Universidad Nacional Andr´es Bello
Departamento de Matem´aticas
C´alculo Integral
Profesor Javier Olivos
Resumen de Integrales. Autor: Mauricio Vargas
Integrales B´asicas
1. dx = x + c
2. kdx = kx + c (k cte)
3. xn
dx =
xn+1
n + 1
+ c, n = −1
4.
1
x
dx = ln(|x|) + c
5. eax
dx =
eax
a
+ c
6. abx
dx =
abx
ln(a) · b
+ c, a > 0
7. sen(x)dx = − cos(x)dx + c
8. cos(x)dx = sen(x) + c
9. tan(x)dx = ln | sec(x)| + c
10. cotan(x)dx = ln | sen(x)| + c
11. sec(x)dx = ln | sec(x) + tan(x)| + c
12. cosec(x) = ln | cosec(x) − cotan(x)| + c
13. sec2
(x)dx = tan(x) + c
14. cosec2
(x)dx = −cotan(x) + c
15. sec(x) tan(x)dx = sec(x) + c
16. cosec(x)cotan(x)dx = − cosec(x) + c
17.
1
a2 + x2
dx =
1
a
arctan
x
a
+ c
18.
1
a2 − x2
dx =
−1
2a
ln
x − a
x + a
+ c
19.
1
x2 − a2
dx =
1
2a
ln
x − a
x + a
+ c
Sustituci´on
g(f(x)) · f (x)dx = g(u)du el cambio de variable es u = f(x)
Integraci´on por partes
udv = uv − vdu
Identidades trigonom´etricas
1. sen2
(x) + cos2
(x) = 1
2. tan(x) =
sen(x)
cos(x)
3. cotan(x) =
cos(x)
sen(x)
4. sec(x) =
1
cos(x)
5. cosec(x) =
1
sec(x)
6. 1 + tan2
(x) = sec2
(x)
7. 1 + cotan2
(x) = cosec2
(x)
8. sen(2x) = 2 sen(x) cos(x)
9. cos(2x) = cos2
(x) − sen2
(x)
10. tan(2x) =
2 tan(x)
1 − tan2
(x)
11. sen2
(x) =
1 − cos(2x)
2
12. cos2
(x) =
1 + cos(2x)
2
13. tan2
(x) =
1 − cos(2x)
1 + cos(2x)
14. sen(2x) =
2 tan(x)
1 + tan2
(x)
15. cos(2x) =
1 − tan2
(x)
1 + tan2
(x)
Identidades adicionales
1. sen(x ± y) = sen(x) cos(y) ± sen(y) cos(x)
2. cos(x ± y) = cos(x) cos(y) sen(y) sen(x)
3. tan(x ± y) =
tan(x) ± tan(y)
1 tan(x) tan(y)
4. sen(x) sen(y) =
1
2
[cos(x − y) − cos(x + y)]
5. sen(x) cos(y) =
1
2
[sen(x + y) + sen(x − y)]
6. cos(x) cos(y) =
1
2
[cos(x + y) + cos(x − y)]

Resumen de Integrales (Cálculo Diferencial e Integral UNAB)

  • 1.
    Universidad Nacional Andr´esBello Departamento de Matem´aticas C´alculo Integral Profesor Javier Olivos Resumen de Integrales. Autor: Mauricio Vargas Integrales B´asicas 1. dx = x + c 2. kdx = kx + c (k cte) 3. xn dx = xn+1 n + 1 + c, n = −1 4. 1 x dx = ln(|x|) + c 5. eax dx = eax a + c 6. abx dx = abx ln(a) · b + c, a > 0 7. sen(x)dx = − cos(x)dx + c 8. cos(x)dx = sen(x) + c 9. tan(x)dx = ln | sec(x)| + c 10. cotan(x)dx = ln | sen(x)| + c 11. sec(x)dx = ln | sec(x) + tan(x)| + c 12. cosec(x) = ln | cosec(x) − cotan(x)| + c 13. sec2 (x)dx = tan(x) + c 14. cosec2 (x)dx = −cotan(x) + c 15. sec(x) tan(x)dx = sec(x) + c 16. cosec(x)cotan(x)dx = − cosec(x) + c 17. 1 a2 + x2 dx = 1 a arctan x a + c 18. 1 a2 − x2 dx = −1 2a ln x − a x + a + c 19. 1 x2 − a2 dx = 1 2a ln x − a x + a + c Sustituci´on g(f(x)) · f (x)dx = g(u)du el cambio de variable es u = f(x) Integraci´on por partes udv = uv − vdu Identidades trigonom´etricas 1. sen2 (x) + cos2 (x) = 1 2. tan(x) = sen(x) cos(x) 3. cotan(x) = cos(x) sen(x) 4. sec(x) = 1 cos(x) 5. cosec(x) = 1 sec(x) 6. 1 + tan2 (x) = sec2 (x) 7. 1 + cotan2 (x) = cosec2 (x) 8. sen(2x) = 2 sen(x) cos(x) 9. cos(2x) = cos2 (x) − sen2 (x) 10. tan(2x) = 2 tan(x) 1 − tan2 (x) 11. sen2 (x) = 1 − cos(2x) 2 12. cos2 (x) = 1 + cos(2x) 2 13. tan2 (x) = 1 − cos(2x) 1 + cos(2x) 14. sen(2x) = 2 tan(x) 1 + tan2 (x) 15. cos(2x) = 1 − tan2 (x) 1 + tan2 (x) Identidades adicionales 1. sen(x ± y) = sen(x) cos(y) ± sen(y) cos(x) 2. cos(x ± y) = cos(x) cos(y) sen(y) sen(x) 3. tan(x ± y) = tan(x) ± tan(y) 1 tan(x) tan(y) 4. sen(x) sen(y) = 1 2 [cos(x − y) − cos(x + y)] 5. sen(x) cos(y) = 1 2 [sen(x + y) + sen(x − y)] 6. cos(x) cos(y) = 1 2 [cos(x + y) + cos(x − y)]