SlideShare a Scribd company logo
1 of 33
July/7/2021 Journal club
Thoma Itoh
1
Network having bow-tie structure
2
Previous work by authors
Authors suggested evolutionary mechanism of modular network
Modular network
Evolutionary pressure
toward modular network
Mutations tend to
eliminate connections
+
Friedlander et al., 2013
https://commons.wikimedia.org/wiki/File:Network_Community_Structure.png
Modular network
3
Question inspired by previous study
Whether one can find situations in which evolution leads to bow-tie architectures
Bow-tie architecture
?
Bow-tie architecture
4
Outline
Matrix expression of network
Evolutionary simulation; linear network
Robustness of simulation result to the fluctuation
Evolutionary simulation; non-linear network
Discussion
5
?
Outline
Matrix expression of network
6
?
𝑨𝒊𝒋
(𝒍)
Input from node j in layer L to node i in layer L + 1
Matrix expression of linear network model
𝑨𝟏𝟏
(𝟏)
𝑨𝟏𝟐
(𝟏)
𝑨𝟏𝟑
(𝟏)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟏
(𝟏)
𝑨𝟑𝟐
(𝟏)
𝑨𝟑𝟑
(𝟏)
Layer 1
Layer 2
Row i: Input vector of node i
7
𝑨𝒊𝒋
(𝒍)
Input from node j in layer L to node i in layer L + 1
Row i: Input vector of node i
Matrix expression of linear network model
𝑨𝟏𝟏
(𝟏)
𝑨𝟏𝟐
(𝟏)
𝑨𝟏𝟑
(𝟏)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟏
(𝟏)
𝑨𝟑𝟐
(𝟏)
𝑨𝟑𝟑
(𝟏)
Layer 1
Layer 2
𝑨𝟏𝟏
(𝟏)
𝑨𝟏𝟐
(𝟏)
𝑨𝟏𝟑
(𝟏)
8
𝑨𝒊𝒋
(𝒍)
Input from node j in layer L to node i in layer L + 1
Matrix expression of linear network model
𝑨𝟏𝟏
(𝟏)
𝑨𝟏𝟐
(𝟏)
𝑨𝟏𝟑
(𝟏)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟏
(𝟏)
𝑨𝟑𝟐
(𝟏)
𝑨𝟑𝟑
(𝟏)
Layer 1
Layer 2
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
Row i: Input vector of node i
9
𝑨𝒊𝒋
(𝒍)
Input from node j in layer L to node i in layer L + 1
Matrix expression of linear network model
𝑨𝟏𝟏
(𝟏)
𝑨𝟏𝟐
(𝟏)
𝑨𝟏𝟑
(𝟏)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟏
(𝟏)
𝑨𝟑𝟐
(𝟏)
𝑨𝟑𝟑
(𝟏)
Layer 1
Layer 2
𝑨𝟑𝟏
(𝟏)
𝑨𝟑𝟐
(𝟏)
𝑨𝟑𝟑
(𝟏)
Row i: Input vector of node i
10
𝑨𝒊𝒋
(𝒍)
Input from node j in layer L to node i in layer L + 1
Matrix expression of linear network model
Row i: Input vector of node i
11
Total input-output relationship is product of each layer matrix
=
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝐴 2 𝐴 1 = Total input/output
𝐴 2
𝐴 1
𝐴 2
𝐴 1
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟐)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟑𝟐
(𝟏)
Output 1
Output 2
Output 3
Output 1 Output 2 Output 3 12
Total input-output relationship is product of each layer matrix
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝐴 2 𝐴 1 = Total input/output
=
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝐴 2
𝐴 1
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
Output 1
Output 2
Output 3
Output 1 Output 2 Output 3 13
Total input-output relationship is product of each layer matrix
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
=
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝐴 2 𝐴 1 = Total input/output
𝐴 2
𝐴 1
𝐴 2
𝐴 1
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
Output 1
Output 2
Output 3
Output 1 Output 2 Output 3 14
Total input-output relationship is product of each layer matrix
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏) 𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
=
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝐴 2 𝐴 1 = Total input/output
𝐴 2
𝐴 1
𝐴 2
𝐴 1
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟑
(𝟏)
Output 1
Output 2
Output 3
Output 1 Output 2 Output 3 15
Total input-output relationship is product of each layer matrix
x
𝑨𝟑𝟐
(𝟐)
𝑨𝟏𝟐
(𝟐)
x
𝑨𝟐𝟐
(𝟐)
𝑨𝟏𝟐
(𝟐)
𝐴 2 𝐴 1 = Total input/output
𝐴 2
𝐴 1
→ Rank: 1
Rank:
Number of independent rows
=
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟐𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟐
(𝟏)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟑
(𝟏)
𝐴 2
𝐴 1
𝑨𝟏𝟐
(𝟐)
𝑨𝟐𝟐
(𝟐)
𝑨𝟑𝟐
(𝟐)
𝑨𝟐𝟏
(𝟏)
𝑨𝟐𝟐
(𝟏)
𝑨𝟑𝟐
(𝟏)
Output 1 Output 2 Output 3 16
Dimension: 3
Rank: 1
Rank deficient: 2
Outline
Evolutionary simulation; linear network
17
?
Evolutionary simulation
Goal matrix
Fitness
Mutation
Simulaton flow
18
Goal matrix is task that network should perform
Task performed by bow-tie architecture
This time, task is given at first
or or
Goal matrix (G)
𝐴11 𝐴12 𝐴23
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33
𝐴11 𝐴12 𝐴23
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33
etc...
Networks that realizes the given task.
19
Goal matrix rank reflects the property of given task
3 0 0
0 4 0
0 0 2
2 2 2
4 4 4
6 6 6
Rank 3 goal matrix:
3 independent output
20
Input 1 Input 2 Input 3
Output A Output B Output C
Rank1 goal matrix:
3 dependent output
All outputs depend on different inputs All outputs depend on same inputs
Input 1 Input 2 Input 3
Output A Output B Output C
Fitness is distance between total in/out and given desired goal
Evolve network so that realizes the given task ( goal matrix (G) )
Fitness: 𝐹 = − 𝐴(𝐿)𝐴(𝐿−1) … 𝐴(1) − 𝐺
Total in-out: 𝐴(𝐿)
𝐴(𝐿−1)
… 𝐴(1)
Goal matrix: G
Evolve so that
close to the G 10 10 10
10 10 10
10 10 10
20 5 5
20 5 15
5 5 20
21
Mutation is biased to eliminate connections
𝐴𝑖𝑗 → 𝐴𝑖𝑗 x N(1, 𝜎)
log(𝐴𝑖𝑗) → log(𝐴𝑖𝑗) + log[ N(1, 𝜎) ]
Product-rule mutation Cumulative distirubtion function
log[ N(1, 𝜎) ]
Biological mutations are likely to eliminate connections
Fundamental reason of product-rule mutation:
Affinity and reaction rate are exponential in free energy ( ∝ Mutation level)
𝜎: 0.01 − 1
https://www.jstage.jst.go.jp/article/mssj/17/2/17_92/_pdf/-char/ja
22
・
・
・
・
・
・
・
・
・
Mutated elements
are rondomly picked
Mutation
・
・
・
2N
P = 0.2
Evolutionary simulation flow
・
・
・
・
・
・
2N
N
Figures are cited and modified from Friedlander et al., 2013
23
Bow tie evolves when the goal has deficient rank
Goal matrix
Rank
Smallest width layer is on middle layer
Fewer nodes 6 node
Possible network structure under given goal matrix
Deficient rank
24
Bow tie evolves when the mutation is biased to eliminate connections
𝐴𝑖𝑗 → 𝐴𝑖𝑗 x N(1, 𝜎)
Product- rule mutation: Eliminate interaction Sum-rule mutation: Maintain interaction
𝐴𝑖𝑗 → 𝐴𝑖𝑗 + N(0, 𝜎)
Fewer nodes 6 node
25
Bow-tie evolution is robust to the evolutionary parameter
Bow-ties were obtained in all cases.
(Tournament size)
Bow tie evolves when...
- The goal has deficient rank
Mutation is biased to eliminate connections
26
Outline
Robustness of simulation result to the fluctuation
27
?
Test the robustness of evolutionary mechanism to the fluctuation
Suggested evolutionary mechanism
Bow tie evolves when...
- The goal has deficient rank
Mutation is biased to eliminate connections
Test the robustness of this results to the fluctuation
Effect of rank accuracy of goal matrix
Effect of temporal fluctuation over network and goal
28
Evolutionary simulation is robust to rank accuracy
Same result with non-noise simulation
( Up to noise strength 1%)
clean
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
 
 
 
 
  
 
 
 
 
G
noisy
9.9590 10.1611 10.0919 10.0580 9.8794 10.1750
9.9630 9.9266 10.0948 10.0780 10.0377 9.8305
9.9102 9.9060 10.0166 10.0859 9.8447 10.0698
9.94

G
37 10.0309 9.9075 9.8582 9.8845 9.9820
9.8180 10.1331 9.8766 10.0667 9.8966 10.0801
10.0806 10.0267 10.0364 10.0566 9.9908 10.2014
 
 
 
 
 
 
 
 
 
.
Perturbate with noise
Rank deficient
Almost rank deficient
Perturbate goal matrix with noise
29
( ) ( 1) (1)
1 1
||( )( ) ( ) ( ) ||
L L
L L G
F 

      
A ε A ε A ε G ε
𝜀𝑖 ~ 𝑁(0, 𝜎)
10
-4
1
1.5
2
2.5
3
3.5
4
4.5
5
absolute noise added
Mid-layer
width
10
0
1
1.5
2
2.5
3
3.5
4
4.5
5
temporal std in fitness
Mid-layer
width
Add noise to the all matrix entries
Product-mutations filter out the noise much more efficiently
× Sum rule mutation: Maintain interactioins
□ Product rule mutation: Minimize interaction
(std)
Product-mutations filter out the
noise much more efficiently than
sum-mutations.
30
Outline
Evolutionary simulation; non-linear network
31
?
Bow-ties can evolve in nonlinear information transmission models
4-pixel retina
Proble definition
- Outputs detect whether there is
(i) at least one pixel in the left column is black (Left)
(ii) at least one pixel in the right column is black (Right)
(iii) (i) AND (ii) (Left and Right)
(iv) (i) OR (ii) (Left or Right)
- 4 input
- Two internal processing layer
- Each node performs nonlinear transformation
u(l+1) = f (A(l) u(l) – T(l+1)) u(l) Input
A(l) Weight matrix
T(l+1) Thresholds
Typical results
f(x) = (1 + tanh(x)) / 2 = {0,1
Investigate whether the suggested mechanism would
apply in a nonlinear network model.
32
Bow-tie architecture evolves
when realizing rank deficient task
with minimum interaction
Result and discussion
33
Signal1
Gene1
TF
Signal2 Signal3
Gene2 Gene3
Signal1
TF1 TF2 TF3
Signal2 Signal3
Gene1 Gene2 Gene3
Economial Wasteful
Bow-tie architecture

More Related Content

What's hot

Presentation_OCR
Presentation_OCRPresentation_OCR
Presentation_OCRsamvb18
 
Ijciras1101
Ijciras1101Ijciras1101
Ijciras1101zhendy94
 
Generalized Nonlinear Models in R
Generalized Nonlinear Models in RGeneralized Nonlinear Models in R
Generalized Nonlinear Models in Rhtstatistics
 
Digital Signals and System (May – 2016) [Revised Syllabus | Question Paper]
Digital Signals and System (May  – 2016) [Revised Syllabus | Question Paper]Digital Signals and System (May  – 2016) [Revised Syllabus | Question Paper]
Digital Signals and System (May – 2016) [Revised Syllabus | Question Paper]Mumbai B.Sc.IT Study
 
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...Edureka!
 
Hands-on Tutorial of Machine Learning in Python
Hands-on Tutorial of Machine Learning in PythonHands-on Tutorial of Machine Learning in Python
Hands-on Tutorial of Machine Learning in PythonChun-Ming Chang
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式Junpei Tsuji
 
Algebraic data types: Semilattices
Algebraic data types: SemilatticesAlgebraic data types: Semilattices
Algebraic data types: SemilatticesBernhard Huemer
 
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...EL-Hachemi Guerrout
 
2021 03-02-transformer interpretability
2021 03-02-transformer interpretability2021 03-02-transformer interpretability
2021 03-02-transformer interpretabilityJAEMINJEONG5
 
2021 01-04-learning filter-basis
2021 01-04-learning filter-basis2021 01-04-learning filter-basis
2021 01-04-learning filter-basisJAEMINJEONG5
 
Real time active noise cancellation using adaptive filters following RLS and ...
Real time active noise cancellation using adaptive filters following RLS and ...Real time active noise cancellation using adaptive filters following RLS and ...
Real time active noise cancellation using adaptive filters following RLS and ...IRJET Journal
 
Hidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
Hidden Markov Random Field model and BFGS algorithm for Brain Image SegmentationHidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
Hidden Markov Random Field model and BFGS algorithm for Brain Image SegmentationEL-Hachemi Guerrout
 
Why Batch Normalization Works so Well
Why Batch Normalization Works so WellWhy Batch Normalization Works so Well
Why Batch Normalization Works so WellChun-Ming Chang
 
Double Patterning
Double PatterningDouble Patterning
Double PatterningDanny Luk
 
Double Patterning
Double PatterningDouble Patterning
Double PatterningDanny Luk
 
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPEREC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPERVISHNUPRABHANKAIMAL
 
Information Content of Complex Networks
Information Content of Complex NetworksInformation Content of Complex Networks
Information Content of Complex NetworksHector Zenil
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntuaIEEE NTUA SB
 
Double Patterning (4/2 update)
Double Patterning (4/2 update)Double Patterning (4/2 update)
Double Patterning (4/2 update)Danny Luk
 

What's hot (20)

Presentation_OCR
Presentation_OCRPresentation_OCR
Presentation_OCR
 
Ijciras1101
Ijciras1101Ijciras1101
Ijciras1101
 
Generalized Nonlinear Models in R
Generalized Nonlinear Models in RGeneralized Nonlinear Models in R
Generalized Nonlinear Models in R
 
Digital Signals and System (May – 2016) [Revised Syllabus | Question Paper]
Digital Signals and System (May  – 2016) [Revised Syllabus | Question Paper]Digital Signals and System (May  – 2016) [Revised Syllabus | Question Paper]
Digital Signals and System (May – 2016) [Revised Syllabus | Question Paper]
 
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
 
Hands-on Tutorial of Machine Learning in Python
Hands-on Tutorial of Machine Learning in PythonHands-on Tutorial of Machine Learning in Python
Hands-on Tutorial of Machine Learning in Python
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式
 
Algebraic data types: Semilattices
Algebraic data types: SemilatticesAlgebraic data types: Semilattices
Algebraic data types: Semilattices
 
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...
 
2021 03-02-transformer interpretability
2021 03-02-transformer interpretability2021 03-02-transformer interpretability
2021 03-02-transformer interpretability
 
2021 01-04-learning filter-basis
2021 01-04-learning filter-basis2021 01-04-learning filter-basis
2021 01-04-learning filter-basis
 
Real time active noise cancellation using adaptive filters following RLS and ...
Real time active noise cancellation using adaptive filters following RLS and ...Real time active noise cancellation using adaptive filters following RLS and ...
Real time active noise cancellation using adaptive filters following RLS and ...
 
Hidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
Hidden Markov Random Field model and BFGS algorithm for Brain Image SegmentationHidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
Hidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
 
Why Batch Normalization Works so Well
Why Batch Normalization Works so WellWhy Batch Normalization Works so Well
Why Batch Normalization Works so Well
 
Double Patterning
Double PatterningDouble Patterning
Double Patterning
 
Double Patterning
Double PatterningDouble Patterning
Double Patterning
 
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPEREC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
 
Information Content of Complex Networks
Information Content of Complex NetworksInformation Content of Complex Networks
Information Content of Complex Networks
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntua
 
Double Patterning (4/2 update)
Double Patterning (4/2 update)Double Patterning (4/2 update)
Double Patterning (4/2 update)
 

Similar to Friedlander et al. Evolution of Bow-Tie Architectures in Biology (2015)

Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...
Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...
Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...Koji Yamamoto
 
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...VLSICS Design
 
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?Amr ABDELFATTAH
 
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesPlatoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesKaustav Mondal
 
Massive MIMO for Cooperative Network Application
Massive MIMO for Cooperative Network ApplicationMassive MIMO for Cooperative Network Application
Massive MIMO for Cooperative Network ApplicationVARUN KUMAR
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsLily Rose
 
FPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A RetrospectiveFPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A RetrospectiveIJORCS
 
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...Artem Lutov
 
Mining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completionMining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completionFabio Petroni, PhD
 
new optimization algorithm for topology optimization
new optimization algorithm for topology optimizationnew optimization algorithm for topology optimization
new optimization algorithm for topology optimizationSeonho Park
 
Relation between Information Leakage and Combinatorial Quantities of Linear C...
Relation between Information Leakage and Combinatorial Quantities of Linear C...Relation between Information Leakage and Combinatorial Quantities of Linear C...
Relation between Information Leakage and Combinatorial Quantities of Linear C...Ryutaroh Matsumoto
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Fabian Pedregosa
 
Mm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithmsMm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithmsEellekwameowusu
 
Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...Kolja Kleineberg
 
Tensor Spectral Clustering
Tensor Spectral ClusteringTensor Spectral Clustering
Tensor Spectral ClusteringAustin Benson
 
Higher-order organization of complex networks
Higher-order organization of complex networksHigher-order organization of complex networks
Higher-order organization of complex networksDavid Gleich
 
Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...IJECEIAES
 

Similar to Friedlander et al. Evolution of Bow-Tie Architectures in Biology (2015) (20)

Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...
Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...
Machine Learning and Stochastic Geometry: Statistical Frameworks Against Unce...
 
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
 
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
 
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier SplinesPlatoon Control of Nonholonomic Robots using Quintic Bezier Splines
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
 
Massive MIMO for Cooperative Network Application
Massive MIMO for Cooperative Network ApplicationMassive MIMO for Cooperative Network Application
Massive MIMO for Cooperative Network Application
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
FPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A RetrospectiveFPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
FPGA Implementation of FIR Filter using Various Algorithms: A Retrospective
 
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
 
Mining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completionMining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completion
 
new optimization algorithm for topology optimization
new optimization algorithm for topology optimizationnew optimization algorithm for topology optimization
new optimization algorithm for topology optimization
 
Relation between Information Leakage and Combinatorial Quantities of Linear C...
Relation between Information Leakage and Combinatorial Quantities of Linear C...Relation between Information Leakage and Combinatorial Quantities of Linear C...
Relation between Information Leakage and Combinatorial Quantities of Linear C...
 
2017 a
2017 a2017 a
2017 a
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
 
Mm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithmsMm chap08 -_lossy_compression_algorithms
Mm chap08 -_lossy_compression_algorithms
 
Linkedin_PowerPoint
Linkedin_PowerPointLinkedin_PowerPoint
Linkedin_PowerPoint
 
Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...Towards controlling evolutionary dynamics through network geometry: some very...
Towards controlling evolutionary dynamics through network geometry: some very...
 
Scala and Deep Learning
Scala and Deep LearningScala and Deep Learning
Scala and Deep Learning
 
Tensor Spectral Clustering
Tensor Spectral ClusteringTensor Spectral Clustering
Tensor Spectral Clustering
 
Higher-order organization of complex networks
Higher-order organization of complex networksHigher-order organization of complex networks
Higher-order organization of complex networks
 
Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...Fault modeling and parametric fault detection in analog VLSI circuits using d...
Fault modeling and parametric fault detection in analog VLSI circuits using d...
 

Recently uploaded

IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicinesherlingomez2
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)AkefAfaneh2
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oManavSingh202607
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformationAreesha Ahmad
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 

Recently uploaded (20)

IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 

Friedlander et al. Evolution of Bow-Tie Architectures in Biology (2015)

  • 3. Previous work by authors Authors suggested evolutionary mechanism of modular network Modular network Evolutionary pressure toward modular network Mutations tend to eliminate connections + Friedlander et al., 2013 https://commons.wikimedia.org/wiki/File:Network_Community_Structure.png Modular network 3
  • 4. Question inspired by previous study Whether one can find situations in which evolution leads to bow-tie architectures Bow-tie architecture ? Bow-tie architecture 4
  • 5. Outline Matrix expression of network Evolutionary simulation; linear network Robustness of simulation result to the fluctuation Evolutionary simulation; non-linear network Discussion 5 ?
  • 7. 𝑨𝒊𝒋 (𝒍) Input from node j in layer L to node i in layer L + 1 Matrix expression of linear network model 𝑨𝟏𝟏 (𝟏) 𝑨𝟏𝟐 (𝟏) 𝑨𝟏𝟑 (𝟏) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟏 (𝟏) 𝑨𝟑𝟐 (𝟏) 𝑨𝟑𝟑 (𝟏) Layer 1 Layer 2 Row i: Input vector of node i 7
  • 8. 𝑨𝒊𝒋 (𝒍) Input from node j in layer L to node i in layer L + 1 Row i: Input vector of node i Matrix expression of linear network model 𝑨𝟏𝟏 (𝟏) 𝑨𝟏𝟐 (𝟏) 𝑨𝟏𝟑 (𝟏) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟏 (𝟏) 𝑨𝟑𝟐 (𝟏) 𝑨𝟑𝟑 (𝟏) Layer 1 Layer 2 𝑨𝟏𝟏 (𝟏) 𝑨𝟏𝟐 (𝟏) 𝑨𝟏𝟑 (𝟏) 8
  • 9. 𝑨𝒊𝒋 (𝒍) Input from node j in layer L to node i in layer L + 1 Matrix expression of linear network model 𝑨𝟏𝟏 (𝟏) 𝑨𝟏𝟐 (𝟏) 𝑨𝟏𝟑 (𝟏) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟏 (𝟏) 𝑨𝟑𝟐 (𝟏) 𝑨𝟑𝟑 (𝟏) Layer 1 Layer 2 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) Row i: Input vector of node i 9
  • 10. 𝑨𝒊𝒋 (𝒍) Input from node j in layer L to node i in layer L + 1 Matrix expression of linear network model 𝑨𝟏𝟏 (𝟏) 𝑨𝟏𝟐 (𝟏) 𝑨𝟏𝟑 (𝟏) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟏 (𝟏) 𝑨𝟑𝟐 (𝟏) 𝑨𝟑𝟑 (𝟏) Layer 1 Layer 2 𝑨𝟑𝟏 (𝟏) 𝑨𝟑𝟐 (𝟏) 𝑨𝟑𝟑 (𝟏) Row i: Input vector of node i 10
  • 11. 𝑨𝒊𝒋 (𝒍) Input from node j in layer L to node i in layer L + 1 Matrix expression of linear network model Row i: Input vector of node i 11
  • 12. Total input-output relationship is product of each layer matrix = 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝐴 2 𝐴 1 = Total input/output 𝐴 2 𝐴 1 𝐴 2 𝐴 1 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟐) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟑𝟐 (𝟏) Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 12
  • 13. Total input-output relationship is product of each layer matrix 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝐴 2 𝐴 1 = Total input/output = 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝐴 2 𝐴 1 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 13
  • 14. Total input-output relationship is product of each layer matrix 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) = 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝐴 2 𝐴 1 = Total input/output 𝐴 2 𝐴 1 𝐴 2 𝐴 1 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 14
  • 15. Total input-output relationship is product of each layer matrix 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) = 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝐴 2 𝐴 1 = Total input/output 𝐴 2 𝐴 1 𝐴 2 𝐴 1 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟑 (𝟏) Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 15
  • 16. Total input-output relationship is product of each layer matrix x 𝑨𝟑𝟐 (𝟐) 𝑨𝟏𝟐 (𝟐) x 𝑨𝟐𝟐 (𝟐) 𝑨𝟏𝟐 (𝟐) 𝐴 2 𝐴 1 = Total input/output 𝐴 2 𝐴 1 → Rank: 1 Rank: Number of independent rows = 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟐𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟐 (𝟏) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟑 (𝟏) 𝐴 2 𝐴 1 𝑨𝟏𝟐 (𝟐) 𝑨𝟐𝟐 (𝟐) 𝑨𝟑𝟐 (𝟐) 𝑨𝟐𝟏 (𝟏) 𝑨𝟐𝟐 (𝟏) 𝑨𝟑𝟐 (𝟏) Output 1 Output 2 Output 3 16 Dimension: 3 Rank: 1 Rank deficient: 2
  • 19. Goal matrix is task that network should perform Task performed by bow-tie architecture This time, task is given at first or or Goal matrix (G) 𝐴11 𝐴12 𝐴23 𝐴21 𝐴22 𝐴23 𝐴31 𝐴32 𝐴33 𝐴11 𝐴12 𝐴23 𝐴21 𝐴22 𝐴23 𝐴31 𝐴32 𝐴33 etc... Networks that realizes the given task. 19
  • 20. Goal matrix rank reflects the property of given task 3 0 0 0 4 0 0 0 2 2 2 2 4 4 4 6 6 6 Rank 3 goal matrix: 3 independent output 20 Input 1 Input 2 Input 3 Output A Output B Output C Rank1 goal matrix: 3 dependent output All outputs depend on different inputs All outputs depend on same inputs Input 1 Input 2 Input 3 Output A Output B Output C
  • 21. Fitness is distance between total in/out and given desired goal Evolve network so that realizes the given task ( goal matrix (G) ) Fitness: 𝐹 = − 𝐴(𝐿)𝐴(𝐿−1) … 𝐴(1) − 𝐺 Total in-out: 𝐴(𝐿) 𝐴(𝐿−1) … 𝐴(1) Goal matrix: G Evolve so that close to the G 10 10 10 10 10 10 10 10 10 20 5 5 20 5 15 5 5 20 21
  • 22. Mutation is biased to eliminate connections 𝐴𝑖𝑗 → 𝐴𝑖𝑗 x N(1, 𝜎) log(𝐴𝑖𝑗) → log(𝐴𝑖𝑗) + log[ N(1, 𝜎) ] Product-rule mutation Cumulative distirubtion function log[ N(1, 𝜎) ] Biological mutations are likely to eliminate connections Fundamental reason of product-rule mutation: Affinity and reaction rate are exponential in free energy ( ∝ Mutation level) 𝜎: 0.01 − 1 https://www.jstage.jst.go.jp/article/mssj/17/2/17_92/_pdf/-char/ja 22
  • 23. ・ ・ ・ ・ ・ ・ ・ ・ ・ Mutated elements are rondomly picked Mutation ・ ・ ・ 2N P = 0.2 Evolutionary simulation flow ・ ・ ・ ・ ・ ・ 2N N Figures are cited and modified from Friedlander et al., 2013 23
  • 24. Bow tie evolves when the goal has deficient rank Goal matrix Rank Smallest width layer is on middle layer Fewer nodes 6 node Possible network structure under given goal matrix Deficient rank 24
  • 25. Bow tie evolves when the mutation is biased to eliminate connections 𝐴𝑖𝑗 → 𝐴𝑖𝑗 x N(1, 𝜎) Product- rule mutation: Eliminate interaction Sum-rule mutation: Maintain interaction 𝐴𝑖𝑗 → 𝐴𝑖𝑗 + N(0, 𝜎) Fewer nodes 6 node 25
  • 26. Bow-tie evolution is robust to the evolutionary parameter Bow-ties were obtained in all cases. (Tournament size) Bow tie evolves when... - The goal has deficient rank Mutation is biased to eliminate connections 26
  • 27. Outline Robustness of simulation result to the fluctuation 27 ?
  • 28. Test the robustness of evolutionary mechanism to the fluctuation Suggested evolutionary mechanism Bow tie evolves when... - The goal has deficient rank Mutation is biased to eliminate connections Test the robustness of this results to the fluctuation Effect of rank accuracy of goal matrix Effect of temporal fluctuation over network and goal 28
  • 29. Evolutionary simulation is robust to rank accuracy Same result with non-noise simulation ( Up to noise strength 1%) clean 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10                    G noisy 9.9590 10.1611 10.0919 10.0580 9.8794 10.1750 9.9630 9.9266 10.0948 10.0780 10.0377 9.8305 9.9102 9.9060 10.0166 10.0859 9.8447 10.0698 9.94  G 37 10.0309 9.9075 9.8582 9.8845 9.9820 9.8180 10.1331 9.8766 10.0667 9.8966 10.0801 10.0806 10.0267 10.0364 10.0566 9.9908 10.2014                   . Perturbate with noise Rank deficient Almost rank deficient Perturbate goal matrix with noise 29
  • 30. ( ) ( 1) (1) 1 1 ||( )( ) ( ) ( ) || L L L L G F          A ε A ε A ε G ε 𝜀𝑖 ~ 𝑁(0, 𝜎) 10 -4 1 1.5 2 2.5 3 3.5 4 4.5 5 absolute noise added Mid-layer width 10 0 1 1.5 2 2.5 3 3.5 4 4.5 5 temporal std in fitness Mid-layer width Add noise to the all matrix entries Product-mutations filter out the noise much more efficiently × Sum rule mutation: Maintain interactioins □ Product rule mutation: Minimize interaction (std) Product-mutations filter out the noise much more efficiently than sum-mutations. 30
  • 32. Bow-ties can evolve in nonlinear information transmission models 4-pixel retina Proble definition - Outputs detect whether there is (i) at least one pixel in the left column is black (Left) (ii) at least one pixel in the right column is black (Right) (iii) (i) AND (ii) (Left and Right) (iv) (i) OR (ii) (Left or Right) - 4 input - Two internal processing layer - Each node performs nonlinear transformation u(l+1) = f (A(l) u(l) – T(l+1)) u(l) Input A(l) Weight matrix T(l+1) Thresholds Typical results f(x) = (1 + tanh(x)) / 2 = {0,1 Investigate whether the suggested mechanism would apply in a nonlinear network model. 32
  • 33. Bow-tie architecture evolves when realizing rank deficient task with minimum interaction Result and discussion 33 Signal1 Gene1 TF Signal2 Signal3 Gene2 Gene3 Signal1 TF1 TF2 TF3 Signal2 Signal3 Gene1 Gene2 Gene3 Economial Wasteful Bow-tie architecture

Editor's Notes

  1. 伝えたいこと 生物ネットワークでぎょうさん見られるmodular goalは、modular goal に進化する圧をかけて、かつ変異を相互作用を減らす方向にバイアスすると、出てくるとわかった。 先行研究の紹介. Modularity の発生原理がシミュレーションで色々と議論されてきた. 変異の入れ方は着目されていなかった. product-rule mutationにしてみたら従来のsum-rule よりもmoduralityが上がった. 同じようなことがbow-tidでも言えるのではないか。 moduralityとbow-tie の発生原理にアナロジーを見出せるか
  2. 伝えたいこと 生物ネットワークでぎょうさん見られるmodular goalは、modular goal に進化する圧をかけて、かつ変異を相互作用を減らす方向にバイアスすると、出てくるとわかった。 先行研究の紹介. Modularity の発生原理がシミュレーションで色々と議論されてきた. 変異の入れ方は着目されていなかった. product-rule mutationにしてみたら従来のsum-rule よりもmoduralityが上がった. 同じようなことがbow-tidでも言えるのではないか。 moduralityとbow-tie の発生原理にアナロジーを見出せるか
  3. Total input-output
  4. 何を伝えればいいのか。 rankによってgoalを決める rank 1は何を意味するのか G の気持ち どういうタスクを想定しているのか 3つのタスクをやるものはフルランクになりますという eg ストレス応答 フルランクだ
  5. Mutation Sigmaふが大きくなるとこの傾向は見えない。 1 x 0.71 x 0.41 x 1.92 = 0.56 ``` for(i in c(1:100)){ hist_val = hist(log(abs(rnorm(1000000, 1, 100))), freq=FALSE) if( sum(hist_val$density) == 1 ){ break } } xlab = (hist_val$breaks[1:length(hist_val$breaks)-1] + c(hist_val$breaks[2:length(hist_val$breaks)]))/2 data.frame(xlab, cumsum(hist_val$density)) %>% plot(type="l", xlab="x", y="cumulative") abline(v=0) ```
  6. 2次元上の点を1次元の点に圧縮しランク落ちの説明をする 0入力は取り除いてる Goal matrix を最小の相互作用で実にはbowtie になる・ 最小のactive node は Goal matrix よりも小さくならなず、またbow-tie のウエスト部分は中間層で発達していることがわかる。 下記はそれぞれのネットワークを図示したもの 右が、rank 1 2 3 6 のgoal matrixを与えたときの、layer と入出力があるノードの数の関係を表したもの。左と同じ結果を示している。中間層でactive なnodeが少なくなっていることがわかる。 Goal matrixで与えられる情報処理を、
  7. produc rule mutatoin → 意味 sum rule mutatoin → 意味 相互作用を減らすようなバイアスがあるとbow-tie が出てくる (Gが低rankの場合)