IP Concept in LTE

2,525 views

Published on

Published in: Technology

IP Concept in LTE

  1. 1. * http://id.linkedin.com/in/sofian/ http://babakhalid.com/
  2. 2. CONTENTS 1. EXECUTIVE SUMMARY 2. OBJECTIVES 1
  3. 3. EXECUTIVE SUMMARY 1. In the Next Generation Telecommunication (LTE), all communication devices will use IP as the identity. 2. IP will be used to define routing from one node to others and vice versa. IP is the 3rd layer in OSI standard. Layer 3 (Network layer) is used to bring packet from one node to other using logical address (Packet Forwarder/routing). 3. Allocation of IPV4 is limited. Therefore plan is needed and we can also divide IP network into some IP sub-network (subnetting) 4. IPv6 contain 128 bits (IPv4 only 32 bits). As the limitation of IP allocation, IPv6 will replace IPv4. 2
  4. 4. OBJECTIVES After this presentation, participants will know:     OSI layer applied in LTE How to do Subnetting Grouping BTS/NodeB in a VLAN IP Configuration in BSC/RNC/LTE 3
  5. 5. OSI layer applied in LTE - Overview - 4
  6. 6. OSI LAYER Application: End User Interface (http, ftp, telnet, dns, etc) Data format sent: ASCII, binary, JPEG, other compression, etc. Open, maintain and terminate communication session: SQL, netbios, RPC, etc How to deliver data reliable or unreliable, connectionless (UDP) or connection oriented (TCP). It has function: error & flow control, sequence number, acknowledgement. Bring packet from one node to other using logical address (Packet Forwarder /Routing) Communication data between one node and others using Hardware Address (MAC, LLC, etc). It identify the topology used (PTP, PTM – FR/ATM, BUS, Token Rng, etc). Also function for error control and flow control. Change data from Data link  BITS 5
  7. 7. OSI LAYER IN LTE User Plane & Control Plane User Plane Protocol Stack Control Plane Protocol Stack 6
  8. 8. OSI LAYER IN UMTS CS & PS 7
  9. 9. Layer 1 8
  10. 10. * * Downlink Physical Layer Procedures * For E-UTRA, the following downlink physical layer procedures are especially important: Cell search and synchronization: Scheduling: Link Adaptation: Hybrid ARQ (Automatic Repeat Request)
  11. 11. * * Uplink Physical Layer Procedures * For E-UTRA, the following uplink physical layer procedures are especially important: Random access Uplink scheduling Uplink link adaptation Uplink timing control Hybrid ARQ
  12. 12. Air Interface Physical 11
  13. 13. S1 Layer1 12
  14. 14. X2 Layer1 13
  15. 15. Layer 2 14
  16. 16. The three sublayers are Medium access Control(MAC) Radio Link Control(RLC) Packet Data Convergence Protocol(PDCP) * [Source: E-UTRAN Architecture(3GPP TR 25.012 ]
  17. 17. Packet Data Convergence Protocol 16
  18. 18. Radio Link Control 17
  19. 19. Medium Access Control 18
  20. 20. Radio Resource Control 19
  21. 21. Non Access Stratum Protocol 20
  22. 22. Internet Protocol Overview 21
  23. 23. Internet Protocol Overview From Wikipedia: The Internet Protocol (IP) is the principal communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. This function of ROUTING enables internetworking, and essentially establishes the Internet. Internet Protocol sends data packets with unreliable/connectionless (no warranty success or not) The responsibility is handled in upper layer. 22
  24. 24. IP V4 Communication between TCP/IP network needs identity known as IP address. - IP address contain 32 bits. - IP address divided into Network ID and Host ID - 32 bits IP divided into 4 parts, each part has 8 bits. - Every 8 bits can be converted to decimal 0 to 255. Dec: xxx . xxx . xxx . xxx Bit : xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx Note: IPv6 has 128 bit 23
  25. 25. IP V4 Classification xxxxxxxx . xxxxxxxx . xxxxxxxx . xxxxxxxx IP divided into 3 class Class A: Network ID (8bit) 0xxxxxxx Host ID (24 bit) xxxxxxxx.xxxxxxxx.xxxxxxxx Class B: Network ID (16 bit) 10xxxxxx.xxxxxxxx Host ID (16 bit) xxxxxxxx.xxxxxxxx Class C: Network ID (8bit) 110xxxxx.xxxxxxxx.xxxxxxxx Host ID (24 bit) xxxxxxxx Note: IPv6 has 128 bit 24
  26. 26. IP V4 Classification Class Bit awal Jumlah Jaringan Jumlah Host Private IP address by International Assigned Number Authority (IANA) A 1 - 126 126 16 777 214 10.0.0.0 sampai 10.255.255.255 B 128 - 191 16 384 65 534 172.16.0.0 sampai 172.31.255.255 C 192 - 223 2 097 152 254 192.168.0.0 sampai 192.168.255.255 Note: 127.0.0.0 is used for loopback address 25
  27. 27. IP Netmask To separate Network ID and Host ID, NETMASK is used with definition: - Network ID use binary 1 - Host ID use binary 0 Netmask natural: 11111111 00000000 00000000 00000000 = 255.0.0.0 11111111 11111111 00000000 00000000 = 255.255.0.0 11111111 11111111 11111111 00000000 = 255.255.255.0 Netmask bit Netmask Dec 1111 1111 255 1111 1110 254 1111 1100 252 1111 1000 248 1111 0000 240 1110 0000 224 1100 0000 192 1000 0000 128 26
  28. 28. Broadcast Address & Network Address Broadcast address is needed in a network. Function of Broadcast Address: - To give information to the network for an existing service - Finding information in a network 192.168.1.2 192.168.1.4 192.168.1.3 192.168.1.0 192.168.1.1 Local broadcast: 255.255.255.255 Directed broadcast: 192.168.1.255 27 Network ID: 1st Host: : : Last host: IP broadcast: 192.168.1.0 192.168.1.1 : : 192.168.1.254 192.168.1.255
  29. 29. Exercise Jaringan Class First IP Last IP Broadcast IP 10.0.0.0 A 10.0.0.1 10.255.255.254 10.255.255.255 128.3.0.0 B 128.3.0.1 128.3.255.254 128.3.255.255 172.16.0.0 B 172.16.0.1 172.16.255.254 172.16.255.255 192.168.16.0 C 192.168.16.1 192.168.16.254 192.168.16.255 191.254.0.0 B 191.254.0.1 191.254.255.254 191.254.255.255 224.19.2.0 C 224.19.2.1 224.19.2.254 224.19.2.255 223.253.25.0 C 223.253.25.1 223.253.25.254 223.253.25.255 126.0.0.0 A 126.0.0.1 126.255.255.254 126.255.255.255
  30. 30. SUBNETTING Subnetting diperlukan untuk membangun SUB-Jaringan dari Jaringan yang ada. Subnetting diperlukan untuk lebih mengefisiensikan/utilize alokasi IP address yang ada. Tujuan Subnetting: - Memadukan teknologi jaringan yang berbeda Menghindari limitasi jumlah simpul dalam satu segmen Mereduksi traffic yang disebabkan oleh broadcast atau pun collision Jaringan di bawah ini bisa kita bagi menjadi beberapa sub-jaringan dengan menggunakan router. 192.168.1.2 192.168.1.3 192.168.1.4 192.168.1.0 192.168.1.1
  31. 31. SUBNETTING Dari gambar sebelumnya kita akan membagi IP jaringan 192.168.1.0 menjadi 4 buah sub-jaringan. 192.168.1.0 mempunyai Network ID = 192.168.1.0 Broadcast ID = 192.168 1.255 Host ID = 192.168.1.1-254 192.168.1.0 192.168.1.128 192.168.1.64 192.168.1.192 Karena ada 4 subjaringan maka langkah selanjutnya adalah memecah IP tersebut menjadi 4 bagian. 192.168.1.0 = 11000000.10101000.00000001.00000000 Karena 4 subnet = 22 maka jumlah bit untuk subnet = 2 11000000.10101000.00000001.00000000 Simplenya 256/4 ~= 64 Sehingga didapat IP jaringan 4 subjaringan: - 192.168.1.0 - 192.168.1.64 - 192.168.1.128 - 192.168.1.192
  32. 32. SUBNETTING Sub Network 1 Network ID = 192.168.1.0 = 11000000.10101000.00000001.00000000 Broadcast ID = 192.168.1.63 Host ID = 192.168.1.1-62 192.168.1.0 192.168.1.128 192.168.1.64 192.168.1.192 Sub Network 2 Network ID = 192.168.1.64 = 11000000.10101000.00000001.01000000 Broadcast ID = 192.168.1.127 Host ID = 192.168.1.65-126 Sub Network 3 Network ID = 192.168.1.128 = 11000000.10101000.00000001.10000000 Broadcast ID = 192.168.1.191 Host ID = 192.168.1.129-190 Sub Network 4 Network ID = 192.168.1.192 = 11000000.10101000.00000001.11000000 Broadcast ID = 192.168.1.255 Host ID = 192.168.1.193-254
  33. 33. Exercise 1. Pada jaringan Class B & C dibutuhkan 50 subnet dengan masing2 dapat mempunyai 4 hosts. Berapa subnet bits yang dibutuhkan? Bisakah? Class B (172.16.0.0 = 10110000.00010000.00000000.00000000) Karena 50 ~ 64 = 26 maka bit subnet yang dibutuhkan adalah 6 bit. Sisa 10 bits  HOST 10110000.00010000.00000000.00000000 Class C (192.168.1.0 = 11000000.10101000.00000001.00000000) Karena 50 ~ 64 = 26 maka bit subnet yang dibutuhkan adalah 6 bit. Sisa 2 bits  HOST 11000000.10101000.00000001.00000000 2. Dari data di atas berapa subnet-mask nya? Ingat!! - Network ID use binary 1 - Host ID use binary 0 Maka subnet-mask adalah: Class B: 11111111.11111111.11111100.00000000 = 255.255.252.0 Class C: 11111111.11111111.11111111.11111100 = 255.255.255.252
  34. 34. Exercise 3. Tentukan IP subnet/sub-jaringan dari Class B & C tersebut? Class B: 172.16.0.0 = 10110000.00010000.00000000.00000000 172.16.4.0 = 10110000.00010000.00000100.00000000 172.16.8.0 = 10110000.00010000.00001000.00000000 172.16.12.0 = 10110000.00010000.00001100.00000000 : : : 172.16.252.0 = 10110000.00010000.11111100.00000000
  35. 35. TOPOLOGY 34
  36. 36. GSM & UMTS IP TOPOLOGY
  37. 37. INTERFACE IP ALLOCATION SYSTEM INTERFACE IP 2G Abis 10.48-54.x.x Gb 10.5.x.x AoIP CP 10.2.x.x AoIP UP 10.4.x.x IuB direct to RNC 10.13.x.x IuB 10.176-182.x.x IuPS CP/UP 10.6.x.x IuCS CP 10.2.x.x IuCS UP 10.4.x.x IuR 10.29.x.x OAM NodeB 10.129.x.x 10.13-15.x.x 10.32.x.x 10.39.x.x 3G
  38. 38. IP ROUTING IN BSC/RNC - IP ROUTING (IPRT) should be created from BSC/RNC to other nodes to establish connection. - For checking whether connection is open between BSC/RNC with other nodes we can use PING command. - If no RTO found then we can create IP routing and UP/CP connection DSTIP = IP Subnet DSTMASK = Subnetmask NEXTHOP = IP router
  39. 39. INTERFACE IP We can know how many BTS grouped in a VLAN from IPRT command. For example, Abis IP is set from 10.48.x.x to 10.54.x.x From the CFGMML (LST IPRT) we got: For IP Subnet=10.48.0.32, DSTMASK=255.255.255.224 (11111111.11111111.11111111.11100000)  #HOST = 25 -2 = 32 IP HOST/BTSIP = 10.48.0.32.0-62 IP BROADCAST=10.48.0.63 Other example for RNC CFGMML: For IP Subnet=10.176.2.0, DSTMASK=255.255.255.0 (11111111.11111111.11111111.00000000)  #HOST = 28 -2 = 254 IP NODEBIP = 10.176.2.1-254 IP BROADCAST=10.176.2.255
  40. 40. IP BTS/NODEB/OAM NODEB In Huawei we can check the IP address of BTS: SET SET SET SET SET SET SET SET SET SET BTSIP:BTSID=0, BTSIP:BTSID=1, BTSIP:BTSID=2, BTSIP:BTSID=3, BTSIP:BTSID=4, BTSIP:BTSID=5, BTSIP:BTSID=6, BTSIP:BTSID=7, BTSIP:BTSID=8, BTSIP:BTSID=9, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, IDTYPE=BYID, BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BSCIP="10.49.6.4", BTSIP="10.49.7.38", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.7.39", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.102", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.48.70.69", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.207", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.7.40", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.166", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.38", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.39", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; BTSIP="10.49.6.103", BTSCOMTYPE=PORTIP, HOSTTYPE=SINGLEHOST, CFGFLAG=NULL, BTSGWIPSWITCH=OFF; For NodeB IP address, we can get it from ADD ADD ADD ADD ADD ADD ADD ADJNODE:ANI=100, ADJNODE:ANI=103, ADJNODE:ANI=104, ADJNODE:ANI=105, ADJNODE:ANI=106, ADJNODE:ANI=107, ADJNODE:ANI=108, ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD IPPATH:ANI=100, IPPATH:ANI=100, IPPATH:ANI=100, IPPATH:ANI=100, IPPATH:ANI=103, IPPATH:ANI=103, IPPATH:ANI=103, IPPATH:ANI=103, IPPATH:ANI=104, IPPATH:ANI=104, IPPATH:ANI=104, IPPATH:ANI=104, IPPATH:ANI=105, IPPATH:ANI=105, IPPATH:ANI=105, IPPATH:ANI=105, IPPATH:ANI=106, IPPATH:ANI=106, IPPATH:ANI=106, IPPATH:ANI=106, NAME="JKP102", NAME="JKP100", NAME="JKP506", NAME="JKB118", NAME="JKB114", NAME="JKP007", NAME="JKP109", PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, PATHID=1, PATHID=2, PATHID=3, PATHID=4, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, NODET=IUB, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, TRANST=IP, IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", IPADDR="10.176.0.4", NODEBID=100; NODEBID=103; NODEBID=104; NODEBID=105; NODEBID=106; NODEBID=107; NODEBID=108; PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.230", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.22.229", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=15000, PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.6.68", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=15000 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=150 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=150 PEERIPADDR="10.176.44.69", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=150 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=EF, PEERMASK="255.255.255.255", TXBW=1500 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF43, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF23, PEERMASK="255.255.255.255", TXBW=15 PEERIPADDR="10.176.52.197", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=AF13, PEERMASK="255.255.255.255", TXBW=15
  41. 41. IP CONNECTION for UP & CP For User Plane, to deliver data in IP network between BSC & Other NE is set in below command: ADD IPPATH:ANI=0, PATHID=0, IPADDR="10.4.19.4", PEERIPADDR="10.4.1.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW= ADD IPPATH:ANI=0, PATHID=1, IPADDR="10.4.19.4", PEERIPADDR="10.4.3.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW= ADD IPPATH:ANI=0, PATHID=2, IPADDR="10.4.19.4", PEERIPADDR="10.4.21.0", VLANFLAG=DISABLE, CARRYFLAG=NULL, PATHT=QoS, PEERMASK="255.255.255.0", TXBW=400000, RXBW IPADDR is IP address of Interface Port in BSC/RNC PEERIPADDR is IP address of Other NE (MSS, MGW, SGSN, GGSN, etc) For Control Plane, connection will establish if Stream Control Transmission Protocol link is set. SCTP is Transport Layer protocol (same like TCP/UDP), ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SCTPLNK:SRN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SN=0, SCTPLNKN=0, APP=M3UA, PEERPN=6088, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6088, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=1, APP=M3UA, PEERPN=6089, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6089, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=2, APP=M3UA, PEERPN=6090, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6090, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=3, APP=M3UA, PEERPN=6091, LOCIP1="10.2.6.131", PEERIP1="10.2.6.150", LOCPN=6091, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=4, APP=M3UA, PEERPN=6092, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6092, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=5, APP=M3UA, PEERPN=6093, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6093, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=6, APP=M3UA, PEERPN=6094, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6094, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=7, APP=M3UA, PEERPN=6095, LOCIP1="10.2.6.131", PEERIP1="10.2.7.150", LOCPN=6095, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=20, APP=M3UA, PEERPN=6008, LOCIP1="10.6.226.132", PEERIP1="10.6.224.130", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=21, APP=M3UA, PEERPN=6008, LOCIP1="10.6.228.132", PEERIP1="10.6.224.131", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=22, APP=M3UA, PEERPN=7024, LOCIP1="10.6.226.132", PEERIP1="10.6.224.162", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=23, APP=M3UA, PEERPN=7024, LOCIP1="10.6.228.132", PEERIP1="10.6.224.163", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MO SCTPLNKN=24, APP=M3UA, PEERPN=2916, LOCIP1="10.6.226.132", PEERIP1="10.6.224.66", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MOD SCTPLNKN=25, APP=M3UA, PEERPN=2916, LOCIP1="10.6.228.132", PEERIP1="10.6.224.67", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MOD SCTPLNKN=30, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.17.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=31, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.17.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=32, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.19.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=33, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.19.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=34, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.18.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=35, APP=M3UA, PEERPN=2906, LOCIP1="10.29.1.4", PEERIP1="10.29.18.4", SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=SERVER, DSCP= SCTPLNKN=36, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.2.4", LOCPN=2905, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=CLI SCTPLNKN=37, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.2.4", LOCPN=2906, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=CLI SCTPLNKN=38, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.1.10", LOCPN=2910, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C SCTPLNKN=39, APP=M3UA, PEERPN=2905, LOCIP1="10.29.1.4", PEERIP1="10.29.1.10", LOCPN=2911, SWITCHBACKHBNUM=10, LOGPORTFLAG=NO, MODE=C
  42. 42. IP IN LTE
  43. 43. IPV6 IPV6 compared to IPv4 has some advantages: - Larger address space (contain 128 bits), means 2^128 = 3.4 x 10^38 IP address can be defined - Multicasting
  44. 44. THANK YOU

×