Zeta function for perturbed surfaces of revolution
Pedro Morales-Almaz´an
Department of Mathematics
The University of Texas at Austin
pmorales@math.utexas.edu
TexAMP 2016
Rice University, October 22, 2016
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Zeta Function
P is a differential operator
M a d dimensional manifold
Spectral Zeta Function
ζ(s) =
λ∈σ
λ=0
λ−s
for (s) > d.
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Surface of revolution
P = ∆ the
M surface of revolution y = f (x) > 0, x ∈ [a, b]
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Zeta Function
Zeta Function
ζ(s) =
∞
k=−∞
1
2πi γk
dλ λ−2s d
dλ
log φk(λ; b) ,
for (s) > 1 and φk(λ; x) is a solution to the radial ODE with
initial conditions φk(λ; a) = 0 , φk(λ; a) = 1 .
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Analytic Continuation
Plan
• Extend ζ(s) to the entire complex plane
• Integral representation is good for small λ (converge)
• Integral representation is bad for big λ (divergence)
• Analytic continuation (subtract the behavior for big λ)
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Analytic Continuation
WKB asymptotics
ζ(s) =
sin(πs)
π
∞
0
dλ λ−2s d
dλ
log F(iλ) − ♣
+
sin(πs)
π
∞
0
dλ λ−2s d
dλ
♣
for (s) > n(♣).
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Special values
Functional Determinant
Formally defined as exp(−ζ (0))Well defined since
Res ζ(0) = 0
Casimir Energy
The vacuum energy can be found by limh→0 ζ(−1/2 + h)
Not well defined!
Res ζ(−1/2) = −
1
256
f −1(a)f 2(a)
(1 + f 2(a))
+
f −1(b)f 2(b)
(1 + f 2(b))
−
1
32
f (a)
(1 + f 2(a))2
+
f (b)
(1 + f 2(b))2
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Special Values: Casimir
Q: How do we find a well defined quantity? A: Perturbation
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbed Surface of Revolution
• Perturb the profile function
f (x) → f (x) + g(x)
• Substitute this into the previous formalism
• Calculate the variation due to the perturbation
d
d
ζ(s)
=0
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Analytic Continuation
WKB asymptotics
ζ(s) =
sin(πs)
π
∞
0
dλ λ−2s d
dλ
log F(iλ) − ♣ (Finite)
+
sin(πs)
π
∞
0
dλ λ−2s d
dλ
♣ (Asymptotic)
Finite: Depend on f (x) and φk(λ; b) (More complex:???)
Asymptotic: Only depend on f (x) (Straightforward: Taylor Series)
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Asymptotic terms
WKB asymptotics
ζ(s) =
sin(πs)
π
∞
0
dλ λ−2s d
dλ
log F(iλ) − ♣ (Finite)
+
sin(πs)
π
∞
0
dλ λ−2s d
dλ
♣ (Asymptotic)
• ♣ only depends on f (x), hence doing f (x) → f (x) + g(x)
• find terms up to O( 2)
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Finite terms
WKB asymptotics
ζ(s) =
sin(πs)
π
∞
0
dλ λ−2s d
dλ
log F(iλ) − ♣ (Finite)
+
sin(πs)
π
∞
0
dλ λ−2s d
dλ
♣ (Asymptotic)
F +
f + g
f + g
−
(f + g ) (f + g )
1 + (f + g )2
F
+ 1 + f + g
2
λ2
−
k2
(f + g)2
F = 0 (O( 2
)) .
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Finite terms
• F = φ + ˆφ (O( 2))
• ˆφ functional derivative
• φ satisfies the original radial equation
• ˆφ satisfies a non-homogeneous version of the radial equation
ˆφ +
f
f
−
(f ) (f )
1 + (f )2
ˆφ
+ 1 + f
2
λ2
−
k2
f 2
ˆφ = G .
• use variation of parameters
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Zeta function
Zeta function
˜ζ(s) = ζ(s) + ˆζ(s) (O( 2
))
Effect of the perturbation
d
d
˜ζ(s)
=0
= ˆζ(s)
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Casimir Energy
∆E =
d
d
ζ∆ (−1/2)
=0
= −
1
2π
b
a
dt
f (t)
(f (t)2 + 1)3/2
g(t)
−
ζR (−2)
π
b
a
dt
f (t)f (t) + 2f (t)2
+ 2
f (t)3 (f (t)2 + 1)3/2
g(t)
+
1
16
b
a
dt
2f (t)3
f (t)2
+ 1 + f (t)f (t) 5f (t)2
− 3 f (t)
f (t)3 (f (t)2 + 1)5
g(t)
−
1
π
1
0
dλ λ
d
dλ
ˆφ0(b; ıλ)
φ0(b; ıλ)
−
1
π
∞
1
dλ λ
d
dλ
ˆφ0(b; ıλ)
φ0(b; ıλ)
−
2
i=−1
λ−i
b
a
dt
∂
∂
si (t)
=0
−
2
π
∞
k=1
k
∞
0
du u
d
du
ˆφk (b; ıuk)
φk (b; ıuk)
−
2
i=−1
k−i
b
a
dt
∂
∂
wi (t)
=0
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Cylinder
I = (c − δ, c + δ) ⊂ (a, b) , δ > 0
gδ(x, c) = χ(I) exp −
(x − c)
(x − c)2 − δ2
2
,
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Cylinder Gaussian Perturbation
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Perturbation: Cylinder Mixed Perturbation
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Conclusions
• The Casimir doesn’t get affected by perturbations made near
the center
• The interaction between an edge and a positive (negative)
perturbation results in a negative (positive) change of the
Casimir Energy
• The results agree with the existing calculations for infinite
cylinders
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
References
• Thalia D Jeffres, Klaus Kirsten & Tianshi Lu (2012). Zeta
function on surfaces of revolution. Journal of Physics A:
Mathematical and Theoretical, 45, 345201.
• M-A., P. (2016). Casimir energy for perturbed surfaces of
revolution. International Journal of Modern Physics A, 31,
1650044.
• Fucci, G. & M-A., P. Perturbed zeta functions on warped
manifolds, Coming soon!
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions
Questions
email: pmorales@math.utexas.edu
twitter: @p3d40
Pedro Morales-Almaz´an Math Department
Perturbed Zeta Functions

Zeta function for perturbed surfaces of revolution

  • 1.
    Zeta function forperturbed surfaces of revolution Pedro Morales-Almaz´an Department of Mathematics The University of Texas at Austin pmorales@math.utexas.edu TexAMP 2016 Rice University, October 22, 2016 Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 2.
    Zeta Function P isa differential operator M a d dimensional manifold Spectral Zeta Function ζ(s) = λ∈σ λ=0 λ−s for (s) > d. Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 3.
    Surface of revolution P= ∆ the M surface of revolution y = f (x) > 0, x ∈ [a, b] Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 4.
    Zeta Function Zeta Function ζ(s)= ∞ k=−∞ 1 2πi γk dλ λ−2s d dλ log φk(λ; b) , for (s) > 1 and φk(λ; x) is a solution to the radial ODE with initial conditions φk(λ; a) = 0 , φk(λ; a) = 1 . Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 5.
    Analytic Continuation Plan • Extendζ(s) to the entire complex plane • Integral representation is good for small λ (converge) • Integral representation is bad for big λ (divergence) • Analytic continuation (subtract the behavior for big λ) Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 6.
    Analytic Continuation WKB asymptotics ζ(s)= sin(πs) π ∞ 0 dλ λ−2s d dλ log F(iλ) − ♣ + sin(πs) π ∞ 0 dλ λ−2s d dλ ♣ for (s) > n(♣). Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 7.
    Special values Functional Determinant Formallydefined as exp(−ζ (0))Well defined since Res ζ(0) = 0 Casimir Energy The vacuum energy can be found by limh→0 ζ(−1/2 + h) Not well defined! Res ζ(−1/2) = − 1 256 f −1(a)f 2(a) (1 + f 2(a)) + f −1(b)f 2(b) (1 + f 2(b)) − 1 32 f (a) (1 + f 2(a))2 + f (b) (1 + f 2(b))2 Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 8.
    Special Values: Casimir Q:How do we find a well defined quantity? A: Perturbation Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 9.
    Perturbed Surface ofRevolution • Perturb the profile function f (x) → f (x) + g(x) • Substitute this into the previous formalism • Calculate the variation due to the perturbation d d ζ(s) =0 Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 10.
    Analytic Continuation WKB asymptotics ζ(s)= sin(πs) π ∞ 0 dλ λ−2s d dλ log F(iλ) − ♣ (Finite) + sin(πs) π ∞ 0 dλ λ−2s d dλ ♣ (Asymptotic) Finite: Depend on f (x) and φk(λ; b) (More complex:???) Asymptotic: Only depend on f (x) (Straightforward: Taylor Series) Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 11.
    Perturbation: Asymptotic terms WKBasymptotics ζ(s) = sin(πs) π ∞ 0 dλ λ−2s d dλ log F(iλ) − ♣ (Finite) + sin(πs) π ∞ 0 dλ λ−2s d dλ ♣ (Asymptotic) • ♣ only depends on f (x), hence doing f (x) → f (x) + g(x) • find terms up to O( 2) Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 12.
    Perturbation: Finite terms WKBasymptotics ζ(s) = sin(πs) π ∞ 0 dλ λ−2s d dλ log F(iλ) − ♣ (Finite) + sin(πs) π ∞ 0 dλ λ−2s d dλ ♣ (Asymptotic) F + f + g f + g − (f + g ) (f + g ) 1 + (f + g )2 F + 1 + f + g 2 λ2 − k2 (f + g)2 F = 0 (O( 2 )) . Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 13.
    Perturbation: Finite terms •F = φ + ˆφ (O( 2)) • ˆφ functional derivative • φ satisfies the original radial equation • ˆφ satisfies a non-homogeneous version of the radial equation ˆφ + f f − (f ) (f ) 1 + (f )2 ˆφ + 1 + f 2 λ2 − k2 f 2 ˆφ = G . • use variation of parameters Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 14.
    Perturbation: Zeta function Zetafunction ˜ζ(s) = ζ(s) + ˆζ(s) (O( 2 )) Effect of the perturbation d d ˜ζ(s) =0 = ˆζ(s) Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 15.
    Perturbation: Casimir Energy ∆E= d d ζ∆ (−1/2) =0 = − 1 2π b a dt f (t) (f (t)2 + 1)3/2 g(t) − ζR (−2) π b a dt f (t)f (t) + 2f (t)2 + 2 f (t)3 (f (t)2 + 1)3/2 g(t) + 1 16 b a dt 2f (t)3 f (t)2 + 1 + f (t)f (t) 5f (t)2 − 3 f (t) f (t)3 (f (t)2 + 1)5 g(t) − 1 π 1 0 dλ λ d dλ ˆφ0(b; ıλ) φ0(b; ıλ) − 1 π ∞ 1 dλ λ d dλ ˆφ0(b; ıλ) φ0(b; ıλ) − 2 i=−1 λ−i b a dt ∂ ∂ si (t) =0 − 2 π ∞ k=1 k ∞ 0 du u d du ˆφk (b; ıuk) φk (b; ıuk) − 2 i=−1 k−i b a dt ∂ ∂ wi (t) =0 Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 16.
    Perturbation: Cylinder I =(c − δ, c + δ) ⊂ (a, b) , δ > 0 gδ(x, c) = χ(I) exp − (x − c) (x − c)2 − δ2 2 , Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 17.
    Perturbation: Cylinder GaussianPerturbation Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 18.
    Perturbation: Cylinder MixedPerturbation Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 19.
    Conclusions • The Casimirdoesn’t get affected by perturbations made near the center • The interaction between an edge and a positive (negative) perturbation results in a negative (positive) change of the Casimir Energy • The results agree with the existing calculations for infinite cylinders Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 20.
    References • Thalia DJeffres, Klaus Kirsten & Tianshi Lu (2012). Zeta function on surfaces of revolution. Journal of Physics A: Mathematical and Theoretical, 45, 345201. • M-A., P. (2016). Casimir energy for perturbed surfaces of revolution. International Journal of Modern Physics A, 31, 1650044. • Fucci, G. & M-A., P. Perturbed zeta functions on warped manifolds, Coming soon! Pedro Morales-Almaz´an Math Department Perturbed Zeta Functions
  • 21.
    Questions email: pmorales@math.utexas.edu twitter: @p3d40 PedroMorales-Almaz´an Math Department Perturbed Zeta Functions