SlideShare a Scribd company logo
1 of 2
V, W を実数体R上の有限次元線形空間としf : V → W をR上の線形写像とする. f の核を次で
定義する.
Ker(f ) = {v 2 V ; f (v) = 0}.
(1) f が線形写像であることの定義を述べよ.
(2) 02Ker(f)を示せ.
(3) f が単射であることと Ker(f ) = {0} であることは同値であることを示せ.
(4) g : V → W も線形写像とする.このとき, Ker(f)∩Ker(g)はV の線形部分空間 であることを示
せ.
V, W を実数体R上の有限次元線形空間としf : V → W をR上の線形写像とする. f の核を次で
定義する.
Ker(f ) = {v 2 V ; f (v) = 0}.
(1) f が線形写像であることの定義を述べよ.
V から W への写像 f が、任意の x, y ∈ V と任意の c ∈ R に対し、
f(x + y) = f(x) + f(y)
f(cx) = cf (x)
をともに満たすとき、f を F 上の線型写像 または簡単に F-線型写像という。
(2) 0∈Ker(f)を示せ.
f(cx) = cf (x)からc=0とすればf(0)=0
(3) f が単射であることと Ker(f ) = {0} であることは同値であることを示せ.
単射であるならば(2)からKer(f ) = {0}
単射でないとする。f(x)=f(y)=wだったとするとf(x-y)=f(x)-f(y)=w-w=0よってx-y∈ker(f)
よってker(f)≠0 よって待遇が示せた。
(4) g : V → W も線形写像とする.このとき, Ker(f)∩Ker(g)はV の線形部分空間 であることを示
せ.
v,u∈ Ker(f)∩Ker(g)と任意のc1,c2∈Rに対し
f(c1v±c2u)=c1f(v)±c2f(u)=g(c1v±c2u )=c1g(v)±c2g(u)= 0
また加法の結合律、可換律、逆元の存在、スカラー乗の両立条件、スカラーの単位元の存在は
明らかである。

More Related Content

What's hot (16)

表現行列問題
表現行列問題表現行列問題
表現行列問題
 
3次元の凸包を求める
3次元の凸包を求める3次元の凸包を求める
3次元の凸包を求める
 
45107
4510745107
45107
 
商写像とコンパクトハウスドルフ
商写像とコンパクトハウスドルフ商写像とコンパクトハウスドルフ
商写像とコンパクトハウスドルフ
 
最大流 (max flow)
最大流 (max flow)最大流 (max flow)
最大流 (max flow)
 
Coreset+SVM (論文紹介)
Coreset+SVM (論文紹介)Coreset+SVM (論文紹介)
Coreset+SVM (論文紹介)
 
グラフネットワーク〜フロー&カット〜
グラフネットワーク〜フロー&カット〜グラフネットワーク〜フロー&カット〜
グラフネットワーク〜フロー&カット〜
 
SICP
SICPSICP
SICP
 
diff template library
diff template librarydiff template library
diff template library
 
公開鍵暗号(2): 有限体
公開鍵暗号(2): 有限体公開鍵暗号(2): 有限体
公開鍵暗号(2): 有限体
 
UTPC2012 - K
UTPC2012 - KUTPC2012 - K
UTPC2012 - K
 
固有値問題
固有値問題固有値問題
固有値問題
 
固有値の問題
固有値の問題固有値の問題
固有値の問題
 
リュービルの定理の証明
リュービルの定理の証明リュービルの定理の証明
リュービルの定理の証明
 
20140306 ibisml
20140306 ibisml20140306 ibisml
20140306 ibisml
 
KMC 競技プログラミング練習会 Advanced 第3回 ふろー
KMC 競技プログラミング練習会 Advanced 第3回 ふろーKMC 競技プログラミング練習会 Advanced 第3回 ふろー
KMC 競技プログラミング練習会 Advanced 第3回 ふろー
 

More from 政孝 鍋島

ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束 ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束 政孝 鍋島
 
曲面の面積の計算と証明
曲面の面積の計算と証明 曲面の面積の計算と証明
曲面の面積の計算と証明 政孝 鍋島
 
少し複雑な積分問題
少し複雑な積分問題少し複雑な積分問題
少し複雑な積分問題政孝 鍋島
 
関数の各点収束と一様収束
関数の各点収束と一様収束関数の各点収束と一様収束
関数の各点収束と一様収束政孝 鍋島
 
D上の関数の極値の問題
D上の関数の極値の問題 D上の関数の極値の問題
D上の関数の極値の問題 政孝 鍋島
 
面積と長さの問題
面積と長さの問題 面積と長さの問題
面積と長さの問題 政孝 鍋島
 
面積と長さの問題
面積と長さの問題 面積と長さの問題
面積と長さの問題 政孝 鍋島
 
らプラシアン作用素
らプラシアン作用素らプラシアン作用素
らプラシアン作用素政孝 鍋島
 
2つのトーラスの合体
2つのトーラスの合体2つのトーラスの合体
2つのトーラスの合体政孝 鍋島
 
メビウスの帯とトーラス
メビウスの帯とトーラスメビウスの帯とトーラス
メビウスの帯とトーラス政孝 鍋島
 
3つの球体の合体
3つの球体の合体 3つの球体の合体
3つの球体の合体 政孝 鍋島
 
凸角形全体の位相の性質
凸角形全体の位相の性質 凸角形全体の位相の性質
凸角形全体の位相の性質 政孝 鍋島
 
コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題 コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題 政孝 鍋島
 
位相と有限集合
位相と有限集合 位相と有限集合
位相と有限集合 政孝 鍋島
 
(a,b]位相とコンパクト性
(a,b]位相とコンパクト性 (a,b]位相とコンパクト性
(a,b]位相とコンパクト性 政孝 鍋島
 
積位相とコンパクト
積位相とコンパクト積位相とコンパクト
積位相とコンパクト政孝 鍋島
 

More from 政孝 鍋島 (20)

ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束 ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束
 
曲面の面積の計算と証明
曲面の面積の計算と証明 曲面の面積の計算と証明
曲面の面積の計算と証明
 
少し複雑な積分問題
少し複雑な積分問題少し複雑な積分問題
少し複雑な積分問題
 
関数の各点収束と一様収束
関数の各点収束と一様収束関数の各点収束と一様収束
関数の各点収束と一様収束
 
積分と漸化式
積分と漸化式 積分と漸化式
積分と漸化式
 
ガウス積分
ガウス積分ガウス積分
ガウス積分
 
D上の関数の極値の問題
D上の関数の極値の問題 D上の関数の極値の問題
D上の関数の極値の問題
 
面積と長さの問題
面積と長さの問題 面積と長さの問題
面積と長さの問題
 
面積と長さの問題
面積と長さの問題 面積と長さの問題
面積と長さの問題
 
らプラシアン作用素
らプラシアン作用素らプラシアン作用素
らプラシアン作用素
 
2つのトーラスの合体
2つのトーラスの合体2つのトーラスの合体
2つのトーラスの合体
 
メビウスの帯とトーラス
メビウスの帯とトーラスメビウスの帯とトーラス
メビウスの帯とトーラス
 
3つの球体の合体
3つの球体の合体 3つの球体の合体
3つの球体の合体
 
凸角形全体の位相の性質
凸角形全体の位相の性質 凸角形全体の位相の性質
凸角形全体の位相の性質
 
コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題 コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題
 
円の位相
円の位相円の位相
円の位相
 
(-∞,a)位相
(-∞,a)位相 (-∞,a)位相
(-∞,a)位相
 
位相と有限集合
位相と有限集合 位相と有限集合
位相と有限集合
 
(a,b]位相とコンパクト性
(a,b]位相とコンパクト性 (a,b]位相とコンパクト性
(a,b]位相とコンパクト性
 
積位相とコンパクト
積位相とコンパクト積位相とコンパクト
積位相とコンパクト
 

Recently uploaded

TEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdfTEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdfyukisuga3
 
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライドリアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライドKen Fukui
 
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライドリアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライドKen Fukui
 
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライドリアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライドKen Fukui
 
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ssusere0a682
 
UniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptUniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptyuitoakatsukijp
 
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライドリアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライドKen Fukui
 
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライドリアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライドKen Fukui
 

Recently uploaded (8)

TEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdfTEAMIN Service overview for customer_20240422.pdf
TEAMIN Service overview for customer_20240422.pdf
 
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライドリアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
リアル戦国探究in米沢 当日講座3スライド(スタッフ共有用)『糧は三度はさいせず』についてのスライド
 
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライドリアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
リアル戦国探究in米沢 当日講座2スライド(スタッフ共有用)『人を致すも人に致されず』についてのスライド
 
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライドリアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
リアル戦国探究in米沢 事前講座2スライド(スタッフ共有用)『両雄の強さの秘密』についてのスライド
 
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
 
UniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptUniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScript
 
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライドリアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
リアル戦国探究in米沢 当日講座1(スタッフ共有用)『兵は詐をもって立つ』についてのスライド
 
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライドリアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
リアル戦国探究in米沢 事前講座1スライド(スタッフ共有用)『川中島の謎』についてのスライド
 

線形写像のker

  • 1. V, W を実数体R上の有限次元線形空間としf : V → W をR上の線形写像とする. f の核を次で 定義する. Ker(f ) = {v 2 V ; f (v) = 0}. (1) f が線形写像であることの定義を述べよ. (2) 02Ker(f)を示せ. (3) f が単射であることと Ker(f ) = {0} であることは同値であることを示せ. (4) g : V → W も線形写像とする.このとき, Ker(f)∩Ker(g)はV の線形部分空間 であることを示 せ.
  • 2. V, W を実数体R上の有限次元線形空間としf : V → W をR上の線形写像とする. f の核を次で 定義する. Ker(f ) = {v 2 V ; f (v) = 0}. (1) f が線形写像であることの定義を述べよ. V から W への写像 f が、任意の x, y ∈ V と任意の c ∈ R に対し、 f(x + y) = f(x) + f(y) f(cx) = cf (x) をともに満たすとき、f を F 上の線型写像 または簡単に F-線型写像という。 (2) 0∈Ker(f)を示せ. f(cx) = cf (x)からc=0とすればf(0)=0 (3) f が単射であることと Ker(f ) = {0} であることは同値であることを示せ. 単射であるならば(2)からKer(f ) = {0} 単射でないとする。f(x)=f(y)=wだったとするとf(x-y)=f(x)-f(y)=w-w=0よってx-y∈ker(f) よってker(f)≠0 よって待遇が示せた。 (4) g : V → W も線形写像とする.このとき, Ker(f)∩Ker(g)はV の線形部分空間 であることを示 せ. v,u∈ Ker(f)∩Ker(g)と任意のc1,c2∈Rに対し f(c1v±c2u)=c1f(v)±c2f(u)=g(c1v±c2u )=c1g(v)±c2g(u)= 0 また加法の結合律、可換律、逆元の存在、スカラー乗の両立条件、スカラーの単位元の存在は 明らかである。