SlideShare a Scribd company logo
1 of 31
Download to read offline
Gas Chromatography-Mass Spectrometry
Liquid Chromatography-Mass Spectrometry
Contents :-
 GC-MS
Introduction
Principle
Instrumentation
Application
 LC-MS
Introduction
Principle
Instrumentation
Application
Introduction to Gas chromatography-Mass spectroscopy
Gas chromatography-Mass spectroscopy is one of the so-
called hyphenated analytical techniques. It is actually two
techniques that are combined to form a single method of
analyzing mixtures of chemicals
GC-MS is an instrumental technique, comprising a
gas chromatograph coupled to a mass spectrometer by
which complex mixtures of chemicals may be separated,
identified & quantified. In order to a compound to be
analysed by GC-MS it must be sufficiently volatile &
thermally stable.
Principle :-
The Sample solution is injected into the GC inlet where it is
vapourized & swept onto a chromatographic column by the carrier
gas ( usually helium). The sample flows through the column &
compounds comprising the mixture of interest are separated by
virtue of their relative interaction with the coating of the column
(stationery phase) & the carrier gas (mobile phase). The later part
of the column passes through a heated transfer line & ends at the
entrance to ion source where compounds eluting from the column
are converted to ions
Instrumentation :-
1 ] Carrier Gas :-
• It is served as a mobile phase supplied in the steel tank under high
pressure.
• At a pressure of 40-80 psi passes into flow controllers. which allows
the operator to adjust the flow rate.
• Usually nitrogen & helium are used.
• And occasionally hydrogen & argon used.
• It should be inert with respect to sample component.
2] Sample Injection Port :-
• It is small chamber slightly above to the column
• In this the sample is made to vapourize rapidly before entering to
column.
• Sample is introduced int flowing gas through a sealing rubber using
a microlitre syringe
3] Column :- Two Types of column Capillary Column & Packed
Column
 Capillary Column :-
• It consist of long capillary tubing 30-90M in length.
• It is made up from stainless steel & coil
• For fast analysis shorter column are applied.
• Large columns are required for high resolution seperation.
 Packed Column :-
• These columns, less commonly used today, have diameter of 1.6 to
9.5mm and a length of between 1–3m.
• Manufactured from steel or glass, the internal wall of the tube is
treated to avoid catalytic effects with the sample.
• They can withstand a carrier gas flow rate within the range 10–40
mL/min.
Jet Separator :-
• Two capillary tubes aligned with a small space between them. (1
mm)
• A vacuum is created between the two tubes using a rotary pump.
• The GC effluent enters the vacuum region, those molecules which
continue in the same direction enter the second capillary tube and
continue to the ion source.
• The carrier gas molecules are more easily diverted from the linear
path by collisions.
• The analyte molecules are much larger and carry more momentum.
• The surface of the separator must be inactive and a reasonably even
temperature
• The gas chromatograph utilizes a capillary column which
depends on the column’s dimension ( length, diameter, film
thickness ) as well as the phase properties.
• The difference in the chemical properties between molecules
in a mixture & their relative affinity for the stationery phase of
the column will promote separation of the molecules as the
sample travels the length of the column.
• The molecules take different amounts of time to come out of
(elute from) the gas chromatograph, and this allows the mass
spectrometer downstream to capture, ionize, accelerate,
deflect, and detect the ionized molecules separately.
• The mass spectrometer does this by breaking each molecule
into ionized fragments and detecting these fragments using
their mass to charge ratio.
Ionization :-
After the molecules travel the length of the column, pass
through the transfer line and enter into the mass
spectrometer they are ionized by various methods with
typically only one method being used at any given time. Once
the sample is fragmented it will then be detected, usually by
an electron multiplier diode, which essentially turns the
ionized mass fragment into an electrical signal that is then
detected.
1] Electron Ionization
2] Chemical Ionization
1] Electron Ionization :-
The molecules enter into the MS where they are
bombarded with free electrons emitted from a filament, not
unlike the filament one would find in a standard light bulb.
The electrons bombard the molecules, causing the molecule
to fragment in a characteristic and reproducible way.
2] Chemical Ionization :-
a reagent gas,typically methane or ammonia is
introduced into the mass spectrometer. Depending on the
technique (positive CI or negative CI) chosen, this reagent gas
will interact with the electrons and analyte and cause a 'soft'
ionization of the molecule of interest. A softer ionization
fragments the molecule to a lower degree..
Quadrupole Mass Analyser :-
• It consists of 4 voltage carrying rods.
• The ions are pass from one end to another end
• During this apply the radiofrequency and voltage complex
oscillations will takes place.
• Here the single positive charge ions shows the stable
oscillation and the remaining the shows the unstable
oscillations
• Mass scanning is carried out by varying each of the rf and
• voltage frequencies ratios keeping their ratios constant.
• Quadrupole ion storage (ion trap)
• It store the unsorted ions temporarily, they released to the
• detector by scanning the electric field.
Time of Flight Analyzer :-
In this type of analyzer the sorting of ions is done in
absence of magnetic field.
The ions produced are acquiring different velocities
depending on their masses
Here the particles reach the detector in the order of
the increasing order of their masses
Here electron multiplier detector is used. The
resolution power of this is 500-600
Ion Trap Analyzer :-
The ion trap mass analyser operates by similar principles where
it consists of circular ring electrode
Plus two end caps that form a chamber. Here AC or DC power along
RF potential is applied between the cups and the ring electrode.
There the ions entering into the chamber are trapped by
electromagnetic fields and they oscillates in concentric trajectories.
This process is called resonant ejection.
.
Applications :-
Environmental monitoring and cleanup -
GC-MS is becoming the tool of choice for tracking organic
pollutants in the environment.
Criminal forensics -
GC-MS can analyze the particles from a human body in order to
help link a criminal to a crime. GC-MS is increasingly used for
detection of illegal narcotics
Chemical engineering -
GC-MS is used for the analysis of unknown organic compound
mixtures. One critical use of this technology is the use of GC-MS
to determine the composition of bio-oils processed from raw
biomass.
• It is used in metabolite profiling, toxicity assessment or
toxclogy. e.g. a specific lesion inliver or kidney can be
prolifiled.
• Used in detection of lipophilic compounds in diverse plant
tissues.
• Analysis off biologically important aromatic amines.
• Identification of volatile components.
• For the determination of pyrethroid residues in vegetable
samples.
• Analysis of Pesticides in Foodstuffs.
Liquid Chromatography-Mass Spectroscopy :-
It is the combination of liquid chromatography and the mass
spectrometry.
In LC-MS we are removing the detector from the column of LC and
fitting the column to interface of MS.
Principle :-
The LC-MS technology involves use of an HPLC, wherein the
individual components in a mixture are first separated followed by
ionization and separation of the ions on the basis of their mass/charge
ratio. The separated ions are then directed to a photo or electron
multiplier tube detector, which identifies and quantifies each ion. The
ion source is an important component in any MS analysis, as this
basically aids in efficient generation of ions for analysis. To ionize
intact molecules, the ion source could be APCI (Atmospheric Pressure
Chemical Ionization), ESI (Electronspray Ionization), etc.
Column & Sample Preparation :-
The mobile phase is the solvent that moves the solute through out
column
Most widely used columns for LC-MS are:-
fast LC column. the use of short column. (15-50mm)
Micro LC column. the use of large column. ( 20-150mm)
• Sample preparation generally consists of concentrating the
analyte and removing compounds that can cause background ion
or suppress ionization.
Example of sample preparation include:-
1. On Column concentration - to increase analyte concentration.
2. Desalting – to reduce the sodium and potassium adduct formation
that commonly occurs in electro spray.
3. Filtration – to separate a low molecular-weight drug from proteins
in plasma, milk, or tissue.
Interfaces :-
It can connect the LC to MS
• It is difficult to interface a liquid chromatography
to a mass spectrometer cause of the necessity to
remove the solvent.
The commonly used interfaces are:-
1. Electrospray ionization (ESI)
2. Thermospray ionization (TSI)
3. Atmospheric pressure chemical ionization (APCI)
4. Atmospheric pressure photoionization(APPI)
Electro Spray Ionization (ESI) :-
• ESI draws sample solutions to the tip of a capillary tube,
where it applies a high voltage of about 3 to 5 kV.
• A nebulizer gas flows from outside the capillary to spray the
sample. This creates a fine mist of charged droplets with the
same polarity as the applied voltage.
• As these charged particles move, the solvent continues to
evaporate, thereby increasing the electric field on the droplet
surface. When the mutual repulsive force of the charges
exceeds the liquid surface tension, then fission occurs.
• As this evaporation and fission cycle is repeated, the droplets
eventually become small enough that the sample ions are
liberated into the gas phase
• ESI provides the softest ionization method available, which
means it can be used for highly polar, least volatile, or
thermally unstable compounds.
Atmospheric pressure chemical ionization (APCI)
• APCI vaporizes solvent and sample molecules by spraying the
sample solution into a heater (heated to about 400 C) using a
gas, such as N2.
• Solvent molecules are ionized by corona discharge to generate
stable reaction ions.
They are of 2 type:
a) Real-TSP ionization
b) Discharge electrode for external ionization and repeller
electrode
Thermospray ionization (TSI)
Atmospheric pressure photoionization(APPI) :-
The LC eluent is vaporized using a heater at atmospheric
pressure. The resulting gas is made to pass through a beam of
photons generated by a discharge lamp (UV lamp) which ionizes
the gas molecules.
Detectors :-
1] Photo graphic Plates
2] Faraday Cup
3] Electron multipliers
Photo graphic plates:
It is used as it is capable of higher resolution and speeder
than electronic devices. i.e. it can detect ions of all the masses
and provide a reverse geometry analyzer.
Faraday Cup
It is a metal cup into which all the ions are directed and the
signal produced is very stable and reproducible. It is used on
spectrometers where quantitative data is very important.
Electron multipliers
In this the current can be measured so accurately by just one ion
strikes the detector can be measured i.e. when an ion strikes the
surface of electron multiplier two electron are ejected. This
process continues until the end of electro multiplier end is
reached and electric current is analyzed and recorded with
electron multiplier surface.
Applications of LC-MS :-
• Molecular weight determination
• Determining the molecular weight of green fluorescent proteins
• Structural determination e.g. structural determination of
ginsenoside.
• Pharmaceutical Applications:
Rapid chromatography of benzodiazepines, Identification
of bile acid metabolite
• Biochemical Applications:
Rapid protein identification using capillaryLC/MS and
Database searching.
• Clinical Applications:
High-sensitivity detection of trimipramine and thioridazine
Reference :-
• G. C. Stafford et al.; International Journal of Mass
Spectrometry and Ion Processes
• Instrumental Methods of Analysis – By Gurdeep Chatwal
• Gas Chromatography Mass Spectroscopy (GC-MS)
(http://www.bris.ac.uk/nerclsmsf/techniques/gcms.html)
• www.enotes.com/topic/Liquid_chromatography-
mass_spectrometry
• www.impactanalytical.com/lc-ms-analysis.asp
• Wikipedia
Also available on Youtube!
Youtube :- https://youtube.com/vishalshelke99
Instagram :- https://instagram.com/vishal_stagram
31

More Related Content

What's hot

Supercritical fluid chromatography
Supercritical fluid chromatographySupercritical fluid chromatography
Supercritical fluid chromatographySagar Savale
 
uv -visible spectroscopy
uv -visible spectroscopyuv -visible spectroscopy
uv -visible spectroscopyyogitamandlik2
 
Hyphenated techniques(GC-MS/MS, LC-MS/MS, HPTLC-MS)
Hyphenated techniques(GC-MS/MS, LC-MS/MS,  HPTLC-MS)Hyphenated techniques(GC-MS/MS, LC-MS/MS,  HPTLC-MS)
Hyphenated techniques(GC-MS/MS, LC-MS/MS, HPTLC-MS)Dr. Dinesh Mehta
 
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)Suneal Saini
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatographyGirija Dandu
 
liquid chromatography - mass spectroscopy (LC-MS)
liquid chromatography - mass spectroscopy (LC-MS)liquid chromatography - mass spectroscopy (LC-MS)
liquid chromatography - mass spectroscopy (LC-MS)akbar siddiq
 
MASS SPECTROSCOPY & ITS INSTRUMENTATION
MASS SPECTROSCOPY & ITS INSTRUMENTATIONMASS SPECTROSCOPY & ITS INSTRUMENTATION
MASS SPECTROSCOPY & ITS INSTRUMENTATIONROHIT
 
Uv visible spectroscopy- madan
Uv visible spectroscopy- madanUv visible spectroscopy- madan
Uv visible spectroscopy- madanMadan Sigdel
 
Thin layer chromatography by khaleel S.G
Thin layer chromatography by khaleel S.GThin layer chromatography by khaleel S.G
Thin layer chromatography by khaleel S.GKhaleel Basha
 
Flame emission spectroscopy
Flame emission spectroscopyFlame emission spectroscopy
Flame emission spectroscopyMehulJain143
 
Infra red spectroscopy final
Infra red spectroscopy finalInfra red spectroscopy final
Infra red spectroscopy final7790904574
 
UV-Visible Spectroscopy
UV-Visible SpectroscopyUV-Visible Spectroscopy
UV-Visible SpectroscopySudha Reddy
 
GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]
GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]
GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]Shikha Popali
 
DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.
DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.
DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.Dr. Ravi Sankar
 

What's hot (20)

Detectors of HPLC
Detectors of HPLCDetectors of HPLC
Detectors of HPLC
 
Supercritical fluid chromatography
Supercritical fluid chromatographySupercritical fluid chromatography
Supercritical fluid chromatography
 
HPLC-COLUMNS
HPLC-COLUMNS HPLC-COLUMNS
HPLC-COLUMNS
 
uv -visible spectroscopy
uv -visible spectroscopyuv -visible spectroscopy
uv -visible spectroscopy
 
Hyphenated techniques(GC-MS/MS, LC-MS/MS, HPTLC-MS)
Hyphenated techniques(GC-MS/MS, LC-MS/MS,  HPTLC-MS)Hyphenated techniques(GC-MS/MS, LC-MS/MS,  HPTLC-MS)
Hyphenated techniques(GC-MS/MS, LC-MS/MS, HPTLC-MS)
 
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatography
 
liquid chromatography - mass spectroscopy (LC-MS)
liquid chromatography - mass spectroscopy (LC-MS)liquid chromatography - mass spectroscopy (LC-MS)
liquid chromatography - mass spectroscopy (LC-MS)
 
MASS SPECTROSCOPY & ITS INSTRUMENTATION
MASS SPECTROSCOPY & ITS INSTRUMENTATIONMASS SPECTROSCOPY & ITS INSTRUMENTATION
MASS SPECTROSCOPY & ITS INSTRUMENTATION
 
Interference In Atomic Absorption Spectroscopy.
Interference In Atomic Absorption Spectroscopy.Interference In Atomic Absorption Spectroscopy.
Interference In Atomic Absorption Spectroscopy.
 
Uv visible spectroscopy- madan
Uv visible spectroscopy- madanUv visible spectroscopy- madan
Uv visible spectroscopy- madan
 
Thin layer chromatography by khaleel S.G
Thin layer chromatography by khaleel S.GThin layer chromatography by khaleel S.G
Thin layer chromatography by khaleel S.G
 
Flame emission spectroscopy
Flame emission spectroscopyFlame emission spectroscopy
Flame emission spectroscopy
 
Infra red spectroscopy final
Infra red spectroscopy finalInfra red spectroscopy final
Infra red spectroscopy final
 
UV-Visible Spectroscopy
UV-Visible SpectroscopyUV-Visible Spectroscopy
UV-Visible Spectroscopy
 
Van deemter equation
Van deemter equationVan deemter equation
Van deemter equation
 
GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]
GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]
GAS CHROMATOGRAPHY-MASS SPECTROSCOPY [GC-MS]
 
Prep hplc 1
Prep hplc 1Prep hplc 1
Prep hplc 1
 
DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.
DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.
DETECTORS USED IN GAS CHROMATOGRAPHY AND HPLC BY P.RAVISANKAR.
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 

Similar to gcms lcms-ppt.pdf

Gas chromatography mass spectrometry
Gas chromatography mass spectrometryGas chromatography mass spectrometry
Gas chromatography mass spectrometryBhagya Siripalli
 
Liquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKAR
Liquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKARLiquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKAR
Liquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKARDr. Ravi Sankar
 
Gas chromatography-Mass spectrometry (GC-MS)
Gas chromatography-Mass spectrometry (GC-MS)Gas chromatography-Mass spectrometry (GC-MS)
Gas chromatography-Mass spectrometry (GC-MS)Saira Fatima
 
Protein mass spectrometry data analysis.
Protein mass spectrometry data analysis.Protein mass spectrometry data analysis.
Protein mass spectrometry data analysis.NahidRehman
 
Mass Spectrometry in chemistry and basic sciences.pptx
Mass Spectrometry in chemistry and basic sciences.pptxMass Spectrometry in chemistry and basic sciences.pptx
Mass Spectrometry in chemistry and basic sciences.pptxJohamSarfrazAli1
 
LC-MS in bioactivity screening and proteomics
LC-MS in bioactivity screening and proteomicsLC-MS in bioactivity screening and proteomics
LC-MS in bioactivity screening and proteomicsDr. M.G.R. University
 
GC-MS, amp, lcms
GC-MS, amp, lcmsGC-MS, amp, lcms
GC-MS, amp, lcmsDr. Samia
 
Mass.pptx instrumentation, principle, theory
Mass.pptx instrumentation, principle, theoryMass.pptx instrumentation, principle, theory
Mass.pptx instrumentation, principle, theoryDr. Vijaya Barge
 
Gas Chromatography and Mass Spectroscopy
Gas Chromatography and Mass SpectroscopyGas Chromatography and Mass Spectroscopy
Gas Chromatography and Mass SpectroscopyRAJAT GOEL
 
LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]
LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]
LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]Shikha Popali
 
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)Yogesh Mhadgut
 
Mass Ionization Techniques
Mass Ionization TechniquesMass Ionization Techniques
Mass Ionization TechniquesMehulJain143
 

Similar to gcms lcms-ppt.pdf (20)

GCMS & LCMS
GCMS & LCMSGCMS & LCMS
GCMS & LCMS
 
Gas chromatography mass spectrometry
Gas chromatography mass spectrometryGas chromatography mass spectrometry
Gas chromatography mass spectrometry
 
Lc ms
Lc msLc ms
Lc ms
 
LC-MS
LC-MSLC-MS
LC-MS
 
LC MS
LC MSLC MS
LC MS
 
Liquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKAR
Liquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKARLiquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKAR
Liquid chromatography–mass spectrometry (LC-MS) BY P. RAVISANKAR
 
GC MASS SPECTROMETERY
GC MASS SPECTROMETERYGC MASS SPECTROMETERY
GC MASS SPECTROMETERY
 
Gas chromatography-Mass spectrometry (GC-MS)
Gas chromatography-Mass spectrometry (GC-MS)Gas chromatography-Mass spectrometry (GC-MS)
Gas chromatography-Mass spectrometry (GC-MS)
 
LC-MS
LC-MSLC-MS
LC-MS
 
Protein mass spectrometry data analysis.
Protein mass spectrometry data analysis.Protein mass spectrometry data analysis.
Protein mass spectrometry data analysis.
 
Mass Spectrometry in chemistry and basic sciences.pptx
Mass Spectrometry in chemistry and basic sciences.pptxMass Spectrometry in chemistry and basic sciences.pptx
Mass Spectrometry in chemistry and basic sciences.pptx
 
LC-MS in bioactivity screening and proteomics
LC-MS in bioactivity screening and proteomicsLC-MS in bioactivity screening and proteomics
LC-MS in bioactivity screening and proteomics
 
LCMS
LCMS LCMS
LCMS
 
GC-MS, amp, lcms
GC-MS, amp, lcmsGC-MS, amp, lcms
GC-MS, amp, lcms
 
Mass.pptx instrumentation, principle, theory
Mass.pptx instrumentation, principle, theoryMass.pptx instrumentation, principle, theory
Mass.pptx instrumentation, principle, theory
 
Gas Chromatography and Mass Spectroscopy
Gas Chromatography and Mass SpectroscopyGas Chromatography and Mass Spectroscopy
Gas Chromatography and Mass Spectroscopy
 
LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]
LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]
LIQUID CHROMATOGRAPHY- MASS SPECTROSCOPY[LC-MS]
 
LC-MS
LC-MSLC-MS
LC-MS
 
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY(LC/MS)
 
Mass Ionization Techniques
Mass Ionization TechniquesMass Ionization Techniques
Mass Ionization Techniques
 

Recently uploaded

GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 

gcms lcms-ppt.pdf

  • 1. Gas Chromatography-Mass Spectrometry Liquid Chromatography-Mass Spectrometry
  • 2. Contents :-  GC-MS Introduction Principle Instrumentation Application  LC-MS Introduction Principle Instrumentation Application
  • 3. Introduction to Gas chromatography-Mass spectroscopy Gas chromatography-Mass spectroscopy is one of the so- called hyphenated analytical techniques. It is actually two techniques that are combined to form a single method of analyzing mixtures of chemicals GC-MS is an instrumental technique, comprising a gas chromatograph coupled to a mass spectrometer by which complex mixtures of chemicals may be separated, identified & quantified. In order to a compound to be analysed by GC-MS it must be sufficiently volatile & thermally stable.
  • 4. Principle :- The Sample solution is injected into the GC inlet where it is vapourized & swept onto a chromatographic column by the carrier gas ( usually helium). The sample flows through the column & compounds comprising the mixture of interest are separated by virtue of their relative interaction with the coating of the column (stationery phase) & the carrier gas (mobile phase). The later part of the column passes through a heated transfer line & ends at the entrance to ion source where compounds eluting from the column are converted to ions
  • 6. 1 ] Carrier Gas :- • It is served as a mobile phase supplied in the steel tank under high pressure. • At a pressure of 40-80 psi passes into flow controllers. which allows the operator to adjust the flow rate. • Usually nitrogen & helium are used. • And occasionally hydrogen & argon used. • It should be inert with respect to sample component. 2] Sample Injection Port :- • It is small chamber slightly above to the column • In this the sample is made to vapourize rapidly before entering to column. • Sample is introduced int flowing gas through a sealing rubber using a microlitre syringe
  • 7. 3] Column :- Two Types of column Capillary Column & Packed Column  Capillary Column :- • It consist of long capillary tubing 30-90M in length. • It is made up from stainless steel & coil • For fast analysis shorter column are applied. • Large columns are required for high resolution seperation.  Packed Column :- • These columns, less commonly used today, have diameter of 1.6 to 9.5mm and a length of between 1–3m. • Manufactured from steel or glass, the internal wall of the tube is treated to avoid catalytic effects with the sample. • They can withstand a carrier gas flow rate within the range 10–40 mL/min.
  • 8. Jet Separator :- • Two capillary tubes aligned with a small space between them. (1 mm) • A vacuum is created between the two tubes using a rotary pump. • The GC effluent enters the vacuum region, those molecules which continue in the same direction enter the second capillary tube and continue to the ion source. • The carrier gas molecules are more easily diverted from the linear path by collisions. • The analyte molecules are much larger and carry more momentum. • The surface of the separator must be inactive and a reasonably even temperature
  • 9. • The gas chromatograph utilizes a capillary column which depends on the column’s dimension ( length, diameter, film thickness ) as well as the phase properties. • The difference in the chemical properties between molecules in a mixture & their relative affinity for the stationery phase of the column will promote separation of the molecules as the sample travels the length of the column. • The molecules take different amounts of time to come out of (elute from) the gas chromatograph, and this allows the mass spectrometer downstream to capture, ionize, accelerate, deflect, and detect the ionized molecules separately. • The mass spectrometer does this by breaking each molecule into ionized fragments and detecting these fragments using their mass to charge ratio.
  • 10. Ionization :- After the molecules travel the length of the column, pass through the transfer line and enter into the mass spectrometer they are ionized by various methods with typically only one method being used at any given time. Once the sample is fragmented it will then be detected, usually by an electron multiplier diode, which essentially turns the ionized mass fragment into an electrical signal that is then detected. 1] Electron Ionization 2] Chemical Ionization
  • 11. 1] Electron Ionization :- The molecules enter into the MS where they are bombarded with free electrons emitted from a filament, not unlike the filament one would find in a standard light bulb. The electrons bombard the molecules, causing the molecule to fragment in a characteristic and reproducible way. 2] Chemical Ionization :- a reagent gas,typically methane or ammonia is introduced into the mass spectrometer. Depending on the technique (positive CI or negative CI) chosen, this reagent gas will interact with the electrons and analyte and cause a 'soft' ionization of the molecule of interest. A softer ionization fragments the molecule to a lower degree..
  • 13. • It consists of 4 voltage carrying rods. • The ions are pass from one end to another end • During this apply the radiofrequency and voltage complex oscillations will takes place. • Here the single positive charge ions shows the stable oscillation and the remaining the shows the unstable oscillations • Mass scanning is carried out by varying each of the rf and • voltage frequencies ratios keeping their ratios constant. • Quadrupole ion storage (ion trap) • It store the unsorted ions temporarily, they released to the • detector by scanning the electric field.
  • 14. Time of Flight Analyzer :- In this type of analyzer the sorting of ions is done in absence of magnetic field. The ions produced are acquiring different velocities depending on their masses Here the particles reach the detector in the order of the increasing order of their masses Here electron multiplier detector is used. The resolution power of this is 500-600
  • 15. Ion Trap Analyzer :- The ion trap mass analyser operates by similar principles where it consists of circular ring electrode Plus two end caps that form a chamber. Here AC or DC power along RF potential is applied between the cups and the ring electrode. There the ions entering into the chamber are trapped by electromagnetic fields and they oscillates in concentric trajectories. This process is called resonant ejection. .
  • 16. Applications :- Environmental monitoring and cleanup - GC-MS is becoming the tool of choice for tracking organic pollutants in the environment. Criminal forensics - GC-MS can analyze the particles from a human body in order to help link a criminal to a crime. GC-MS is increasingly used for detection of illegal narcotics Chemical engineering - GC-MS is used for the analysis of unknown organic compound mixtures. One critical use of this technology is the use of GC-MS to determine the composition of bio-oils processed from raw biomass.
  • 17. • It is used in metabolite profiling, toxicity assessment or toxclogy. e.g. a specific lesion inliver or kidney can be prolifiled. • Used in detection of lipophilic compounds in diverse plant tissues. • Analysis off biologically important aromatic amines. • Identification of volatile components. • For the determination of pyrethroid residues in vegetable samples. • Analysis of Pesticides in Foodstuffs.
  • 18. Liquid Chromatography-Mass Spectroscopy :- It is the combination of liquid chromatography and the mass spectrometry. In LC-MS we are removing the detector from the column of LC and fitting the column to interface of MS. Principle :-
  • 19. The LC-MS technology involves use of an HPLC, wherein the individual components in a mixture are first separated followed by ionization and separation of the ions on the basis of their mass/charge ratio. The separated ions are then directed to a photo or electron multiplier tube detector, which identifies and quantifies each ion. The ion source is an important component in any MS analysis, as this basically aids in efficient generation of ions for analysis. To ionize intact molecules, the ion source could be APCI (Atmospheric Pressure Chemical Ionization), ESI (Electronspray Ionization), etc.
  • 20. Column & Sample Preparation :- The mobile phase is the solvent that moves the solute through out column Most widely used columns for LC-MS are:- fast LC column. the use of short column. (15-50mm) Micro LC column. the use of large column. ( 20-150mm) • Sample preparation generally consists of concentrating the analyte and removing compounds that can cause background ion or suppress ionization. Example of sample preparation include:- 1. On Column concentration - to increase analyte concentration. 2. Desalting – to reduce the sodium and potassium adduct formation that commonly occurs in electro spray. 3. Filtration – to separate a low molecular-weight drug from proteins in plasma, milk, or tissue.
  • 21. Interfaces :- It can connect the LC to MS • It is difficult to interface a liquid chromatography to a mass spectrometer cause of the necessity to remove the solvent. The commonly used interfaces are:- 1. Electrospray ionization (ESI) 2. Thermospray ionization (TSI) 3. Atmospheric pressure chemical ionization (APCI) 4. Atmospheric pressure photoionization(APPI)
  • 22. Electro Spray Ionization (ESI) :- • ESI draws sample solutions to the tip of a capillary tube, where it applies a high voltage of about 3 to 5 kV. • A nebulizer gas flows from outside the capillary to spray the sample. This creates a fine mist of charged droplets with the same polarity as the applied voltage. • As these charged particles move, the solvent continues to evaporate, thereby increasing the electric field on the droplet surface. When the mutual repulsive force of the charges exceeds the liquid surface tension, then fission occurs. • As this evaporation and fission cycle is repeated, the droplets eventually become small enough that the sample ions are liberated into the gas phase • ESI provides the softest ionization method available, which means it can be used for highly polar, least volatile, or thermally unstable compounds.
  • 23. Atmospheric pressure chemical ionization (APCI) • APCI vaporizes solvent and sample molecules by spraying the sample solution into a heater (heated to about 400 C) using a gas, such as N2. • Solvent molecules are ionized by corona discharge to generate stable reaction ions.
  • 24. They are of 2 type: a) Real-TSP ionization b) Discharge electrode for external ionization and repeller electrode Thermospray ionization (TSI)
  • 25. Atmospheric pressure photoionization(APPI) :- The LC eluent is vaporized using a heater at atmospheric pressure. The resulting gas is made to pass through a beam of photons generated by a discharge lamp (UV lamp) which ionizes the gas molecules.
  • 26. Detectors :- 1] Photo graphic Plates 2] Faraday Cup 3] Electron multipliers Photo graphic plates: It is used as it is capable of higher resolution and speeder than electronic devices. i.e. it can detect ions of all the masses and provide a reverse geometry analyzer.
  • 27. Faraday Cup It is a metal cup into which all the ions are directed and the signal produced is very stable and reproducible. It is used on spectrometers where quantitative data is very important. Electron multipliers In this the current can be measured so accurately by just one ion strikes the detector can be measured i.e. when an ion strikes the surface of electron multiplier two electron are ejected. This process continues until the end of electro multiplier end is reached and electric current is analyzed and recorded with electron multiplier surface.
  • 28. Applications of LC-MS :- • Molecular weight determination • Determining the molecular weight of green fluorescent proteins • Structural determination e.g. structural determination of ginsenoside. • Pharmaceutical Applications: Rapid chromatography of benzodiazepines, Identification of bile acid metabolite • Biochemical Applications: Rapid protein identification using capillaryLC/MS and Database searching. • Clinical Applications: High-sensitivity detection of trimipramine and thioridazine
  • 29. Reference :- • G. C. Stafford et al.; International Journal of Mass Spectrometry and Ion Processes • Instrumental Methods of Analysis – By Gurdeep Chatwal • Gas Chromatography Mass Spectroscopy (GC-MS) (http://www.bris.ac.uk/nerclsmsf/techniques/gcms.html) • www.enotes.com/topic/Liquid_chromatography- mass_spectrometry • www.impactanalytical.com/lc-ms-analysis.asp • Wikipedia
  • 30. Also available on Youtube! Youtube :- https://youtube.com/vishalshelke99 Instagram :- https://instagram.com/vishal_stagram
  • 31. 31