary parts specify the coordinates of a phasor in the complex plane. The angle of each phasor is quantized to one of the four quadrants, setting two bits of phase information. This process is repeated all across the iris with many wavelet sizes, frequencies, and orientations, to extract 2,048 bits.
  • 8. Altogether 2,048 such phase bits (256 bytes) are computed for each iris, but in a major improvement over the earlier (Daugman 1993) algorithms, now an equal number of masking bits are also computed to signify whether any iris region is obscured by eyelids, contains any eyelash occlusions, specular reflections, boundary artifacts of hard contact lenses, or poor signal-to-noise ratio and thus should be ignored in the demodulation code as artifact. Figure 4: Illustration that even for poorly focused eye images, the bits of a demodulation phase sequence are still set, primarily by random CCD noise. This prevents poorly focused eye images from resembling each other in the pattern matching stage, in the way that (e.g.) poorly resolved face images look alike and can be confused with each other. Only phase information is used for recognizing irises because amplitude information is not very discriminating, and it depends upon extraneous factors such as imaging contrast, illumination, and camera gain. The Test Independence: of Statistical The key to iris recognition is the failure of a test of statistical independence, which involves so many degrees-offreedom that this test is virtually guaranteed to be passed whenever the phase codes for two different eyes are compared, but to be uniquely failed when any eye's phase code is compared with another version of itself. The test of statistical independence is implemented by the simple Boolean Exclusive-OR operator (XOR) applied to the 2,048 bit phase vectors that encode any two iris patterns, masked (AND'ed) by both of their corresponding mask bit vectors to prevent non-iris artifacts from influencing iris comparisons. The XOR operator N detects disagreement between any corresponding pair of bits, while the AND operator T ensures that the compared bits are both deemed to have been uncorrupted by eyelashes, eyelids, specular reflections, or other noise.
  • 9. Figure 4: Distribution of Hamming Distances from all 9.1 million possible comparisons between different pairs of irises in the database. The histogram forms a perfect binomial distribution solid curve. The data implies that it is extremely improbable for two different irises to disagree in less than about a third of their phase information. Informative searches are performed at a rate of about 100,000 irises per second. Network Security: Authenticam with PrivateID • • • Iris Scanning Services: Products and The iris recognition camera can be integrated into a variety of software applications to provide security for information and electronic commerce. Authenticam incorporates highresolution videoconference ability. It is estimated that the return on investment (ROI) can be realized in less than a year making this highly affordable. This innovation will allow companies to control access to computer workstations, networks, and sensitive corporate data, as well as positively identifying system users. Next-generation IrisPass: • • ATMs: Built by Japan’s OKI Electric Industry, IrisPass is currently integrating iris scanning in ATM machines in Asia and the US. IrisPass will eliminate the need for PINs to make identification of account ownership. This technology may also be used for in-bank teller stations for account verification. Issues to Consider • Other biometrics recognition systems include fingerprinting, palm prints, hand geometry, nail bed identification, facial recognition, and retinal scan.
  • 10. • • • Behavioral characteristics used for identification are signature dynamics, keyboard dynamics, and voice recognition. Iris and retina scans are the most accurate of all biometric techniques and, currently, the most costly. The entire biometrics market is projected to reach $10 billion by 2008. Speed: • • Iris recognition systems can cycle through 1,500,000 matches per minute, which is 20 times greater processing speed than any other biometrics systems. In real-life applications this translates into an identity decision being made in seconds. The enrollment process is also speedily accomplished, typically in three minutes or less. • • • • Costs: • Safety and Perceived Invasiveness: • • • Enrollment and use of an iris recognition system requires no contact, only cooperation of the user. The devices capture images of the eye from a comfortable distance without bright lights or lasers. The Iris Code is hashed and encrypted as a security measure to prevent theft. If a person feels their recognition patterns have been compromised, reenrollment is possible an infinite number of times by using a permuted Iris Code. Iris recognition because it looks at the exterior part of the eye, unlike retinal scans that look at vascular patterns inside the eye, is not invasive. Also, there is no possibility of gathering information such as medical conditions, a possibility with retinal scans. Both irises and retinas are stable throughout a lifetime, except in the case of degenerative diseases that may affect the retina. There is no need to remove glasses or contact lenses during identification. As long as they do not obscure the iris, recognition can be made through them. Iris recognition can be hampered by partially occluded or drooping eyelids. • • • • Iris scanning can increase profitability by minimizing both costs and vulnerabilities associated with password and password management. Research indicates US businesses spend an average of $200 per person a year on password management. The value proposition of implementing an iris recognition system is three-dimensional. Cost, accuracy, and ease of use are all important considerations. Recent advances in camera technology is bringing down the cost of iris recognition. Camera prices have gone down while processing ability has gone up. The size of the camera has decreased also. With a strategic
  • 11. • partnership with Panasonic, the costs have gone down significantly. Both iris scanning and retina scanning are at the upper end of the scale in cost compared to other biometric systems. Ease of Use: • • • • • Many of the users who have already encountered iris-scanning technology consider it a convenience rather than an intrusion, speeding the process of identity verification. Glasses or contact lens use does not affect it. Most eye surgeries do not change the iris. In the few, such as iridotomy and iridectomy, both associated with glaucoma, reenrollment may be necessary. These technologies can be integrated into existing business systems easing the installation requirements. In this instance, retina scanning has an advantage over iris scanning in that retina scanning utilizes a very compact template. Retina scanning requires 96 bytes while iris scanning uses 512 bytes. A greater number of templates can be stored in a standalone device if retina scanning is employed. Advantages: The iris of the eye has been described as the ideal part of the human body for biometric identification for several reasons: • It is an internal organ that is well protected against damage and wear by a highly transparent and sensitive membrane (the cornea). This distinguishes it from fingerprints, which can be difficult to recognize after years of certain types of manual labor. • The iris is mostly flat and its geometric configuration is only controlled by two complementary muscles (the sphincter pupillae and dilator pupillae), which control the diameter of the pupil. This makes the iris shape far more predictable than, for instance, that of the face. • The iris has a fine texture that – like fingerprints – is determined randomly during embryonic gestation. Even genetically identical individuals have completely independent iris textures, whereas DNA (genetic "fingerprinting") is not unique for the about 1.5% of the human population who have a genetically identical monozygotic twin. • An iris scan is similar to taking a photograph and can be performed from about 10 cm to a few meters away. There is no need for the person to be identified to touch any equipment that has recently been touched by a stranger, thereby eliminating an objection that has been raised in some cultures against finger-print scanners, where a finger has to touch a surface, or retinal scanning, where the eye can be
  • 12. • brought very close to a lens (like looking into a microscope lens). The only currently commercially deployed iris recognition algorithm, John Daugman's IrisCode, has an unprecedented false match rate (better than 10−11). Not a single false match has ever been reported for this algorithm, which has already been used to cross-compare more than 200 billion combinations of iris pairs as part of the immigration procedures in the United Arab Emirates. Disadvantages: • • • • Iris scanning is a relatively new technology and is incompatible with the very substantial investment that the law enforcement and immigration authorities of some countries have already made into fingerprint recognition. Iris recognition is very difficult to perform at a distance larger than a few meters and if the person to be identified is not cooperating by holding the head still and looking into the camera. As with other photographic biometric technologies, iris recognition is susceptible to poor image quality, with associated failure to enroll rates. As with other identification infrastructure (national residents databases, ID cards, etc.), civil rights activists have voiced concerns that iris-recognition technology might help governments to track individuals beyond their will. Security considerations: Like with most other biometric identification technology, a still not satisfactorily solved problem with iris recognition is the problem of "live tissue verification". The reliability of any biometric identification depends on ensuring that the signal acquired and compared has actually been recorded from a live body part of the person to be identified, and is not a manufactured template. Many commercially available iris recognition systems are easily fooled by presenting a high-quality photograph of a face instead of a real face, which makes such devices unsuitable for unsupervised applications, such as door access-control systems. The problem of live tissue verification is less of a concern in supervised applications (e.g., immigration control), where a human operator supervises the process of taking the picture.Methods that have been suggested to provide some defence against the use of fake eyes and irises include: • Changing ambient lighting during the identification (switching on a bright lamp), such that the pupillary reflex can be verified and the iris image be recorded at several different pupil diameters • Analysing the 2D spatial frequency spectrum of the iris image for the peaks caused by the printer dither patterns found on commercially available fakeiris contact lenses • Using spectral analysis instead of merely monochromatic cameras
  • 13. • • • • to distinguish iris tissue from other material Observing the characteristic natural movement of an eyeball (measuring nystagmus, tracking eye while text is read, etc.) Testing for retinal retroreflection (red-eye effect) Testing for reflections from the eye's four optical surfaces (front and back of both cornea and lens) to verify their presence, position and shape Using 3D imaging (e.g., stereo cameras) to verify the position and shape of the iris relative to other eye features . CONCLUSION Highly accurate, positive personal recognition is feasible today using the iris of the human eye. This unique and complex organ, which has more dimensions (Measures) of variation than any other biometric feature currently in use, remains stable throughout a lifetime and is readily available for sampling in a nonintrusive way. And has the speed required minimizing user frustration when accessing company systems. The process uses simple and non-threatening video technology to take images of the iris, digitize the features, and create a 512-byte code, which is then compared against an entire database in less than two seconds. Recognitions can then be used to control access and entry, to provide recognition information to an existing entry control system or for any other purpose where positive identification is needed. Recent testing, under U.S. Government controlled conditions, in three real-world environments, and in a variety of operational applications have proven the practicality and feasibility of the extremely accurate iris recognition for any function requiring positive recognition.