SlideShare a Scribd company logo
1 of 31
Atmospheric Correction of Remote Sensing Data
Global vs Regional perspective , Application potential …
Dr. Rama Rao Nidamanuri
Department of Earth and Space Sciences
Indian Institute of Space Science and Technology
Thiruvananthapuram – kerala
rao@iist.ac.in
Remote sensing image analyses
Atmospheric correction : Radiative transfer process
1 Amount of irradiance reaching the terrain
as a function of the atmospheric
transmittance
2 Spectral diffuse sky irradiance
Radiation after scattering (Rayleigh, Mie,
and/or nonselective) and absorption and
reemission
3
Radiation reflected or scattered by nearby
terrain into the IFOV of the sensor system
4
Energy that was also reflected from
nearby terrain into the atmosphere, but
then scattered or reflected onto
the study area
5
Source : Jensen, J. R. (2009). Remote sensing of the environment: An
earth resource perspective 2/e. Pearson Education India.
Atmospheric correction : Approaches
Empirical based
οƒ˜ Flat fielding
οƒ˜ Quick atmospheric correction
(QUAC)
οƒ˜ Empirical line methods
Physics / Radiative Transfer
Model based
Works well on small geographic regions
Fails on large area/ time – space series data
οƒ˜ MODTRAN based (e.g. FLAASH, ATCOR, etc.)
οƒ˜ Second simulation of the satellite signal
in the solar spectrum (2S ----- 6S)
οƒ˜ Discrete Ordinates Radiative Transfer
Program for a Multi-Layered Plane-
Parallel Medium (DISORT)
Accurate! ,,,But computationally and financially
expensive
Geometrical conditions
Computation of apparent
Reflection
Ground Reflectance
Atmospheric condition
Spectral Bands
Interpolation of scattering
atmospheric Function
Integration over the
Spectral Band
Atmospheric Correction if
requested
Computation of BRDF
Atmosphere Coupling
Aerosol Model(Type)
Computation of
Atmospheric functions
Solar Spectral Irradiance
Aerosol Concentration
Output
Environmental Reflectance
Computation of Gaseous
Absorption Function
Internal view of RT based atmospheric correction
Geometric correction module
Atmospheric condition module
Aerosol model selection module
Aerosol model selection: user’s input
Fact from literature: Local Vs Global Aerosol Optical Depth
Aerosol Optical Depth Variation during Summer (2008 & 2014) Carbon Monoxide mixing ratio averaged for (a) May of 2000-2007 and (b)
2000-2007
S. N. Palve et al 2016 IOP Conf. Ser.: Earth Environ. Sci. 37 012076
Literature example: Influence of region sensitive aerosol models
Continental - Aeronet Urban - Aeronet
Maritime - Aeronet GEOS-Chem -
Aeronet
Relative difference at 550 nm between the surface reflectance values obtained from the CHRIS@CRI atmospheric
correction algorithm and those obtained with AERONET data, used as a reference.
Tirelli, C., Curci, G., Manzo, C., Tuccella, P. and Bassani, C., 2015. Effect of the aerosol model assumption on the atmospheric
correction over land: Case studies with CHRIS/PROBA hyperspectral images over Benelux. Remote Sensing, 7(7), pp.8391-8415.
Model research gap : Region-sensitive atmospheric parameters
5 10 15 20 25
0
5
10
15
20
Column
Water
Vapor
(g/m3)
Altitude (Km)
Standard Profile
Regional Model (JAN)
Regional Model (MAY)
Regional Model (DEC)
5 10 15 20 25 30 35 40 45 50
200
250
300
Temperature
(Kelvin)
Altitude (Km)
Standard Profile
Regional Model (JAN)
Regional Model (MAY)
Regional Model (DEC)
Standard Tropical Atmospheric Profile Vs Indian Humid Sub-Tropical Profile
Region sensitive atmospheric correction model : Method
Transmittance
from ground to
sensor
Transmittance
from sun to
ground
Spherical Albedo
Path reflectance
Input Radiance Image
Visibility
Estimate
Water Vapour
Estimate
Radiative Transfer
Inversion Equation
Geometry
Condition
Atmospheric
Model
Aerosol
Model
Flight and
Target
Altitude
Output Reflectance Image
Sensor Spectral
Response
Function
View Zenith Angle
Atmospheric
Model
Aerosol Model
Water Vapour
Aerosol Optical
Thickness
Altitude of the
flight
Altitude of the
target
Solar Zenith Angle
View Azimuth
Angle
Solar Azimuth
Angle
Input Parameters
for the LUT
Neighbourhood
Parameter
Matching
&
N-D
Interpolation
Input Variables
Flexible Atmospheric Compensation Technique (FACT): Computational Design
Parameters Range Interval Values
Aerosol Model 6S standard models
Atmospheric Model 6S standard models
View Zenith Angle 0-600 150 0,15…..60
Solar Zenith Angle 0-750 150 0,15…..75
View Azimuth Angle 0-3600 800 0,80…..360
Solar Azimuth Angle 0-3600 800 0,80…..360
AOT 0-0.7 - 0.03,0.12,0.2,0.3,0.4,0.7
Water Vapour 0-5 (g/cm2
) - 0,0.4,0.8,1.2,1.6,2,3.5,5
Altitude of the Flight(for
Airborne sensors) 0-6 Km - 1,3,6
Altitude of Target 0-7 Km - 0,1,2,4
𝝆𝒂𝒄 =
π’š
𝟏 + 𝒙𝒄 Γ— π’š
𝑦 = π‘₯π‘Ž Γ— 𝐿𝑇𝑂𝐴 βˆ’ π‘₯𝑏
π‘₯π‘Ž =
πœ‹
𝑇𝑔𝑻 πœ½π’” 𝑻 πœ½π’— πœ‡π‘ πΈπ‘ 
π‘₯𝑏 =
𝝆𝒂
𝑇 πœƒπ‘  𝑇 πœƒπ‘£
𝒙𝒄 = 𝒔
Radiative Transfer Inverse Modeling
Climatic Zones Used for
Atmospheric Profile Preparation
Indian-Wet Dry Tropical : Gorakhpur Indian Arid : Jodhpur Indian Tropical Wet and Dry : Chennai
FACT : Regionalization of atmospheric parameters
FACT : Results and validation – Hyperspectral sensor
0.00 0.02 0.04 0.06 0.08 0.10
0
5000
10000
15000
0.00 0.02 0.04 0.06 0.08
0
10000
20000
30000
Pixel
count
Mean absolute error (0-1)
FLAASH Vs FACT
FLAASH Vs NASA JPL
NASA JPL Vs FACT
Pixel
count
Root mean square error (0-1)
FLAASH Vs FACT
FLAASH Vs NASA JPL
NASA JPL Vs FACT
RMSE of 0.0563 for
99.9% of total pixel:
FACT and FLAASH
Results of atmospheric correction of AVIRIS-NG imagery: (a) – (c) False Colour Composites of the corrected imagery from the
proposed FACT, FLAASH and NASA JPL’s atmospheric correction scheme respectively; (d) – (f) Root Mean Square Error (RMSE) image
between the proposed FACT-FLAASH, FLAASH-NASA JPL’s and FACT-NASA JPL’s scheme respectively
(a) (b) (c)
(d) (e) (f)
(f)
FACT : results and validation – multispectral sensor
0.00 0.01 0.02 0.03
0
100000
200000
300000
Pixel
count
Mean absolute error (0-1)
0.00 0.01 0.02 0.03
0
100000
200000
300000
400000
Pixel
count
Root mean square error (0-1)
Results of atmospheric correction of WorldView-3 imagery: (a) False Colour
Composites of the corrected imagery from the proposed FACT, (b) Mean Absolute
error (c) and Root Mean Square Error image between the proposed FACT and
FLAASH atmospheric correction method
The RMSE histogram for the
WorldView-3 imagery
calculated between
atmospherically corrected
image by FLAASH and the
proposed FACT
500 1000 1500 2000 2500
0.00
0.05
0.10
0.15
0.20
500 1000 1500 2000 2500
0.00
0.01
0.02
0.03
0.04
0.05
500 1000 1500 2000 2500
0.00
0.01
0.02
0.03
0.04
0.05
400 600 800 1000
0.00
0.01
0.02
0.03
0.04
0.05
Band
RMSE
(range
0
to
1)
Wavelength (nm)
FLAASH Vs FACT
FLAASH Vs NASA JPL
NASA JPL Vs FACT
Band
RMSE
(range
0
to
1)
Wavelength (nm)
Band
RMSE
(range
0
to
1)
Wavelength (nm)
Band
RMSE
(range
0
to
1)
Wavelength (nm)
(a) (b)
(c) (d)
FACT : results and validation – spectral measure
A spectral analysis (band wise RMSE calculation) for the imagery data of (a) AVIRIS-NG (b) Hyperion (c) LANDSAT-8
OLI and (d) WorldView-3 corrected by the FLAASH, the NASA JPL’s and the proposed FACT correction method in case
of AVIRIS-NG and by the FLAASH and the proposed FACT in other three cases.
𝑋𝑖 βˆ’ π‘Œπ‘–
2+ . . . + π‘‹π‘˜ βˆ’ π‘Œπ‘˜
2
k
𝑿 = FACT’s estimated reflectance cube
𝒀 = Reference reflectance Cube
k = Total number of bands
FACT 2.0 : Summary
 Development of open-source atmospheric correction method FACT was
successfully carried out
 Spectral analysis shows marginal disagreements between FACT and other
atmospheric correction methods in water absorption region
 Spectral conformity of about 95% for hyperspectral imaging sensors and
about 98% for multispectral imaging sensors in comparison to other
atmospherically corrected imagery is achieved
 Overall performance of FACT is found to be within 3-5% error margin,
which is considered satisfactory
Simulation and modelling of hyperspectral target detection
under varying atmospheric state variables
Example applications of atmospheric influences
Design and conduct experimental studies of the role played by
atmospheric state variables such as atmospheric profile (function
of columnar temp, pressure, ozone and water vapour), aerosol
composition (function of particle size and density), on target
detection performance
Literature example: Impact of atmospheric correction models on image classification
ICOR
DOS
TOA
S2AC
Ground Truth
Satellite Imagery
Rumora, L., Miler, M. and Medak, D., 2020. Impact of Various Atmospheric Corrections on
Sentinel-2 Land Cover Classification Accuracy Using Machine Learning
Classifiers. ISPRS International Journal of Geo-Information, 9(4), p.277.
Engineered material target detection (TD) via multi-platform remote
sensing setup – conceptualization
Multi-platform TD : Target positioning
AVIRIS-NG HSI
Black and Yellow
nylon sheet targets
Red, Green and White
colour nylon sheet
targets
Ground
Truth Map
Yellow Nylon
sheet (N3Y)
Black Nylon
sheet (N4B)
Red Nylon
sheet (N2R)
Green nylon
sheet (N1G)
White Cotton
sheet (C1W)
Research Gap: Atmospheric effect on target detection
480
720
960
1200
1440
1680
1920
2160
2400
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Wavelength (nm)
Reflectance
(%)
4
8
0
7
2
0
9
6
0
1
2
0
0
1
4
4
0
1
6
8
0
1
9
2
0
2
1
6
0
2
4
0
0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reflectance
(%)
Wavelength (nm)
4
8
0
7
2
0
9
6
0
1
2
0
0
1
4
4
0
1
6
8
0
1
9
2
0
2
1
6
0
2
4
0
0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reflectance
(%)
Wavelength (nm)
Black Lib
Black_IS
5
7
0
7
6
0
9
5
0
1
1
4
0
1
3
3
0
1
5
2
0
1
7
1
0
1
9
0
0
2
0
9
0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reflectance
(%)
Wavelength (nm)
Red Lib
Red IS
5
7
0
7
6
0
9
5
0
1
1
4
0
1
3
3
0
1
5
2
0
1
7
1
0
1
9
0
0
2
0
9
0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reflectance
(%)
Wavelength (nm)
White Lib
White IS
5
7
0
7
6
0
9
5
0
1
1
4
0
1
3
3
0
1
5
2
0
1
7
1
0
1
9
0
0
2
0
9
0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reflectance
(%)
Wavelength (nm)
Black Lib
Black_IS
7
2
0
9
6
0
1
2
0
0
1
4
4
0
1
6
8
0
1
9
2
0
2
1
6
0
2
4
0
0
Wavelength (nm)
7
2
0
9
6
0
1
2
0
0
1
4
4
0
1
6
8
0
1
9
2
0
2
1
6
0
2
4
0
0
Wavelength (nm)
Ground
Image
Red Nylon White Cotton
Red Nylon White Cotton
Black Nylon
Black Nylon
AVIRIS-NG
SENTINEL-2
Target detection dependence on radiative transfer process
πœŒπ‘‘π‘œπ‘Ž
πœ†
πœƒπ‘ , πœƒπ‘£, πœ‘, 𝑃, πœ“πœ†, π‘ˆπ»2𝑂, π‘ˆπ‘‚3
= 𝑇𝑔𝑂𝐺
πœ† (π‘š, 𝑃)𝑇𝑔𝑂3
πœ† (π‘š, π‘ˆπ‘‚3
) πœŒπ‘Ž
πœ† πœƒπ‘ , πœƒπ‘£, πœ‘, 𝑃, πœ“πœ†, π‘ˆπ»2𝑂
𝑃 : Pressure ; πœ“πœ†
: Aerosol components; π‘ˆπ»2𝑂, π‘ˆπ‘‚3
: Columnar water vapour and ozone layer; πœƒπ‘ , πœƒπ‘£, πœ‘ : geometrical view
and azimuth angles ; 𝑇𝑔𝑂𝐺
πœ† : Gaseous transmittance; π‘‡π‘Ÿπ‘Ž
πœ† : Atmospheric Transmittance; π‘†π‘Ž
πœ† : Spherical albedo; πœŒπ‘  : Surface
reflectance ; πœŒπ‘‘π‘œπ‘Ž
πœ†
: Top of the atmospheric reflectance; π‘­πŸŽ : Exoatmospheric solar irradiance; 𝝁𝟎: cosine of solar zenith
angle
𝝆𝒕𝒐𝒂
βˆ—
=
𝝅 𝑳𝒐𝒃𝒔
ππŸŽπ‘­πŸŽ
𝑳𝑻𝑢𝑨 =
ππŸŽπ‘­πŸŽπ†π’”
βˆ—
𝝅
Inverse RTM Modeling Forward RTM Modeling
Target detection : Non-ideal reference vs real-time imagery
In-situ Reflectance Spectra of Targets
At Sensor Radiance
(Airborne/Space-borne Imagery)
π‘Ήπ’…πŸ π‘Ήπ’…πŸ π‘Ήπ’…πŸ‘
π‘Ήπ’…πŸ’
π‘Ήπ’…πŸ“ π‘Ήπ’…π’βˆ’πŸ π‘Ήπ’…π’βˆ’πŸ
𝑹𝒅𝒏
Detection Performance
Validation & Analysis
Radiance Spectral
Library
Forward Modelling
π‘½πŸ π‘½πŸ π‘½π’βˆ’πŸ 𝑽𝒏
Atmospheric
Processor
Atmospheric variables
Detection Algorithms
Atmospheric processor : Target spectra simulation design
Atmospheric processor : Example target spectra
1000 2000
0
50
100
150
Radiance
(W/m^2/sr/um)
Wavelength (nm)
GT_Radiance
Altitude-2km
Altitude-3km
Altitude-4km
Altitude-5km
1000 2000
0
50
100
150
Radiance
(W/m^2/sr/um)
Wavelength (nm)
GT_Radiance
WV-0.5
WV-1.5
WV-2.5
WV-4.5
1000 2000
0
50
100
150
Radiance
(W/m^2/sr/um)
Wavelength (nm)
GT_Radiance
AOT- 0.5
AOT- 1.5
AOT- 2.5
AOT- 3.5
1000 2000
0
50
100
150
Radiance
(W/m^2/sr/um)
Wavelength (nm)
GT_Radiance
Continental
Maritime
NoAerosols
Urban
Results : Impact of varying aerosol optical thickness (AOT)
0 1 2 3 4 5
0.000
0.036
0.072
0.108
0.144
P
FA
(@P
D
=75%)
Aerosol Optical Thickness (AOT)
0.0192
0.0240
0.0288
0.0336
0.0384
0.0001
0.0002
0.0003
0.0004
0.0005
0 1 2 3 4 5
0.370
0.444
0.518
0.592
0.666
P
FA
(@P
D
=75%)
Aerosol Optical Thickness (AOT)
0.072
0.078
0.084
0.090
0.096
0.000
0.056
0.112
0.168
0.224
0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
Aerosol Optical Thickness (AOT)
0.0128
0.0192
0.0256
0.0320
0.0384
P
FA
(@P
D
=75%)
0.0
0.2
0.4
0.6
0.8
1.0
0 1 2 3 4 5
0.684
0.722
0.760
0.798
0.836
P
FA
(@P
D
=75%)
Aerosol Optical Thickness (AOT)
0.00124
0.00186
0.00248
0.00310
0.00372
0.000
0.048
0.096
0.144
0.192
0 1 2 3 4 5
0.34
0.36
0.38
0.40
0.42
P
FA
(@P
D
=75%)
Aerosol Optical Thickness (AOT)
0.002
0.004
0.006
0.008
0.010
0.00
0.02
0.04
0.06
ACE
MF
CEM
N1G N2R
C1W N3Y
N4B
Results : Impact of atmospheric and aerosol models (N1G)
N-Aero. Cont. Mar. Urb. Des.
0.000
0.021
0.042
0.063
0.084
0.105
0.126
0.147
N-Aero. Cont. Mar. Urb. Des.
0.000
0.023
0.046
0.069
0.092
0.115
0.138
0.161
N-Aero. Cont. Mar. Urb. Des.
0.000
0.094
0.188
0.282
0.376
0.470
0.564
0.658
N-Aero. Cont. Mar. Urb. Des.
0.0000
0.0038
0.0076
0.0114
0.0152
0.0190
0.0228
0.0266
N-Aero. Cont. Mar. Urb. Des.
0.0000
0.0038
0.0076
0.0114
0.0152
0.0190
0.0228
0.0266
N-Aero. Cont. Mar. Urb. Des.
0.0000
0.0071
0.0142
0.0213
0.0284
0.0355
0.0426
0.0497
N-Aero. Cont. Mar. Urb. Des.
1.40x10-4
1.43x10-4
1.46x10-4
1.48x10-4
1.51x10-4
1.54x10-4
1.57x10-4
1.60x10-4
N-Aero. Cont. Mar. Urb. Des.
1.39x10-4
1.43x10-4
1.47x10-4
1.51x10-4
1.55x10-4
1.60x10-4
1.64x10-4
1.68x10-4
N-Aero. Cont. Mar. Urb. Des.
1.58x10-4
2.37x10-4
3.16x10-4
3.95x10-4
4.74x10-4
5.53x10-4
6.32x10-4
7.11x10-4
P
FA
(@P
D
=75%)
P
FA
(@P
D
=75%)
P
FA
(@P
D
=75%)
Aerosol Model Aerosol Model Aerosol Model
AOT=0.48
AOT=0.89
AOT=4.94
ACE CEM MF
Tropical
MidLatitude Summer
MidLatitude Winter
Subartic Summer
Subartic Winter
US62
Atmospheric Profiles
Aerosol Models
N-Aero : No Aerosol
Cont : Continental
Mar : Maritime
Urb: Urban
Des : Desert
Conclusions : Ramifications of mismatch of atmospheric state
variables on target detectability
 Visibility (AOT)
βˆ’ Substantial variation in detectability by different algorithms
βˆ’ Different detectability from material to material
βˆ’ Effect of AOT is profound after certain threshold, such as
after AOT=2.5
 Aerosol and atmospheric models
βˆ’ Inherent randomness in performance
βˆ’ Performance heavily penalized for the wrong choice of
atmospheric model when compared to a mismatch of
aerosol model

More Related Content

Similar to Atmospheric Correction of Remote Sensing Data_RamaRao.pptx

Typical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plantsTypical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plantsIrSOLaV Pomares
Β 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Ahmed Ammar Rebai PhD
Β 
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptxBarber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptxgrssieee
Β 
TU3.T10.1.pptx
TU3.T10.1.pptxTU3.T10.1.pptx
TU3.T10.1.pptxgrssieee
Β 
TU3.T10_1.pptx
TU3.T10_1.pptxTU3.T10_1.pptx
TU3.T10_1.pptxgrssieee
Β 
TU3.T10_1.pptx
TU3.T10_1.pptxTU3.T10_1.pptx
TU3.T10_1.pptxgrssieee
Β 
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...gerogepatton
Β 
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...ijaia
Β 
Integral field spectroscopy
Integral field spectroscopyIntegral field spectroscopy
Integral field spectroscopyFernando Reche
Β 
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...debasishagri
Β 
Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...
Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...
Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...gerogepatton
Β 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Ahmed Ammar Rebai PhD
Β 
IGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.pptIGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.pptgrssieee
Β 
Modelling and remote sensing of land surface
Modelling and remote sensing of land surfaceModelling and remote sensing of land surface
Modelling and remote sensing of land surfacemehmet şahin
Β 
Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses
 Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses  Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses
Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses BREEZE Software
Β 
RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)Carlos Pinto
Β 
INS/GPS Integrated Navigation Technology for Hypersonic UAV
INS/GPS Integrated Navigation Technology for Hypersonic UAVINS/GPS Integrated Navigation Technology for Hypersonic UAV
INS/GPS Integrated Navigation Technology for Hypersonic UAVNooria Sukmaningtyas
Β 
Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...Ramesh Dhungel
Β 

Similar to Atmospheric Correction of Remote Sensing Data_RamaRao.pptx (20)

Typical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plantsTypical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plants
Β 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...
Β 
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptxBarber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
Β 
TU3.T10.1.pptx
TU3.T10.1.pptxTU3.T10.1.pptx
TU3.T10.1.pptx
Β 
TU3.T10_1.pptx
TU3.T10_1.pptxTU3.T10_1.pptx
TU3.T10_1.pptx
Β 
TU3.T10_1.pptx
TU3.T10_1.pptxTU3.T10_1.pptx
TU3.T10_1.pptx
Β 
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
Β 
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
MODELING THE CHLOROPHYLL-A FROM SEA SURFACE REFLECTANCE IN WEST AFRICA BY DEE...
Β 
Integral field spectroscopy
Integral field spectroscopyIntegral field spectroscopy
Integral field spectroscopy
Β 
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
Β 
Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...
Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...
Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Dee...
Β 
Poster_jayson_v3
Poster_jayson_v3Poster_jayson_v3
Poster_jayson_v3
Β 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...
Β 
IGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.pptIGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.ppt
Β 
Modelling and remote sensing of land surface
Modelling and remote sensing of land surfaceModelling and remote sensing of land surface
Modelling and remote sensing of land surface
Β 
Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses
 Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses  Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses
Practices and Challenges in Applying Mesoscale Data to Air Quality Analyses
Β 
RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)
Β 
INS/GPS Integrated Navigation Technology for Hypersonic UAV
INS/GPS Integrated Navigation Technology for Hypersonic UAVINS/GPS Integrated Navigation Technology for Hypersonic UAV
INS/GPS Integrated Navigation Technology for Hypersonic UAV
Β 
DRONES IN HYDROLOGY
DRONES IN HYDROLOGYDRONES IN HYDROLOGY
DRONES IN HYDROLOGY
Β 
Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...
Β 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
Β 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
Β 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
Β 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
Β 
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)dollysharma2066
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
Β 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
Β 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 

Recently uploaded (20)

Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
Β 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Β 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
Β 
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Serviceyoung call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
Β 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Β 
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 β‰Ό Call Girls In Shastri Nagar (Delhi)
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
Β 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Β 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 

Atmospheric Correction of Remote Sensing Data_RamaRao.pptx

  • 1. Atmospheric Correction of Remote Sensing Data Global vs Regional perspective , Application potential … Dr. Rama Rao Nidamanuri Department of Earth and Space Sciences Indian Institute of Space Science and Technology Thiruvananthapuram – kerala rao@iist.ac.in
  • 3. Atmospheric correction : Radiative transfer process 1 Amount of irradiance reaching the terrain as a function of the atmospheric transmittance 2 Spectral diffuse sky irradiance Radiation after scattering (Rayleigh, Mie, and/or nonselective) and absorption and reemission 3 Radiation reflected or scattered by nearby terrain into the IFOV of the sensor system 4 Energy that was also reflected from nearby terrain into the atmosphere, but then scattered or reflected onto the study area 5 Source : Jensen, J. R. (2009). Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India.
  • 4. Atmospheric correction : Approaches Empirical based οƒ˜ Flat fielding οƒ˜ Quick atmospheric correction (QUAC) οƒ˜ Empirical line methods Physics / Radiative Transfer Model based Works well on small geographic regions Fails on large area/ time – space series data οƒ˜ MODTRAN based (e.g. FLAASH, ATCOR, etc.) οƒ˜ Second simulation of the satellite signal in the solar spectrum (2S ----- 6S) οƒ˜ Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane- Parallel Medium (DISORT) Accurate! ,,,But computationally and financially expensive
  • 5. Geometrical conditions Computation of apparent Reflection Ground Reflectance Atmospheric condition Spectral Bands Interpolation of scattering atmospheric Function Integration over the Spectral Band Atmospheric Correction if requested Computation of BRDF Atmosphere Coupling Aerosol Model(Type) Computation of Atmospheric functions Solar Spectral Irradiance Aerosol Concentration Output Environmental Reflectance Computation of Gaseous Absorption Function Internal view of RT based atmospheric correction
  • 9. Aerosol model selection: user’s input
  • 10. Fact from literature: Local Vs Global Aerosol Optical Depth Aerosol Optical Depth Variation during Summer (2008 & 2014) Carbon Monoxide mixing ratio averaged for (a) May of 2000-2007 and (b) 2000-2007 S. N. Palve et al 2016 IOP Conf. Ser.: Earth Environ. Sci. 37 012076
  • 11. Literature example: Influence of region sensitive aerosol models Continental - Aeronet Urban - Aeronet Maritime - Aeronet GEOS-Chem - Aeronet Relative difference at 550 nm between the surface reflectance values obtained from the CHRIS@CRI atmospheric correction algorithm and those obtained with AERONET data, used as a reference. Tirelli, C., Curci, G., Manzo, C., Tuccella, P. and Bassani, C., 2015. Effect of the aerosol model assumption on the atmospheric correction over land: Case studies with CHRIS/PROBA hyperspectral images over Benelux. Remote Sensing, 7(7), pp.8391-8415.
  • 12. Model research gap : Region-sensitive atmospheric parameters 5 10 15 20 25 0 5 10 15 20 Column Water Vapor (g/m3) Altitude (Km) Standard Profile Regional Model (JAN) Regional Model (MAY) Regional Model (DEC) 5 10 15 20 25 30 35 40 45 50 200 250 300 Temperature (Kelvin) Altitude (Km) Standard Profile Regional Model (JAN) Regional Model (MAY) Regional Model (DEC) Standard Tropical Atmospheric Profile Vs Indian Humid Sub-Tropical Profile
  • 13. Region sensitive atmospheric correction model : Method Transmittance from ground to sensor Transmittance from sun to ground Spherical Albedo Path reflectance Input Radiance Image Visibility Estimate Water Vapour Estimate Radiative Transfer Inversion Equation Geometry Condition Atmospheric Model Aerosol Model Flight and Target Altitude Output Reflectance Image Sensor Spectral Response Function View Zenith Angle Atmospheric Model Aerosol Model Water Vapour Aerosol Optical Thickness Altitude of the flight Altitude of the target Solar Zenith Angle View Azimuth Angle Solar Azimuth Angle Input Parameters for the LUT Neighbourhood Parameter Matching & N-D Interpolation Input Variables
  • 14. Flexible Atmospheric Compensation Technique (FACT): Computational Design Parameters Range Interval Values Aerosol Model 6S standard models Atmospheric Model 6S standard models View Zenith Angle 0-600 150 0,15…..60 Solar Zenith Angle 0-750 150 0,15…..75 View Azimuth Angle 0-3600 800 0,80…..360 Solar Azimuth Angle 0-3600 800 0,80…..360 AOT 0-0.7 - 0.03,0.12,0.2,0.3,0.4,0.7 Water Vapour 0-5 (g/cm2 ) - 0,0.4,0.8,1.2,1.6,2,3.5,5 Altitude of the Flight(for Airborne sensors) 0-6 Km - 1,3,6 Altitude of Target 0-7 Km - 0,1,2,4 𝝆𝒂𝒄 = π’š 𝟏 + 𝒙𝒄 Γ— π’š 𝑦 = π‘₯π‘Ž Γ— 𝐿𝑇𝑂𝐴 βˆ’ π‘₯𝑏 π‘₯π‘Ž = πœ‹ 𝑇𝑔𝑻 πœ½π’” 𝑻 πœ½π’— πœ‡π‘ πΈπ‘  π‘₯𝑏 = 𝝆𝒂 𝑇 πœƒπ‘  𝑇 πœƒπ‘£ 𝒙𝒄 = 𝒔 Radiative Transfer Inverse Modeling
  • 15. Climatic Zones Used for Atmospheric Profile Preparation Indian-Wet Dry Tropical : Gorakhpur Indian Arid : Jodhpur Indian Tropical Wet and Dry : Chennai FACT : Regionalization of atmospheric parameters
  • 16. FACT : Results and validation – Hyperspectral sensor 0.00 0.02 0.04 0.06 0.08 0.10 0 5000 10000 15000 0.00 0.02 0.04 0.06 0.08 0 10000 20000 30000 Pixel count Mean absolute error (0-1) FLAASH Vs FACT FLAASH Vs NASA JPL NASA JPL Vs FACT Pixel count Root mean square error (0-1) FLAASH Vs FACT FLAASH Vs NASA JPL NASA JPL Vs FACT RMSE of 0.0563 for 99.9% of total pixel: FACT and FLAASH Results of atmospheric correction of AVIRIS-NG imagery: (a) – (c) False Colour Composites of the corrected imagery from the proposed FACT, FLAASH and NASA JPL’s atmospheric correction scheme respectively; (d) – (f) Root Mean Square Error (RMSE) image between the proposed FACT-FLAASH, FLAASH-NASA JPL’s and FACT-NASA JPL’s scheme respectively (a) (b) (c) (d) (e) (f) (f)
  • 17. FACT : results and validation – multispectral sensor 0.00 0.01 0.02 0.03 0 100000 200000 300000 Pixel count Mean absolute error (0-1) 0.00 0.01 0.02 0.03 0 100000 200000 300000 400000 Pixel count Root mean square error (0-1) Results of atmospheric correction of WorldView-3 imagery: (a) False Colour Composites of the corrected imagery from the proposed FACT, (b) Mean Absolute error (c) and Root Mean Square Error image between the proposed FACT and FLAASH atmospheric correction method The RMSE histogram for the WorldView-3 imagery calculated between atmospherically corrected image by FLAASH and the proposed FACT
  • 18. 500 1000 1500 2000 2500 0.00 0.05 0.10 0.15 0.20 500 1000 1500 2000 2500 0.00 0.01 0.02 0.03 0.04 0.05 500 1000 1500 2000 2500 0.00 0.01 0.02 0.03 0.04 0.05 400 600 800 1000 0.00 0.01 0.02 0.03 0.04 0.05 Band RMSE (range 0 to 1) Wavelength (nm) FLAASH Vs FACT FLAASH Vs NASA JPL NASA JPL Vs FACT Band RMSE (range 0 to 1) Wavelength (nm) Band RMSE (range 0 to 1) Wavelength (nm) Band RMSE (range 0 to 1) Wavelength (nm) (a) (b) (c) (d) FACT : results and validation – spectral measure A spectral analysis (band wise RMSE calculation) for the imagery data of (a) AVIRIS-NG (b) Hyperion (c) LANDSAT-8 OLI and (d) WorldView-3 corrected by the FLAASH, the NASA JPL’s and the proposed FACT correction method in case of AVIRIS-NG and by the FLAASH and the proposed FACT in other three cases. 𝑋𝑖 βˆ’ π‘Œπ‘– 2+ . . . + π‘‹π‘˜ βˆ’ π‘Œπ‘˜ 2 k 𝑿 = FACT’s estimated reflectance cube 𝒀 = Reference reflectance Cube k = Total number of bands
  • 19. FACT 2.0 : Summary  Development of open-source atmospheric correction method FACT was successfully carried out  Spectral analysis shows marginal disagreements between FACT and other atmospheric correction methods in water absorption region  Spectral conformity of about 95% for hyperspectral imaging sensors and about 98% for multispectral imaging sensors in comparison to other atmospherically corrected imagery is achieved  Overall performance of FACT is found to be within 3-5% error margin, which is considered satisfactory
  • 20. Simulation and modelling of hyperspectral target detection under varying atmospheric state variables Example applications of atmospheric influences Design and conduct experimental studies of the role played by atmospheric state variables such as atmospheric profile (function of columnar temp, pressure, ozone and water vapour), aerosol composition (function of particle size and density), on target detection performance
  • 21. Literature example: Impact of atmospheric correction models on image classification ICOR DOS TOA S2AC Ground Truth Satellite Imagery Rumora, L., Miler, M. and Medak, D., 2020. Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers. ISPRS International Journal of Geo-Information, 9(4), p.277.
  • 22. Engineered material target detection (TD) via multi-platform remote sensing setup – conceptualization
  • 23. Multi-platform TD : Target positioning AVIRIS-NG HSI Black and Yellow nylon sheet targets Red, Green and White colour nylon sheet targets Ground Truth Map Yellow Nylon sheet (N3Y) Black Nylon sheet (N4B) Red Nylon sheet (N2R) Green nylon sheet (N1G) White Cotton sheet (C1W)
  • 24. Research Gap: Atmospheric effect on target detection 480 720 960 1200 1440 1680 1920 2160 2400 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Wavelength (nm) Reflectance (%) 4 8 0 7 2 0 9 6 0 1 2 0 0 1 4 4 0 1 6 8 0 1 9 2 0 2 1 6 0 2 4 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Reflectance (%) Wavelength (nm) 4 8 0 7 2 0 9 6 0 1 2 0 0 1 4 4 0 1 6 8 0 1 9 2 0 2 1 6 0 2 4 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Reflectance (%) Wavelength (nm) Black Lib Black_IS 5 7 0 7 6 0 9 5 0 1 1 4 0 1 3 3 0 1 5 2 0 1 7 1 0 1 9 0 0 2 0 9 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Reflectance (%) Wavelength (nm) Red Lib Red IS 5 7 0 7 6 0 9 5 0 1 1 4 0 1 3 3 0 1 5 2 0 1 7 1 0 1 9 0 0 2 0 9 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Reflectance (%) Wavelength (nm) White Lib White IS 5 7 0 7 6 0 9 5 0 1 1 4 0 1 3 3 0 1 5 2 0 1 7 1 0 1 9 0 0 2 0 9 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Reflectance (%) Wavelength (nm) Black Lib Black_IS 7 2 0 9 6 0 1 2 0 0 1 4 4 0 1 6 8 0 1 9 2 0 2 1 6 0 2 4 0 0 Wavelength (nm) 7 2 0 9 6 0 1 2 0 0 1 4 4 0 1 6 8 0 1 9 2 0 2 1 6 0 2 4 0 0 Wavelength (nm) Ground Image Red Nylon White Cotton Red Nylon White Cotton Black Nylon Black Nylon AVIRIS-NG SENTINEL-2
  • 25. Target detection dependence on radiative transfer process πœŒπ‘‘π‘œπ‘Ž πœ† πœƒπ‘ , πœƒπ‘£, πœ‘, 𝑃, πœ“πœ†, π‘ˆπ»2𝑂, π‘ˆπ‘‚3 = 𝑇𝑔𝑂𝐺 πœ† (π‘š, 𝑃)𝑇𝑔𝑂3 πœ† (π‘š, π‘ˆπ‘‚3 ) πœŒπ‘Ž πœ† πœƒπ‘ , πœƒπ‘£, πœ‘, 𝑃, πœ“πœ†, π‘ˆπ»2𝑂 𝑃 : Pressure ; πœ“πœ† : Aerosol components; π‘ˆπ»2𝑂, π‘ˆπ‘‚3 : Columnar water vapour and ozone layer; πœƒπ‘ , πœƒπ‘£, πœ‘ : geometrical view and azimuth angles ; 𝑇𝑔𝑂𝐺 πœ† : Gaseous transmittance; π‘‡π‘Ÿπ‘Ž πœ† : Atmospheric Transmittance; π‘†π‘Ž πœ† : Spherical albedo; πœŒπ‘  : Surface reflectance ; πœŒπ‘‘π‘œπ‘Ž πœ† : Top of the atmospheric reflectance; π‘­πŸŽ : Exoatmospheric solar irradiance; 𝝁𝟎: cosine of solar zenith angle 𝝆𝒕𝒐𝒂 βˆ— = 𝝅 𝑳𝒐𝒃𝒔 ππŸŽπ‘­πŸŽ 𝑳𝑻𝑢𝑨 = ππŸŽπ‘­πŸŽπ†π’” βˆ— 𝝅 Inverse RTM Modeling Forward RTM Modeling
  • 26. Target detection : Non-ideal reference vs real-time imagery In-situ Reflectance Spectra of Targets At Sensor Radiance (Airborne/Space-borne Imagery) π‘Ήπ’…πŸ π‘Ήπ’…πŸ π‘Ήπ’…πŸ‘ π‘Ήπ’…πŸ’ π‘Ήπ’…πŸ“ π‘Ήπ’…π’βˆ’πŸ π‘Ήπ’…π’βˆ’πŸ 𝑹𝒅𝒏 Detection Performance Validation & Analysis Radiance Spectral Library Forward Modelling π‘½πŸ π‘½πŸ π‘½π’βˆ’πŸ 𝑽𝒏 Atmospheric Processor Atmospheric variables Detection Algorithms
  • 27. Atmospheric processor : Target spectra simulation design
  • 28. Atmospheric processor : Example target spectra 1000 2000 0 50 100 150 Radiance (W/m^2/sr/um) Wavelength (nm) GT_Radiance Altitude-2km Altitude-3km Altitude-4km Altitude-5km 1000 2000 0 50 100 150 Radiance (W/m^2/sr/um) Wavelength (nm) GT_Radiance WV-0.5 WV-1.5 WV-2.5 WV-4.5 1000 2000 0 50 100 150 Radiance (W/m^2/sr/um) Wavelength (nm) GT_Radiance AOT- 0.5 AOT- 1.5 AOT- 2.5 AOT- 3.5 1000 2000 0 50 100 150 Radiance (W/m^2/sr/um) Wavelength (nm) GT_Radiance Continental Maritime NoAerosols Urban
  • 29. Results : Impact of varying aerosol optical thickness (AOT) 0 1 2 3 4 5 0.000 0.036 0.072 0.108 0.144 P FA (@P D =75%) Aerosol Optical Thickness (AOT) 0.0192 0.0240 0.0288 0.0336 0.0384 0.0001 0.0002 0.0003 0.0004 0.0005 0 1 2 3 4 5 0.370 0.444 0.518 0.592 0.666 P FA (@P D =75%) Aerosol Optical Thickness (AOT) 0.072 0.078 0.084 0.090 0.096 0.000 0.056 0.112 0.168 0.224 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 Aerosol Optical Thickness (AOT) 0.0128 0.0192 0.0256 0.0320 0.0384 P FA (@P D =75%) 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 0.684 0.722 0.760 0.798 0.836 P FA (@P D =75%) Aerosol Optical Thickness (AOT) 0.00124 0.00186 0.00248 0.00310 0.00372 0.000 0.048 0.096 0.144 0.192 0 1 2 3 4 5 0.34 0.36 0.38 0.40 0.42 P FA (@P D =75%) Aerosol Optical Thickness (AOT) 0.002 0.004 0.006 0.008 0.010 0.00 0.02 0.04 0.06 ACE MF CEM N1G N2R C1W N3Y N4B
  • 30. Results : Impact of atmospheric and aerosol models (N1G) N-Aero. Cont. Mar. Urb. Des. 0.000 0.021 0.042 0.063 0.084 0.105 0.126 0.147 N-Aero. Cont. Mar. Urb. Des. 0.000 0.023 0.046 0.069 0.092 0.115 0.138 0.161 N-Aero. Cont. Mar. Urb. Des. 0.000 0.094 0.188 0.282 0.376 0.470 0.564 0.658 N-Aero. Cont. Mar. Urb. Des. 0.0000 0.0038 0.0076 0.0114 0.0152 0.0190 0.0228 0.0266 N-Aero. Cont. Mar. Urb. Des. 0.0000 0.0038 0.0076 0.0114 0.0152 0.0190 0.0228 0.0266 N-Aero. Cont. Mar. Urb. Des. 0.0000 0.0071 0.0142 0.0213 0.0284 0.0355 0.0426 0.0497 N-Aero. Cont. Mar. Urb. Des. 1.40x10-4 1.43x10-4 1.46x10-4 1.48x10-4 1.51x10-4 1.54x10-4 1.57x10-4 1.60x10-4 N-Aero. Cont. Mar. Urb. Des. 1.39x10-4 1.43x10-4 1.47x10-4 1.51x10-4 1.55x10-4 1.60x10-4 1.64x10-4 1.68x10-4 N-Aero. Cont. Mar. Urb. Des. 1.58x10-4 2.37x10-4 3.16x10-4 3.95x10-4 4.74x10-4 5.53x10-4 6.32x10-4 7.11x10-4 P FA (@P D =75%) P FA (@P D =75%) P FA (@P D =75%) Aerosol Model Aerosol Model Aerosol Model AOT=0.48 AOT=0.89 AOT=4.94 ACE CEM MF Tropical MidLatitude Summer MidLatitude Winter Subartic Summer Subartic Winter US62 Atmospheric Profiles Aerosol Models N-Aero : No Aerosol Cont : Continental Mar : Maritime Urb: Urban Des : Desert
  • 31. Conclusions : Ramifications of mismatch of atmospheric state variables on target detectability  Visibility (AOT) βˆ’ Substantial variation in detectability by different algorithms βˆ’ Different detectability from material to material βˆ’ Effect of AOT is profound after certain threshold, such as after AOT=2.5  Aerosol and atmospheric models βˆ’ Inherent randomness in performance βˆ’ Performance heavily penalized for the wrong choice of atmospheric model when compared to a mismatch of aerosol model