SlideShare a Scribd company logo
1 of 17
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 1
Chapter 5
 Understanding Requirements
Slide Set to accompany
Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman
Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman
For non-profit educational use only
May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.
All copyright information MUST appear if these slides are posted on a website for student
use.
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 2
Requirements Engineering-I
 Inception—ask a set of questions that establish …
 basic understanding of the problem
 the people who want a solution
 the nature of the solution that is desired, and
 the effectiveness of preliminary communication and collaboration
between the customer and the developer
 Elicitation—elicit requirements from all stakeholders
 Elaboration—create an analysis model that identifies data,
function and behavioral requirements
 Negotiation—agree on a deliverable system that is realistic for
developers and customers
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 3
Requirements Engineering-II
 Specification—can be any one (or more) of the following:
 A written document
 A set of models
 A formal mathematical
 A collection of user scenarios (use-cases)
 A prototype
 Validation—a review mechanism that looks for
 errors in content or interpretation
 areas where clarification may be required
 missing information
 inconsistencies (a major problem when large products or systems
are engineered)
 conflicting or unrealistic (unachievable) requirements.
 Requirements management
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 4
Inception
 Identify stakeholders
 “who else do you think I should talk to?”
 Recognize multiple points of view
 Work toward collaboration
 The first questions
 Who is behind the request for this work?
 Who will use the solution?
 What will be the economic benefit of a successful
solution
 Is there another source for the solution that you
need?
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5
Eliciting Requirements
 meetings are conducted and attended by both software
engineers and customers
 rules for preparation and participation are established
 an agenda is suggested
 a "facilitator" (can be a customer, a developer, or an outsider)
controls the meeting
 a "definition mechanism" (can be work sheets, flip charts, or wall
stickers or an electronic bulletin board, chat room or virtual
forum) is used
 the goal is
 to identify the problem
 propose elements of the solution
 negotiate different approaches, and
 specify a preliminary set of solution requirements
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 6
Eliciting Requirements
Use QFD to
prioritize
requirements
informally
prioritize
requirements
form al prioritization?
Create Use-cases
yes no
Elic it requirem ent s
write scenario
define actors
complete tem plate
draw use-case
diagram
Conduct FAST
m eetings
Make lists of
functions, classes
Make lists of
constraints, etc.
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 7
Quality Function Deployment
 Function deployment determines the “value”
(as perceived by the customer) of each
function required of the system
 Information deployment identifies data objects
and events
 Task deployment examines the behavior of the
system
 Value analysis determines the relative priority
of requirements
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8
Elicitation Work Products
 a statement of need and feasibility.
 a bounded statement of scope for the system or product.
 a list of customers, users, and other stakeholders who
participated in requirements elicitation
 a description of the system’s technical environment.
 a list of requirements (preferably organized by function)
and the domain constraints that apply to each.
 a set of usage scenarios that provide insight into the use of
the system or product under different operating conditions.
 any prototypes developed to better define requirements.
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 9
Building the Analysis Model
 Elements of the analysis model
 Scenario-based elements
• Functional—processing narratives for software functions
• Use-case—descriptions of the interaction between an
“actor” and the system
 Class-based elements
• Implied by scenarios
 Behavioral elements
• State diagram
 Flow-oriented elements
• Data flow diagram
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 10
Use-Cases
 A collection of user scenarios that describe the thread of usage of a
system
 Each scenario is described from the point-of-view of an “actor”—a
person or device that interacts with the software in some way
 Each scenario answers the following questions:
 Who is the primary actor, the secondary actor (s)?
 What are the actor’s goals?
 What preconditions should exist before the story begins?
 What main tasks or functions are performed by the actor?
 What extensions might be considered as the story is described?
 What variations in the actor’s interaction are possible?
 What system information will the actor acquire, produce, or change?
 Will the actor have to inform the system about changes in the external
environment?
 What information does the actor desire from the system?
 Does the actor wish to be informed about unexpected changes?
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11
Use-Case Diagram
homeowner
Arms/ disarms
system
Accesses system
via Internet
Reconfigures sensors
and related
system features
Responds to
alarm event
Encounters an
error condition
system
administrator
sensors
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12
Class Diagram
Sensor
name/id
type
location
area
characteristics
identify()
enable()
disable()
reconfigure ()
From the SafeHome system …
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 13
State Diagram
Reading
Commands
System status = “ready”
Display msg = “enter cmd”
Display status = steady
Entry/subsystems ready
Do: poll user input panel
Do: read user input
Do: interpret user input
State name
State variables
State activities
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 14
Analysis Patterns
Pattern name: A descriptor that captures the essence of the pattern.
Intent: Describes what the pattern accomplishes or represents
Motivation: A scenario that illustrates how the pattern can be used to address the
problem.
Forces and context: A description of external issues (forces) that can affect how
the pattern is used and also the external issues that will be resolved when the
pattern is applied.
Solution: A description of how the pattern is applied to solve the problem with an
emphasis on structural and behavioral issues.
Consequences: Addresses what happens when the pattern is applied and what
trade-offs exist during its application.
Design: Discusses how the analysis pattern can be achieved through the use of
known design patterns.
Known uses: Examples of uses within actual systems.
Related patterns: On e or more analysis patterns that are related to the named
pattern because (1) it is commonly used with the named pattern; (2) it is structurally
similar to the named pattern; (3) it is a variation of the named pattern.
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 15
Negotiating Requirements
 Identify the key stakeholders
 These are the people who will be involved in the
negotiation
 Determine each of the stakeholders “win
conditions”
 Win conditions are not always obvious
 Negotiate
 Work toward a set of requirements that lead to “win-
win”
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 16
Validating Requirements - I
 Is each requirement consistent with the overall objective for the
system/product?
 Have all requirements been specified at the proper level of
abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?
 Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the
system?
 Is each requirement bounded and unambiguous?
 Does each requirement have attribution? That is, is a source
(generally, a specific individual) noted for each requirement?
 Do any requirements conflict with other requirements?
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17
Validating Requirements - II
 Is each requirement achievable in the technical environment
that will house the system or product?
 Is each requirement testable, once implemented?
 Does the requirements model properly reflect the information,
function and behavior of the system to be built.
 Has the requirements model been “partitioned” in a way that
exposes progressively more detailed information about the
system.
 Have requirements patterns been used to simplify the
requirements model. Have all patterns been properly
validated? Are all patterns consistent with customer
requirements?

More Related Content

What's hot

estimation-for-software-projects-chapter-26-ppt.pptx
estimation-for-software-projects-chapter-26-ppt.pptxestimation-for-software-projects-chapter-26-ppt.pptx
estimation-for-software-projects-chapter-26-ppt.pptxubaidullah75790
 
Chapter 03
Chapter 03Chapter 03
Chapter 03ppp mmm
 
Unit iii(part b - architectural design)
Unit   iii(part b - architectural design)Unit   iii(part b - architectural design)
Unit iii(part b - architectural design)BALAJI A
 
Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...Drusilla918
 
Chapter 08
Chapter 08Chapter 08
Chapter 08guru3188
 
Process models
Process modelsProcess models
Process modelsStudent
 
Chapter 01 software engineering pressman
Chapter 01  software engineering pressmanChapter 01  software engineering pressman
Chapter 01 software engineering pressmanRohitGoyal183
 
Software engineering rogers pressman chapter 7
Software engineering rogers pressman chapter 7Software engineering rogers pressman chapter 7
Software engineering rogers pressman chapter 7mohammad hossein Jalili
 
Software Testing Strategies
Software Testing StrategiesSoftware Testing Strategies
Software Testing StrategiesNayyabMirTahir
 
Pressman ch-1-software
Pressman ch-1-softwarePressman ch-1-software
Pressman ch-1-softwareAlenaDion
 
Pressman ch-22-process-and-project-metrics
Pressman ch-22-process-and-project-metricsPressman ch-22-process-and-project-metrics
Pressman ch-22-process-and-project-metricsSeema Kamble
 
Lecture4 requirement engineering
Lecture4 requirement engineeringLecture4 requirement engineering
Lecture4 requirement engineeringShahid Riaz
 
Engineering Software Products: 1. software products
Engineering Software Products: 1. software productsEngineering Software Products: 1. software products
Engineering Software Products: 1. software productssoftware-engineering-book
 
Software Project Organisation
Software Project OrganisationSoftware Project Organisation
Software Project OrganisationSavaş Şakar
 

What's hot (20)

estimation-for-software-projects-chapter-26-ppt.pptx
estimation-for-software-projects-chapter-26-ppt.pptxestimation-for-software-projects-chapter-26-ppt.pptx
estimation-for-software-projects-chapter-26-ppt.pptx
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
 
Unit iii(part b - architectural design)
Unit   iii(part b - architectural design)Unit   iii(part b - architectural design)
Unit iii(part b - architectural design)
 
ch3.pptx
ch3.pptxch3.pptx
ch3.pptx
 
Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...Software engineering a practitioners approach 8th edition pressman solutions ...
Software engineering a practitioners approach 8th edition pressman solutions ...
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Process models
Process modelsProcess models
Process models
 
Chapter 01 software engineering pressman
Chapter 01  software engineering pressmanChapter 01  software engineering pressman
Chapter 01 software engineering pressman
 
Software engineering rogers pressman chapter 7
Software engineering rogers pressman chapter 7Software engineering rogers pressman chapter 7
Software engineering rogers pressman chapter 7
 
Software Testing Strategies
Software Testing StrategiesSoftware Testing Strategies
Software Testing Strategies
 
Slides chapter 9
Slides chapter 9Slides chapter 9
Slides chapter 9
 
Slides chapter 2
Slides chapter 2Slides chapter 2
Slides chapter 2
 
Pressman ch-1-software
Pressman ch-1-softwarePressman ch-1-software
Pressman ch-1-software
 
Pressman ch-22-process-and-project-metrics
Pressman ch-22-process-and-project-metricsPressman ch-22-process-and-project-metrics
Pressman ch-22-process-and-project-metrics
 
Lecture4 requirement engineering
Lecture4 requirement engineeringLecture4 requirement engineering
Lecture4 requirement engineering
 
SDLC, Iterative Model
SDLC, Iterative ModelSDLC, Iterative Model
SDLC, Iterative Model
 
13 software metrics
13 software metrics13 software metrics
13 software metrics
 
Engineering Software Products: 1. software products
Engineering Software Products: 1. software productsEngineering Software Products: 1. software products
Engineering Software Products: 1. software products
 
Slides chapter 11
Slides chapter 11Slides chapter 11
Slides chapter 11
 
Software Project Organisation
Software Project OrganisationSoftware Project Organisation
Software Project Organisation
 

Similar to 5- Requirement.ppt

Similar to 5- Requirement.ppt (20)

Software Engineering
Software Engineering Software Engineering
Software Engineering
 
Chapter_25.ppt
Chapter_25.pptChapter_25.ppt
Chapter_25.ppt
 
Project Management Concepts
Project Management ConceptsProject Management Concepts
Project Management Concepts
 
Chapter_32.ppt
Chapter_32.pptChapter_32.ppt
Chapter_32.ppt
 
Ch01 SE
Ch01 SECh01 SE
Ch01 SE
 
Software Design.pptx
Software Design.pptxSoftware Design.pptx
Software Design.pptx
 
Ch07
Ch07Ch07
Ch07
 
Ch07
Ch07Ch07
Ch07
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Ppt19
Ppt19Ppt19
Ppt19
 
TESTING STRATEGY.ppt
TESTING STRATEGY.pptTESTING STRATEGY.ppt
TESTING STRATEGY.ppt
 
Chapter 2_Process Models sunorgamisedASE_finalised.ppt
Chapter 2_Process Models sunorgamisedASE_finalised.pptChapter 2_Process Models sunorgamisedASE_finalised.ppt
Chapter 2_Process Models sunorgamisedASE_finalised.ppt
 
Chapter_14 sp1718.ppt
Chapter_14 sp1718.pptChapter_14 sp1718.ppt
Chapter_14 sp1718.ppt
 
005614116.pdf
005614116.pdf005614116.pdf
005614116.pdf
 
Seii unit5 ui_design
Seii unit5 ui_designSeii unit5 ui_design
Seii unit5 ui_design
 
Fundamentals of Software Engineering
Fundamentals of Software Engineering Fundamentals of Software Engineering
Fundamentals of Software Engineering
 
6. ch 5-understanding requirements
6. ch 5-understanding requirements6. ch 5-understanding requirements
6. ch 5-understanding requirements
 
Smart Sim Selector: A Software for Simulation Software Selection
Smart Sim Selector: A Software for Simulation Software SelectionSmart Sim Selector: A Software for Simulation Software Selection
Smart Sim Selector: A Software for Simulation Software Selection
 
software
softwaresoftware
software
 
Chapter_04.ppt
Chapter_04.pptChapter_04.ppt
Chapter_04.ppt
 

Recently uploaded

Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 

Recently uploaded (20)

Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 

5- Requirement.ppt

  • 1. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 1 Chapter 5  Understanding Requirements Slide Set to accompany Software Engineering: A Practitioner’s Approach, 7/e by Roger S. Pressman Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman For non-profit educational use only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is prohibited without the express written permission of the author. All copyright information MUST appear if these slides are posted on a website for student use.
  • 2. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 2 Requirements Engineering-I  Inception—ask a set of questions that establish …  basic understanding of the problem  the people who want a solution  the nature of the solution that is desired, and  the effectiveness of preliminary communication and collaboration between the customer and the developer  Elicitation—elicit requirements from all stakeholders  Elaboration—create an analysis model that identifies data, function and behavioral requirements  Negotiation—agree on a deliverable system that is realistic for developers and customers
  • 3. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 3 Requirements Engineering-II  Specification—can be any one (or more) of the following:  A written document  A set of models  A formal mathematical  A collection of user scenarios (use-cases)  A prototype  Validation—a review mechanism that looks for  errors in content or interpretation  areas where clarification may be required  missing information  inconsistencies (a major problem when large products or systems are engineered)  conflicting or unrealistic (unachievable) requirements.  Requirements management
  • 4. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 4 Inception  Identify stakeholders  “who else do you think I should talk to?”  Recognize multiple points of view  Work toward collaboration  The first questions  Who is behind the request for this work?  Who will use the solution?  What will be the economic benefit of a successful solution  Is there another source for the solution that you need?
  • 5. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5 Eliciting Requirements  meetings are conducted and attended by both software engineers and customers  rules for preparation and participation are established  an agenda is suggested  a "facilitator" (can be a customer, a developer, or an outsider) controls the meeting  a "definition mechanism" (can be work sheets, flip charts, or wall stickers or an electronic bulletin board, chat room or virtual forum) is used  the goal is  to identify the problem  propose elements of the solution  negotiate different approaches, and  specify a preliminary set of solution requirements
  • 6. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 6 Eliciting Requirements Use QFD to prioritize requirements informally prioritize requirements form al prioritization? Create Use-cases yes no Elic it requirem ent s write scenario define actors complete tem plate draw use-case diagram Conduct FAST m eetings Make lists of functions, classes Make lists of constraints, etc.
  • 7. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 7 Quality Function Deployment  Function deployment determines the “value” (as perceived by the customer) of each function required of the system  Information deployment identifies data objects and events  Task deployment examines the behavior of the system  Value analysis determines the relative priority of requirements
  • 8. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8 Elicitation Work Products  a statement of need and feasibility.  a bounded statement of scope for the system or product.  a list of customers, users, and other stakeholders who participated in requirements elicitation  a description of the system’s technical environment.  a list of requirements (preferably organized by function) and the domain constraints that apply to each.  a set of usage scenarios that provide insight into the use of the system or product under different operating conditions.  any prototypes developed to better define requirements.
  • 9. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 9 Building the Analysis Model  Elements of the analysis model  Scenario-based elements • Functional—processing narratives for software functions • Use-case—descriptions of the interaction between an “actor” and the system  Class-based elements • Implied by scenarios  Behavioral elements • State diagram  Flow-oriented elements • Data flow diagram
  • 10. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 10 Use-Cases  A collection of user scenarios that describe the thread of usage of a system  Each scenario is described from the point-of-view of an “actor”—a person or device that interacts with the software in some way  Each scenario answers the following questions:  Who is the primary actor, the secondary actor (s)?  What are the actor’s goals?  What preconditions should exist before the story begins?  What main tasks or functions are performed by the actor?  What extensions might be considered as the story is described?  What variations in the actor’s interaction are possible?  What system information will the actor acquire, produce, or change?  Will the actor have to inform the system about changes in the external environment?  What information does the actor desire from the system?  Does the actor wish to be informed about unexpected changes?
  • 11. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11 Use-Case Diagram homeowner Arms/ disarms system Accesses system via Internet Reconfigures sensors and related system features Responds to alarm event Encounters an error condition system administrator sensors
  • 12. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12 Class Diagram Sensor name/id type location area characteristics identify() enable() disable() reconfigure () From the SafeHome system …
  • 13. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 13 State Diagram Reading Commands System status = “ready” Display msg = “enter cmd” Display status = steady Entry/subsystems ready Do: poll user input panel Do: read user input Do: interpret user input State name State variables State activities
  • 14. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 14 Analysis Patterns Pattern name: A descriptor that captures the essence of the pattern. Intent: Describes what the pattern accomplishes or represents Motivation: A scenario that illustrates how the pattern can be used to address the problem. Forces and context: A description of external issues (forces) that can affect how the pattern is used and also the external issues that will be resolved when the pattern is applied. Solution: A description of how the pattern is applied to solve the problem with an emphasis on structural and behavioral issues. Consequences: Addresses what happens when the pattern is applied and what trade-offs exist during its application. Design: Discusses how the analysis pattern can be achieved through the use of known design patterns. Known uses: Examples of uses within actual systems. Related patterns: On e or more analysis patterns that are related to the named pattern because (1) it is commonly used with the named pattern; (2) it is structurally similar to the named pattern; (3) it is a variation of the named pattern.
  • 15. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 15 Negotiating Requirements  Identify the key stakeholders  These are the people who will be involved in the negotiation  Determine each of the stakeholders “win conditions”  Win conditions are not always obvious  Negotiate  Work toward a set of requirements that lead to “win- win”
  • 16. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 16 Validating Requirements - I  Is each requirement consistent with the overall objective for the system/product?  Have all requirements been specified at the proper level of abstraction? That is, do some requirements provide a level of technical detail that is inappropriate at this stage?  Is the requirement really necessary or does it represent an add- on feature that may not be essential to the objective of the system?  Is each requirement bounded and unambiguous?  Does each requirement have attribution? That is, is a source (generally, a specific individual) noted for each requirement?  Do any requirements conflict with other requirements?
  • 17. These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17 Validating Requirements - II  Is each requirement achievable in the technical environment that will house the system or product?  Is each requirement testable, once implemented?  Does the requirements model properly reflect the information, function and behavior of the system to be built.  Has the requirements model been “partitioned” in a way that exposes progressively more detailed information about the system.  Have requirements patterns been used to simplify the requirements model. Have all patterns been properly validated? Are all patterns consistent with customer requirements?