SlideShare a Scribd company logo
1 of 44
*

http://id.linkedin.com/in/sofian/
http://babakhalid.com/
CONTENTS
1.

EXECUTIVE SUMMARY

2.

OBJECTIVES

1
EXECUTIVE SUMMARY
1.

In the Next Generation Telecommunication (LTE), all
communication devices will use IP as the identity.

2.

IP will be used to define routing from one node to others and
vice versa. IP is the 3rd layer in OSI standard. Layer 3 (Network
layer) is used to bring packet from one node to other using
logical address (Packet Forwarder/routing).

3.

Allocation of IPV4 is limited. Therefore plan is needed and we
can also divide IP network into some IP sub-network
(subnetting)

4.

IPv6 contain 128 bits (IPv4 only 32 bits). As the limitation of IP
allocation, IPv6 will replace IPv4.

2
OBJECTIVES
After this presentation, participants will know:





OSI layer applied in LTE
How to do Subnetting
Grouping BTS/NodeB in a VLAN
IP Configuration in BSC/RNC/LTE

3
OSI layer applied in LTE
- Overview -

4
OSI LAYER

Application: End User Interface (http, ftp, telnet, dns, etc)

Data format sent: ASCII, binary, JPEG, other compression, etc.

Open, maintain and terminate communication session: SQL, netbios, RPC, etc

How to deliver data reliable or unreliable, connectionless (UDP) or connection
oriented (TCP). It has function: error & flow control, sequence number,
acknowledgement.
Bring packet from one node to other using logical address (Packet Forwarder
/Routing)

Communication data between one node and others using Hardware Address
(MAC, LLC, etc). It identify the topology used (PTP, PTM – FR/ATM, BUS, Token
Rng, etc). Also function for error control and flow control.
Change data from Data link  BITS

5
OSI LAYER IN LTE
User Plane & Control Plane

User Plane Protocol Stack

Control Plane Protocol Stack

6
OSI LAYER IN UMTS
CS & PS

7
Layer 1

8
*
* Downlink Physical Layer Procedures
* For E-UTRA, the following downlink physical layer procedures are especially
important:

Cell search and synchronization:
Scheduling:
Link Adaptation:
Hybrid ARQ (Automatic Repeat Request)
*
* Uplink Physical Layer Procedures
* For E-UTRA, the following uplink physical layer procedures are especially important:
Random access
Uplink scheduling
Uplink link adaptation
Uplink timing control
Hybrid ARQ
Air Interface Physical

11
S1 Layer1

12
X2 Layer1

13
Layer 2

14
The three sublayers are
Medium access Control(MAC)
Radio Link Control(RLC)
Packet Data Convergence Protocol(PDCP)

*
[Source: E-UTRAN Architecture(3GPP TR 25.012 ]
Packet Data Convergence Protocol

16
Radio Link Control

17
Medium Access Control

18
Radio Resource Control

19
Non Access Stratum Protocol

20
Internet Protocol Overview

21
Internet Protocol Overview
From Wikipedia:
The Internet Protocol (IP) is the principal communications protocol in the Internet
protocol suite for relaying datagrams across network boundaries. This function
of ROUTING enables internetworking, and essentially establishes the Internet.

Internet Protocol sends data packets with unreliable/connectionless (no warranty
success or not)
The responsibility is handled in upper layer.

22
IP V4
Communication between TCP/IP network needs identity known as IP
address.
- IP address contain 32 bits.
- IP address divided into Network ID and Host ID
- 32 bits IP divided into 4 parts, each part has 8 bits.
- Every 8 bits can be converted to decimal 0 to 255.
Dec:
xxx
.
xxx .
xxx
. xxx
Bit : xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx

Note: IPv6 has 128 bit

23
IP V4 Classification
xxxxxxxx . xxxxxxxx . xxxxxxxx . xxxxxxxx
IP divided into 3 class
Class A:
Network ID (8bit)
0xxxxxxx

Host ID (24 bit)
xxxxxxxx.xxxxxxxx.xxxxxxxx

Class B:
Network ID (16 bit)
10xxxxxx.xxxxxxxx

Host ID (16 bit)
xxxxxxxx.xxxxxxxx

Class C:
Network ID (8bit)
110xxxxx.xxxxxxxx.xxxxxxxx

Host ID (24 bit)
xxxxxxxx

Note: IPv6 has 128 bit

24
IP V4 Classification
Class

Bit awal

Jumlah
Jaringan

Jumlah Host

Private IP address by International
Assigned Number Authority (IANA)

A

1 - 126

126

16 777 214

10.0.0.0 sampai 10.255.255.255

B

128 - 191

16 384

65 534

172.16.0.0 sampai 172.31.255.255

C

192 - 223

2 097 152

254

192.168.0.0 sampai 192.168.255.255

Note: 127.0.0.0 is used for loopback address

25
IP Netmask
To separate Network ID and Host ID, NETMASK is used with definition:
- Network ID use binary 1
- Host ID use binary 0
Netmask natural:

11111111 00000000 00000000 00000000 = 255.0.0.0
11111111 11111111 00000000 00000000 = 255.255.0.0
11111111 11111111 11111111 00000000 = 255.255.255.0

Netmask bit

Netmask Dec

1111 1111

255

1111 1110

254

1111 1100

252

1111 1000

248

1111 0000

240

1110 0000

224

1100 0000

192

1000 0000

128

26
Broadcast Address & Network Address
Broadcast address is needed in a network.
Function of Broadcast Address:
- To give information to the network for an existing service
- Finding information in a network

192.168.1.2

192.168.1.4

192.168.1.3

192.168.1.0
192.168.1.1

Local broadcast: 255.255.255.255
Directed broadcast: 192.168.1.255

27

Network ID:
1st Host:
:
:
Last host:
IP broadcast:

192.168.1.0
192.168.1.1
:
:
192.168.1.254
192.168.1.255
Exercise
Jaringan

Class

First IP

Last IP

Broadcast IP

10.0.0.0

A

10.0.0.1

10.255.255.254

10.255.255.255

128.3.0.0

B

128.3.0.1

128.3.255.254

128.3.255.255

172.16.0.0

B

172.16.0.1

172.16.255.254

172.16.255.255

192.168.16.0

C

192.168.16.1

192.168.16.254

192.168.16.255

191.254.0.0

B

191.254.0.1

191.254.255.254

191.254.255.255

224.19.2.0

C

224.19.2.1

224.19.2.254

224.19.2.255

223.253.25.0

C

223.253.25.1

223.253.25.254

223.253.25.255

126.0.0.0

A

126.0.0.1

126.255.255.254

126.255.255.255
SUBNETTING
Subnetting diperlukan untuk membangun SUB-Jaringan dari Jaringan yang ada.
Subnetting diperlukan untuk lebih mengefisiensikan/utilize alokasi IP address yang ada.
Tujuan Subnetting:
-

Memadukan teknologi jaringan yang berbeda
Menghindari limitasi jumlah simpul dalam satu segmen
Mereduksi traffic yang disebabkan oleh broadcast atau pun collision

Jaringan di bawah ini bisa kita bagi menjadi beberapa sub-jaringan dengan menggunakan router.

192.168.1.2

192.168.1.3

192.168.1.4

192.168.1.0
192.168.1.1
SUBNETTING
Dari gambar sebelumnya kita akan
membagi IP jaringan 192.168.1.0 menjadi 4
buah sub-jaringan.
192.168.1.0 mempunyai
Network ID = 192.168.1.0
Broadcast ID = 192.168 1.255
Host ID = 192.168.1.1-254
192.168.1.0

192.168.1.128

192.168.1.64

192.168.1.192

Karena ada 4 subjaringan maka langkah
selanjutnya adalah memecah IP tersebut
menjadi 4 bagian.
192.168.1.0 =
11000000.10101000.00000001.00000000
Karena 4 subnet = 22 maka jumlah bit untuk
subnet = 2
11000000.10101000.00000001.00000000
Simplenya 256/4 ~= 64
Sehingga didapat IP jaringan 4 subjaringan:
- 192.168.1.0
- 192.168.1.64
- 192.168.1.128
- 192.168.1.192
SUBNETTING
Sub Network 1
Network ID = 192.168.1.0 =
11000000.10101000.00000001.00000000
Broadcast ID = 192.168.1.63
Host ID = 192.168.1.1-62

192.168.1.0

192.168.1.128

192.168.1.64

192.168.1.192

Sub Network 2
Network ID = 192.168.1.64 =
11000000.10101000.00000001.01000000
Broadcast ID = 192.168.1.127
Host ID = 192.168.1.65-126
Sub Network 3
Network ID = 192.168.1.128 =
11000000.10101000.00000001.10000000
Broadcast ID = 192.168.1.191
Host ID = 192.168.1.129-190
Sub Network 4
Network ID = 192.168.1.192 =
11000000.10101000.00000001.11000000
Broadcast ID = 192.168.1.255
Host ID = 192.168.1.193-254
Exercise
1. Pada jaringan Class B & C dibutuhkan 50 subnet dengan masing2 dapat mempunyai 4 hosts.
Berapa subnet bits yang dibutuhkan? Bisakah?
Class B (172.16.0.0 = 10110000.00010000.00000000.00000000)
Karena 50 ~ 64 = 26 maka bit subnet yang dibutuhkan adalah 6 bit.
Sisa 10 bits  HOST
10110000.00010000.00000000.00000000
Class C (192.168.1.0 = 11000000.10101000.00000001.00000000)
Karena 50 ~ 64 = 26 maka bit subnet yang dibutuhkan adalah 6 bit.
Sisa 2 bits  HOST
11000000.10101000.00000001.00000000
2. Dari data di atas berapa subnet-mask nya?
Ingat!!
- Network ID use binary 1
- Host ID use binary 0
Maka subnet-mask adalah:
Class B: 11111111.11111111.11111100.00000000 = 255.255.252.0
Class C: 11111111.11111111.11111111.11111100 = 255.255.255.252
Exercise
3. Tentukan IP subnet/sub-jaringan dari Class B & C tersebut?

Class B:
172.16.0.0 = 10110000.00010000.00000000.00000000
172.16.4.0 = 10110000.00010000.00000100.00000000
172.16.8.0 = 10110000.00010000.00001000.00000000
172.16.12.0 = 10110000.00010000.00001100.00000000
:
:
:
172.16.252.0 = 10110000.00010000.11111100.00000000
TOPOLOGY

34
GSM & UMTS IP TOPOLOGY
INTERFACE IP ALLOCATION
SYSTEM

INTERFACE

IP

2G

Abis

10.48-54.x.x

Gb

10.5.x.x

AoIP CP

10.2.x.x

AoIP UP

10.4.x.x

IuB direct to RNC

10.13.x.x

IuB

10.176-182.x.x

IuPS CP/UP

10.6.x.x

IuCS CP

10.2.x.x

IuCS UP

10.4.x.x

IuR

10.29.x.x

OAM NodeB

10.129.x.x
10.13-15.x.x
10.32.x.x
10.39.x.x

3G
IP ROUTING IN BSC/RNC
- IP ROUTING (IPRT) should be created from BSC/RNC to other nodes to establish connection.
- For checking whether connection is open between BSC/RNC with other nodes we can use PING command.
- If no RTO found then we can create IP routing and UP/CP connection

DSTIP = IP Subnet
DSTMASK = Subnetmask
NEXTHOP = IP router
INTERFACE IP
We can know how many BTS grouped in a VLAN from IPRT command.
For example, Abis IP is set from 10.48.x.x to 10.54.x.x
From the CFGMML (LST IPRT) we got:

For IP Subnet=10.48.0.32, DSTMASK=255.255.255.224 (11111111.11111111.11111111.11100000)  #HOST = 25 -2 = 32
IP HOST/BTSIP = 10.48.0.32.0-62
IP BROADCAST=10.48.0.63
Other example for RNC CFGMML:

For IP Subnet=10.176.2.0, DSTMASK=255.255.255.0 (11111111.11111111.11111111.00000000)  #HOST = 28 -2 = 254
IP NODEBIP = 10.176.2.1-254
IP BROADCAST=10.176.2.255
IP BTS/NODEB/OAM NODEB
In Huawei we can check the IP address of BTS:
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

BTSIP:BTSID=0,
BTSIP:BTSID=1,
BTSIP:BTSID=2,
BTSIP:BTSID=3,
BTSIP:BTSID=4,
BTSIP:BTSID=5,
BTSIP:BTSID=6,
BTSIP:BTSID=7,
BTSIP:BTSID=8,
BTSIP:BTSID=9,

IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,
IDTYPE=BYID,

BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",
BSCIP="10.49.6.4",

BTSIP="10.49.7.38", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.7.39", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.6.102", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.48.70.69", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.6.207", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.7.40", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.6.166", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.6.38", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.6.39", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;
BTSIP="10.49.6.103", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF;

For NodeB IP address, we can get it from
ADD
ADD
ADD
ADD
ADD
ADD
ADD

ADJNODE:ANI=100,
ADJNODE:ANI=103,
ADJNODE:ANI=104,
ADJNODE:ANI=105,
ADJNODE:ANI=106,
ADJNODE:ANI=107,
ADJNODE:ANI=108,

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

IPPATH:ANI=100,
IPPATH:ANI=100,
IPPATH:ANI=100,
IPPATH:ANI=100,
IPPATH:ANI=103,
IPPATH:ANI=103,
IPPATH:ANI=103,
IPPATH:ANI=103,
IPPATH:ANI=104,
IPPATH:ANI=104,
IPPATH:ANI=104,
IPPATH:ANI=104,
IPPATH:ANI=105,
IPPATH:ANI=105,
IPPATH:ANI=105,
IPPATH:ANI=105,
IPPATH:ANI=106,
IPPATH:ANI=106,
IPPATH:ANI=106,
IPPATH:ANI=106,

NAME="JKP102",
NAME="JKP100",
NAME="JKP506",
NAME="JKB118",
NAME="JKB114",
NAME="JKP007",
NAME="JKP109",

PATHID=1,
PATHID=2,
PATHID=3,
PATHID=4,
PATHID=1,
PATHID=2,
PATHID=3,
PATHID=4,
PATHID=1,
PATHID=2,
PATHID=3,
PATHID=4,
PATHID=1,
PATHID=2,
PATHID=3,
PATHID=4,
PATHID=1,
PATHID=2,
PATHID=3,
PATHID=4,

NODET=IUB,
NODET=IUB,
NODET=IUB,
NODET=IUB,
NODET=IUB,
NODET=IUB,
NODET=IUB,

TRANST=IP,
TRANST=IP,
TRANST=IP,
TRANST=IP,
TRANST=IP,
TRANST=IP,
TRANST=IP,

IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",
IPADDR="10.176.0.4",

NODEBID=100;
NODEBID=103;
NODEBID=104;
NODEBID=105;
NODEBID=106;
NODEBID=107;
NODEBID=108;

PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500
PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500
PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=15000,
PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=1500
PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=1500
PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=1500
PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=15000
PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=150
PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=150
PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=150
PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500
PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15
PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15
IP CONNECTION for UP & CP
For User Plane, to deliver data in IP network between BSC & Other NE is set in below command:

ADD IPPATH:ANI=0, PATHID=0, IPADDR="10.4.19.4", PEERIPADDR="10.4.1.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW=
ADD IPPATH:ANI=0, PATHID=1, IPADDR="10.4.19.4", PEERIPADDR="10.4.3.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW=
ADD IPPATH:ANI=0, PATHID=2, IPADDR="10.4.19.4", PEERIPADDR="10.4.21.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW

IPADDR is IP address of Interface Port in BSC/RNC
PEERIPADDR is IP address of Other NE (MSS, MGW, SGSN, GGSN, etc)

For Control Plane, connection will establish if Stream Control Transmission Protocol link is set.
SCTP is Transport Layer protocol (same like TCP/UDP),
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,
SCTPLNK:SRN=0,

SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,
SN=0,

SCTPLNKN=0, APP=M3UA, PEERPN=6088, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6088, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=1, APP=M3UA, PEERPN=6089, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6089, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=2, APP=M3UA, PEERPN=6090, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6090, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=3, APP=M3UA, PEERPN=6091, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6091, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=4, APP=M3UA, PEERPN=6092, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6092, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=5, APP=M3UA, PEERPN=6093, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6093, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=6, APP=M3UA, PEERPN=6094, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6094, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=7, APP=M3UA, PEERPN=6095, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6095, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=20, APP=M3UA, PEERPN=6008, LOCIP1="10.6.226.132", PEERIP1="10.6.224.130", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO
SCTPLNKN=21, APP=M3UA, PEERPN=6008, LOCIP1="10.6.228.132", PEERIP1="10.6.224.131", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO
SCTPLNKN=22, APP=M3UA, PEERPN=7024, LOCIP1="10.6.226.132", PEERIP1="10.6.224.162", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO
SCTPLNKN=23, APP=M3UA, PEERPN=7024, LOCIP1="10.6.228.132", PEERIP1="10.6.224.163", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO
SCTPLNKN=24, APP=M3UA, PEERPN=2916, LOCIP1="10.6.226.132", PEERIP1="10.6.224.66", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MOD
SCTPLNKN=25, APP=M3UA, PEERPN=2916, LOCIP1="10.6.228.132", PEERIP1="10.6.224.67", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MOD
SCTPLNKN=30, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.17.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP=
SCTPLNKN=31, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.17.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP=
SCTPLNKN=32, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.19.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP=
SCTPLNKN=33, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.19.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP=
SCTPLNKN=34, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.18.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP=
SCTPLNKN=35, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.18.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP=
SCTPLNKN=36, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.2.4", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=CLI
SCTPLNKN=37, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.2.4", LOCPN=2906, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=CLI
SCTPLNKN=38, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.1.10", LOCPN=2910, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
SCTPLNKN=39, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.1.10", LOCPN=2911, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
IP IN LTE
IPV6
IPV6 compared to IPv4 has some advantages:
- Larger address space (contain 128 bits), means 2^128 = 3.4 x 10^38 IP address can be defined
- Multicasting
THANK YOU

More Related Content

What's hot

Best practices-lte-call-flow-guide
Best practices-lte-call-flow-guideBest practices-lte-call-flow-guide
Best practices-lte-call-flow-guide
Morg
 

What's hot (20)

Umts call-flows
Umts call-flowsUmts call-flows
Umts call-flows
 
Epc cups overview
Epc cups overviewEpc cups overview
Epc cups overview
 
Lte protocol Stack
Lte protocol StackLte protocol Stack
Lte protocol Stack
 
Lte outbound roaming_session
Lte outbound roaming_sessionLte outbound roaming_session
Lte outbound roaming_session
 
Initial LTE call Setup Flow
Initial LTE call Setup FlowInitial LTE call Setup Flow
Initial LTE call Setup Flow
 
Best practices-lte-call-flow-guide
Best practices-lte-call-flow-guideBest practices-lte-call-flow-guide
Best practices-lte-call-flow-guide
 
LTE Architecture
LTE ArchitectureLTE Architecture
LTE Architecture
 
LTE EPC Technology Essentials
LTE EPC Technology EssentialsLTE EPC Technology Essentials
LTE EPC Technology Essentials
 
LTE - Long Term Evolution
LTE - Long Term EvolutionLTE - Long Term Evolution
LTE - Long Term Evolution
 
Circuit switched fallback
Circuit switched fallbackCircuit switched fallback
Circuit switched fallback
 
Introduction to 4G Network
Introduction to 4G NetworkIntroduction to 4G Network
Introduction to 4G Network
 
LTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) IntroductionLTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) Introduction
 
Mobile computing Unit III MANET Notes
Mobile computing Unit III MANET NotesMobile computing Unit III MANET Notes
Mobile computing Unit III MANET Notes
 
03 150323115803-conversion-gate01
03 150323115803-conversion-gate0103 150323115803-conversion-gate01
03 150323115803-conversion-gate01
 
Part 1 fundamentals of 3 g
Part 1  fundamentals of 3 gPart 1  fundamentals of 3 g
Part 1 fundamentals of 3 g
 
5G_NR_Overview_Architecture_and_Operating_Modes
5G_NR_Overview_Architecture_and_Operating_Modes5G_NR_Overview_Architecture_and_Operating_Modes
5G_NR_Overview_Architecture_and_Operating_Modes
 
Paging in LTE
Paging in LTEPaging in LTE
Paging in LTE
 
190937694 csfb-call-flows
190937694 csfb-call-flows190937694 csfb-call-flows
190937694 csfb-call-flows
 
5G Network Architecture Options
5G Network Architecture Options5G Network Architecture Options
5G Network Architecture Options
 
FDD_LTE_19_New_Feature_Document.pdf.pdf
FDD_LTE_19_New_Feature_Document.pdf.pdfFDD_LTE_19_New_Feature_Document.pdf.pdf
FDD_LTE_19_New_Feature_Document.pdf.pdf
 

Viewers also liked

GSM 2.5G Migration
GSM 2.5G MigrationGSM 2.5G Migration
GSM 2.5G Migration
maddiv
 
Difference between hardware and  software computer hardware vs software
Difference between hardware and  software   computer hardware vs softwareDifference between hardware and  software   computer hardware vs software
Difference between hardware and  software computer hardware vs software
Swapan Das
 

Viewers also liked (20)

Ip ran v1.1
Ip ran v1.1Ip ran v1.1
Ip ran v1.1
 
Bsnl
BsnlBsnl
Bsnl
 
Mobile Services in Japan
Mobile Services in JapanMobile Services in Japan
Mobile Services in Japan
 
Future of Broadband workshop presentation - ITU Telecom World 2013
Future of Broadband workshop presentation - ITU Telecom World 2013Future of Broadband workshop presentation - ITU Telecom World 2013
Future of Broadband workshop presentation - ITU Telecom World 2013
 
Gsm radio-interface
Gsm radio-interfaceGsm radio-interface
Gsm radio-interface
 
Gsm product training technical cases
Gsm product training technical casesGsm product training technical cases
Gsm product training technical cases
 
GSM 2.5G Migration
GSM 2.5G MigrationGSM 2.5G Migration
GSM 2.5G Migration
 
Earthing and its importance.
Earthing and its importance.Earthing and its importance.
Earthing and its importance.
 
Broadband World Forum 2012 Highlights
Broadband World Forum 2012 HighlightsBroadband World Forum 2012 Highlights
Broadband World Forum 2012 Highlights
 
OFDM for LTE
OFDM for LTEOFDM for LTE
OFDM for LTE
 
Tdd Versus Fdd
Tdd Versus FddTdd Versus Fdd
Tdd Versus Fdd
 
Difference between hardware and  software computer hardware vs software
Difference between hardware and  software   computer hardware vs softwareDifference between hardware and  software   computer hardware vs software
Difference between hardware and  software computer hardware vs software
 
Tapping into the core
Tapping into the coreTapping into the core
Tapping into the core
 
Right Pricing Mobile Broadband ... Examining the Business Case for Mobile Bro...
Right Pricing Mobile Broadband ... Examining the Business Case for Mobile Bro...Right Pricing Mobile Broadband ... Examining the Business Case for Mobile Bro...
Right Pricing Mobile Broadband ... Examining the Business Case for Mobile Bro...
 
Mind Share: Right Pricing LTE ... and Mobile Broadband in general (A Technolo...
Mind Share: Right Pricing LTE ... and Mobile Broadband in general (A Technolo...Mind Share: Right Pricing LTE ... and Mobile Broadband in general (A Technolo...
Mind Share: Right Pricing LTE ... and Mobile Broadband in general (A Technolo...
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
huawei-lte-kpi-ref
huawei-lte-kpi-refhuawei-lte-kpi-ref
huawei-lte-kpi-ref
 
IP Mobile Backhaul Presentation
IP Mobile Backhaul PresentationIP Mobile Backhaul Presentation
IP Mobile Backhaul Presentation
 
Lte drive test parameter introduction
Lte drive test parameter introductionLte drive test parameter introduction
Lte drive test parameter introduction
 
Overview 5G Architecture Options from Deutsche Telekom
Overview 5G Architecture Options from Deutsche TelekomOverview 5G Architecture Options from Deutsche Telekom
Overview 5G Architecture Options from Deutsche Telekom
 

Similar to IP Concept in LTE

Ccnav5.org ccna 1-v50_itn_practice_final_exam_answers
Ccnav5.org ccna 1-v50_itn_practice_final_exam_answersCcnav5.org ccna 1-v50_itn_practice_final_exam_answers
Ccnav5.org ccna 1-v50_itn_practice_final_exam_answers
Đồng Quốc Vương
 
Ccna 1 chapter 6 v4.0 answers 2011
Ccna 1 chapter 6 v4.0 answers 2011Ccna 1 chapter 6 v4.0 answers 2011
Ccna 1 chapter 6 v4.0 answers 2011
Dân Chơi
 
Networking
NetworkingNetworking
Networking
Rashmi
 
Rashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptxRashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptx
ManojGowdaKb
 

Similar to IP Concept in LTE (20)

IP Addressing and Subnetting
IP Addressing and SubnettingIP Addressing and Subnetting
IP Addressing and Subnetting
 
Ccnav5.org ccna 1-v50_itn_practice_final_exam_answers
Ccnav5.org ccna 1-v50_itn_practice_final_exam_answersCcnav5.org ccna 1-v50_itn_practice_final_exam_answers
Ccnav5.org ccna 1-v50_itn_practice_final_exam_answers
 
Ip Addressing Basics
Ip Addressing BasicsIp Addressing Basics
Ip Addressing Basics
 
ccna 1 v5.0 itn practice final exam answers
ccna 1 v5.0 itn practice final exam answersccna 1 v5.0 itn practice final exam answers
ccna 1 v5.0 itn practice final exam answers
 
Bots.pdf
Bots.pdfBots.pdf
Bots.pdf
 
Ccna pres
Ccna presCcna pres
Ccna pres
 
Mod6
Mod6Mod6
Mod6
 
CCNA 1 v6.0 Final Exam Answers Option B 2018
CCNA 1 v6.0 Final Exam Answers Option B  2018CCNA 1 v6.0 Final Exam Answers Option B  2018
CCNA 1 v6.0 Final Exam Answers Option B 2018
 
Ccna1v3 mod10
Ccna1v3 mod10Ccna1v3 mod10
Ccna1v3 mod10
 
Subnetting class C
Subnetting class CSubnetting class C
Subnetting class C
 
Lecture 06
Lecture 06Lecture 06
Lecture 06
 
CCNA Icnd110 s04l03
CCNA Icnd110 s04l03CCNA Icnd110 s04l03
CCNA Icnd110 s04l03
 
Junos routing overview from Juniper
Junos routing overview from JuniperJunos routing overview from Juniper
Junos routing overview from Juniper
 
Ccna 1 chapter 6 v4.0 answers 2011
Ccna 1 chapter 6 v4.0 answers 2011Ccna 1 chapter 6 v4.0 answers 2011
Ccna 1 chapter 6 v4.0 answers 2011
 
Networking
NetworkingNetworking
Networking
 
Rashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptxRashmi T S-Intrenship PPT.pptx
Rashmi T S-Intrenship PPT.pptx
 
IPand subnet
IPand subnetIPand subnet
IPand subnet
 
CCNA 200-120 Exam Quick Notes
CCNA 200-120 Exam Quick NotesCCNA 200-120 Exam Quick Notes
CCNA 200-120 Exam Quick Notes
 
Ccna 4 Final 2 Version 4.0 Answers
Ccna 4 Final 2 Version 4.0 AnswersCcna 4 Final 2 Version 4.0 Answers
Ccna 4 Final 2 Version 4.0 Answers
 
IPv4 addressing and subnetting
IPv4 addressing and subnettingIPv4 addressing and subnetting
IPv4 addressing and subnetting
 

Recently uploaded

CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
giselly40
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Recently uploaded (20)

The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 

IP Concept in LTE

  • 3. EXECUTIVE SUMMARY 1. In the Next Generation Telecommunication (LTE), all communication devices will use IP as the identity. 2. IP will be used to define routing from one node to others and vice versa. IP is the 3rd layer in OSI standard. Layer 3 (Network layer) is used to bring packet from one node to other using logical address (Packet Forwarder/routing). 3. Allocation of IPV4 is limited. Therefore plan is needed and we can also divide IP network into some IP sub-network (subnetting) 4. IPv6 contain 128 bits (IPv4 only 32 bits). As the limitation of IP allocation, IPv6 will replace IPv4. 2
  • 4. OBJECTIVES After this presentation, participants will know:     OSI layer applied in LTE How to do Subnetting Grouping BTS/NodeB in a VLAN IP Configuration in BSC/RNC/LTE 3
  • 5. OSI layer applied in LTE - Overview - 4
  • 6. OSI LAYER Application: End User Interface (http, ftp, telnet, dns, etc) Data format sent: ASCII, binary, JPEG, other compression, etc. Open, maintain and terminate communication session: SQL, netbios, RPC, etc How to deliver data reliable or unreliable, connectionless (UDP) or connection oriented (TCP). It has function: error & flow control, sequence number, acknowledgement. Bring packet from one node to other using logical address (Packet Forwarder /Routing) Communication data between one node and others using Hardware Address (MAC, LLC, etc). It identify the topology used (PTP, PTM – FR/ATM, BUS, Token Rng, etc). Also function for error control and flow control. Change data from Data link  BITS 5
  • 7. OSI LAYER IN LTE User Plane & Control Plane User Plane Protocol Stack Control Plane Protocol Stack 6
  • 8. OSI LAYER IN UMTS CS & PS 7
  • 10. * * Downlink Physical Layer Procedures * For E-UTRA, the following downlink physical layer procedures are especially important: Cell search and synchronization: Scheduling: Link Adaptation: Hybrid ARQ (Automatic Repeat Request)
  • 11. * * Uplink Physical Layer Procedures * For E-UTRA, the following uplink physical layer procedures are especially important: Random access Uplink scheduling Uplink link adaptation Uplink timing control Hybrid ARQ
  • 16. The three sublayers are Medium access Control(MAC) Radio Link Control(RLC) Packet Data Convergence Protocol(PDCP) * [Source: E-UTRAN Architecture(3GPP TR 25.012 ]
  • 17. Packet Data Convergence Protocol 16
  • 21. Non Access Stratum Protocol 20
  • 23. Internet Protocol Overview From Wikipedia: The Internet Protocol (IP) is the principal communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. This function of ROUTING enables internetworking, and essentially establishes the Internet. Internet Protocol sends data packets with unreliable/connectionless (no warranty success or not) The responsibility is handled in upper layer. 22
  • 24. IP V4 Communication between TCP/IP network needs identity known as IP address. - IP address contain 32 bits. - IP address divided into Network ID and Host ID - 32 bits IP divided into 4 parts, each part has 8 bits. - Every 8 bits can be converted to decimal 0 to 255. Dec: xxx . xxx . xxx . xxx Bit : xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx Note: IPv6 has 128 bit 23
  • 25. IP V4 Classification xxxxxxxx . xxxxxxxx . xxxxxxxx . xxxxxxxx IP divided into 3 class Class A: Network ID (8bit) 0xxxxxxx Host ID (24 bit) xxxxxxxx.xxxxxxxx.xxxxxxxx Class B: Network ID (16 bit) 10xxxxxx.xxxxxxxx Host ID (16 bit) xxxxxxxx.xxxxxxxx Class C: Network ID (8bit) 110xxxxx.xxxxxxxx.xxxxxxxx Host ID (24 bit) xxxxxxxx Note: IPv6 has 128 bit 24
  • 26. IP V4 Classification Class Bit awal Jumlah Jaringan Jumlah Host Private IP address by International Assigned Number Authority (IANA) A 1 - 126 126 16 777 214 10.0.0.0 sampai 10.255.255.255 B 128 - 191 16 384 65 534 172.16.0.0 sampai 172.31.255.255 C 192 - 223 2 097 152 254 192.168.0.0 sampai 192.168.255.255 Note: 127.0.0.0 is used for loopback address 25
  • 27. IP Netmask To separate Network ID and Host ID, NETMASK is used with definition: - Network ID use binary 1 - Host ID use binary 0 Netmask natural: 11111111 00000000 00000000 00000000 = 255.0.0.0 11111111 11111111 00000000 00000000 = 255.255.0.0 11111111 11111111 11111111 00000000 = 255.255.255.0 Netmask bit Netmask Dec 1111 1111 255 1111 1110 254 1111 1100 252 1111 1000 248 1111 0000 240 1110 0000 224 1100 0000 192 1000 0000 128 26
  • 28. Broadcast Address & Network Address Broadcast address is needed in a network. Function of Broadcast Address: - To give information to the network for an existing service - Finding information in a network 192.168.1.2 192.168.1.4 192.168.1.3 192.168.1.0 192.168.1.1 Local broadcast: 255.255.255.255 Directed broadcast: 192.168.1.255 27 Network ID: 1st Host: : : Last host: IP broadcast: 192.168.1.0 192.168.1.1 : : 192.168.1.254 192.168.1.255
  • 29. Exercise Jaringan Class First IP Last IP Broadcast IP 10.0.0.0 A 10.0.0.1 10.255.255.254 10.255.255.255 128.3.0.0 B 128.3.0.1 128.3.255.254 128.3.255.255 172.16.0.0 B 172.16.0.1 172.16.255.254 172.16.255.255 192.168.16.0 C 192.168.16.1 192.168.16.254 192.168.16.255 191.254.0.0 B 191.254.0.1 191.254.255.254 191.254.255.255 224.19.2.0 C 224.19.2.1 224.19.2.254 224.19.2.255 223.253.25.0 C 223.253.25.1 223.253.25.254 223.253.25.255 126.0.0.0 A 126.0.0.1 126.255.255.254 126.255.255.255
  • 30. SUBNETTING Subnetting diperlukan untuk membangun SUB-Jaringan dari Jaringan yang ada. Subnetting diperlukan untuk lebih mengefisiensikan/utilize alokasi IP address yang ada. Tujuan Subnetting: - Memadukan teknologi jaringan yang berbeda Menghindari limitasi jumlah simpul dalam satu segmen Mereduksi traffic yang disebabkan oleh broadcast atau pun collision Jaringan di bawah ini bisa kita bagi menjadi beberapa sub-jaringan dengan menggunakan router. 192.168.1.2 192.168.1.3 192.168.1.4 192.168.1.0 192.168.1.1
  • 31. SUBNETTING Dari gambar sebelumnya kita akan membagi IP jaringan 192.168.1.0 menjadi 4 buah sub-jaringan. 192.168.1.0 mempunyai Network ID = 192.168.1.0 Broadcast ID = 192.168 1.255 Host ID = 192.168.1.1-254 192.168.1.0 192.168.1.128 192.168.1.64 192.168.1.192 Karena ada 4 subjaringan maka langkah selanjutnya adalah memecah IP tersebut menjadi 4 bagian. 192.168.1.0 = 11000000.10101000.00000001.00000000 Karena 4 subnet = 22 maka jumlah bit untuk subnet = 2 11000000.10101000.00000001.00000000 Simplenya 256/4 ~= 64 Sehingga didapat IP jaringan 4 subjaringan: - 192.168.1.0 - 192.168.1.64 - 192.168.1.128 - 192.168.1.192
  • 32. SUBNETTING Sub Network 1 Network ID = 192.168.1.0 = 11000000.10101000.00000001.00000000 Broadcast ID = 192.168.1.63 Host ID = 192.168.1.1-62 192.168.1.0 192.168.1.128 192.168.1.64 192.168.1.192 Sub Network 2 Network ID = 192.168.1.64 = 11000000.10101000.00000001.01000000 Broadcast ID = 192.168.1.127 Host ID = 192.168.1.65-126 Sub Network 3 Network ID = 192.168.1.128 = 11000000.10101000.00000001.10000000 Broadcast ID = 192.168.1.191 Host ID = 192.168.1.129-190 Sub Network 4 Network ID = 192.168.1.192 = 11000000.10101000.00000001.11000000 Broadcast ID = 192.168.1.255 Host ID = 192.168.1.193-254
  • 33. Exercise 1. Pada jaringan Class B & C dibutuhkan 50 subnet dengan masing2 dapat mempunyai 4 hosts. Berapa subnet bits yang dibutuhkan? Bisakah? Class B (172.16.0.0 = 10110000.00010000.00000000.00000000) Karena 50 ~ 64 = 26 maka bit subnet yang dibutuhkan adalah 6 bit. Sisa 10 bits  HOST 10110000.00010000.00000000.00000000 Class C (192.168.1.0 = 11000000.10101000.00000001.00000000) Karena 50 ~ 64 = 26 maka bit subnet yang dibutuhkan adalah 6 bit. Sisa 2 bits  HOST 11000000.10101000.00000001.00000000 2. Dari data di atas berapa subnet-mask nya? Ingat!! - Network ID use binary 1 - Host ID use binary 0 Maka subnet-mask adalah: Class B: 11111111.11111111.11111100.00000000 = 255.255.252.0 Class C: 11111111.11111111.11111111.11111100 = 255.255.255.252
  • 34. Exercise 3. Tentukan IP subnet/sub-jaringan dari Class B & C tersebut? Class B: 172.16.0.0 = 10110000.00010000.00000000.00000000 172.16.4.0 = 10110000.00010000.00000100.00000000 172.16.8.0 = 10110000.00010000.00001000.00000000 172.16.12.0 = 10110000.00010000.00001100.00000000 : : : 172.16.252.0 = 10110000.00010000.11111100.00000000
  • 36. GSM & UMTS IP TOPOLOGY
  • 37. INTERFACE IP ALLOCATION SYSTEM INTERFACE IP 2G Abis 10.48-54.x.x Gb 10.5.x.x AoIP CP 10.2.x.x AoIP UP 10.4.x.x IuB direct to RNC 10.13.x.x IuB 10.176-182.x.x IuPS CP/UP 10.6.x.x IuCS CP 10.2.x.x IuCS UP 10.4.x.x IuR 10.29.x.x OAM NodeB 10.129.x.x 10.13-15.x.x 10.32.x.x 10.39.x.x 3G
  • 38. IP ROUTING IN BSC/RNC - IP ROUTING (IPRT) should be created from BSC/RNC to other nodes to establish connection. - For checking whether connection is open between BSC/RNC with other nodes we can use PING command. - If no RTO found then we can create IP routing and UP/CP connection DSTIP = IP Subnet DSTMASK = Subnetmask NEXTHOP = IP router
  • 39. INTERFACE IP We can know how many BTS grouped in a VLAN from IPRT command. For example, Abis IP is set from 10.48.x.x to 10.54.x.x From the CFGMML (LST IPRT) we got: For IP Subnet=10.48.0.32, DSTMASK=255.255.255.224 (11111111.11111111.11111111.11100000)  #HOST = 25 -2 = 32 IP HOST/BTSIP = 10.48.0.32.0-62 IP BROADCAST=10.48.0.63 Other example for RNC CFGMML: For IP Subnet=10.176.2.0, DSTMASK=255.255.255.0 (11111111.11111111.11111111.00000000)  #HOST = 28 -2 = 254 IP NODEBIP = 10.176.2.1-254 IP BROADCAST=10.176.2.255
  • 40. IP BTS/NODEB/OAM NODEB In Huawei we can check the IP address of BTS: SET SET SET SET SET SET SET SET SET SET BTSIP:BTSID=0, BTSIP:BTSID=1, BTSIP:BTSID=2, BTSIP:BTSID=3, BTSIP:BTSID=4, BTSIP:BTSID=5, BTSIP:BTSID=6, BTSIP:BTSID=7, BTSIP:BTSID=8, BTSIP:BTSID=9, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BTSIP="10.49.7.38", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.7.39", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.102", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.48.70.69", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.207", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.7.40", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.166", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.38", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.39", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.103", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; For NodeB IP address, we can get it from ADD ADD ADD ADD ADD ADD ADD ADJNODE:ANI=100, ADJNODE:ANI=103, ADJNODE:ANI=104, ADJNODE:ANI=105, ADJNODE:ANI=106, ADJNODE:ANI=107, ADJNODE:ANI=108, ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD IPPATH:ANI=100, IPPATH:ANI=100, IPPATH:ANI=100, IPPATH:ANI=100, IPPATH:ANI=103, IPPATH:ANI=103, IPPATH:ANI=103, IPPATH:ANI=103, IPPATH:ANI=104, IPPATH:ANI=104, IPPATH:ANI=104, IPPATH:ANI=104, IPPATH:ANI=105, IPPATH:ANI=105, IPPATH:ANI=105, IPPATH:ANI=105, IPPATH:ANI=106, IPPATH:ANI=106, IPPATH:ANI=106, IPPATH:ANI=106, NAME="JKP102", NAME="JKP100", NAME="JKP506", NAME="JKB118", NAME="JKB114", NAME="JKP007", NAME="JKP109", PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", NODEBID=100; NODEBID=103; NODEBID=104; NODEBID=105; NODEBID=106; NODEBID=107; NODEBID=108; PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=15000, PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=15000 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=150 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=150 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=150 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15
  • 41. IP CONNECTION for UP & CP For User Plane, to deliver data in IP network between BSC & Other NE is set in below command: ADD IPPATH:ANI=0, PATHID=0, IPADDR="10.4.19.4", PEERIPADDR="10.4.1.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW= ADD IPPATH:ANI=0, PATHID=1, IPADDR="10.4.19.4", PEERIPADDR="10.4.3.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW= ADD IPPATH:ANI=0, PATHID=2, IPADDR="10.4.19.4", PEERIPADDR="10.4.21.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW IPADDR is IP address of Interface Port in BSC/RNC PEERIPADDR is IP address of Other NE (MSS, MGW, SGSN, GGSN, etc) For Control Plane, connection will establish if Stream Control Transmission Protocol link is set. SCTP is Transport Layer protocol (same like TCP/UDP), ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SCTPLNKN=0, APP=M3UA, PEERPN=6088, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6088, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=1, APP=M3UA, PEERPN=6089, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6089, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=2, APP=M3UA, PEERPN=6090, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6090, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=3, APP=M3UA, PEERPN=6091, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6091, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=4, APP=M3UA, PEERPN=6092, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6092, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=5, APP=M3UA, PEERPN=6093, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6093, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=6, APP=M3UA, PEERPN=6094, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6094, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=7, APP=M3UA, PEERPN=6095, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6095, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=20, APP=M3UA, PEERPN=6008, LOCIP1="10.6.226.132", PEERIP1="10.6.224.130", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=21, APP=M3UA, PEERPN=6008, LOCIP1="10.6.228.132", PEERIP1="10.6.224.131", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=22, APP=M3UA, PEERPN=7024, LOCIP1="10.6.226.132", PEERIP1="10.6.224.162", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=23, APP=M3UA, PEERPN=7024, LOCIP1="10.6.228.132", PEERIP1="10.6.224.163", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=24, APP=M3UA, PEERPN=2916, LOCIP1="10.6.226.132", PEERIP1="10.6.224.66", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MOD SCTPLNKN=25, APP=M3UA, PEERPN=2916, LOCIP1="10.6.228.132", PEERIP1="10.6.224.67", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MOD SCTPLNKN=30, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.17.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=31, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.17.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=32, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.19.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=33, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.19.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=34, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.18.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=35, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.18.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=36, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.2.4", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=CLI SCTPLNKN=37, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.2.4", LOCPN=2906, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=CLI SCTPLNKN=38, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.1.10", LOCPN=2910, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=39, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.1.10", LOCPN=2911, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
  • 43. IPV6 IPV6 compared to IPv4 has some advantages: - Larger address space (contain 128 bits), means 2^128 = 3.4 x 10^38 IP address can be defined - Multicasting