SlideShare a Scribd company logo
EFFECT OF CEMENTITE PARTICLES IN FORMATION OF HIGH ANGLE
BOUNDARIES AND OF ULTRAFINE GRAINS IN LOW CARBON STEEL. Otavio Villar
da Silva Neto(1) and Oscar Balancin(1). (1)Department of Materials Engineering, Federal
University of São Carlos (DEMa/UFSCar),Via Washington Luiz, Km 235, 13.565-905, São
Carlos, São Paulo State, Brazil. Email: pvillar@iris.ufscar.br


Nowadays, great efforts have been destining to obtain steels with ultrafine grains through viable
industrially routes. These efforts are justified by costs reduction with the alloy elements and the
improvement properties from plain carbon steels, which increase the aggregated value and its
commercial range application. However, to obtain ultrafine grains steels with stable
microstructure represents a hard task, owing a strong tendency for grains growth [1]. For this
reason, some fine grains microstructures are inherently unstable which turns necessary to promote
mechanisms that restrict grain boundaries movement to stabilize these microstructures [2,3,4].
The cementite particles precipitation during the thermomechanical processing can produce a
stable and homogeneous microstructure [5,6,7,8,9,10]. In this work, the influence of cementite
precipitation in microstructure refinement of a low carbon steel, as well, the high angle
boundaries generation during the warm processing were investigated. During the accomplishment
of this work, two steels were used; a 0,16C steel (Cosar) and another of ultra-low carbon (IF), as
reference. The subcritic field deformation in quenched and tempered samples, was previously
imposed by torsion test. The use of the EBSD (Electron Backscattering Diffraction)
technique, accomplished in a Philips microscope of high resolution, XL30 FEG (30KV)
model, enabled the attainment of data related to the misorientation amongst grains and/or
sub-grains after isothermals torsion test. Heavy deformations ( ε = 5 ) were applied through
warm torsion tests at 685ºC at equivalent strain rate of 0.1 s-1. They also carried through
tests with interruptions after pre-defined deformation amounts – 0, 1, 2, 3, 4 and 5 – in
which the samples were water cooled, allowing the study of the microstructural evolution
on the condition of 0.1 s-1 deformation. The 0,16C steel deformation results were compared
with the IF steel, which allowed verify the influence of the cementite particles precipitate during
the processing. It was evidenced that the cementite precipitation and the ferrite dynamic
recristallyzation are responsible for the formation of high angle boundaries, as well as by intense
grain refinement during the subcritic deformation.


References

[1] M. A. F. Oliveira, A.M. Jorge Jr. and O. Balancin, Scripta materialia (2004) 50, 1157-1162.
[2] P. A. Manohar; T. Chandra and C. R. Kilmore, ISIJ int. (1996) 36, 1486-1493.
[3] X. Liu; J. K. Solberg and R. Gjengendal, Mater. sci. technol. (1996) 12, 345-350.
[4] M. Niikura et al., Journal of materials processing technology (2001) 117, 341-346.
[5] D. H. Shin; Y. –S. Kim and J. Lavernia, Acta Mater. (2001) vol. 48, 2387-2393.
[6] D. H. Shin; K.-T. Park and Y.-S. Kim, Metall. and Mat. Transactions (2001) 32A, 2373-2381.
[7] X. J. Hao et al., Materials Science and Technology (2001) vol. 17, 1347-1352.
[8] Y. D. Huang et al., Journal of Materials Processing Technology (2003) 134, 19-25.
[9] O. V. Silva Neto and O. Balancin, in Proceedings CONAMET/SAM Cong. (2004) 237-242.
[10] O. V. Silva Neto and O. Balancin, in 8th Inter American Congress of Electron Microscopy,
La Habana, Cuba (2005).
(a)                                                            (b)                                                                          (c)
 Figure 1 – Ultrafine ferrite grains in strained specimens (0,16C steel): a) ε = 0,0 , b) ε = 3,0 e c) ε = 5,0 .

                                                                                                                                         100

                                                                                                                                          90

                                                                                                                                          80




                                                                                                             High Angle Boundary [%]
                                                                                                                                          70

                                                                                                                                          60

                                                                                                                                          50

                                                                                                                                          40

                                                                                                                                          30

                                                                                                                                          20

                                                                                                                                          10

                                                                                                                                          0
                                                                                                                                               0       1       2             3          4        5        6
                                                                                                                                                                         Strain


                                       (a)                                               (b)                                                                           (c)
Figure 2 – a) Inverse polo figure- ε = 4 ; b) colors code [001]; c) strain x % disorientation angle - 0,16C.

                  24 0



                  20 0



                  16 0
   Stress [MPa]




                  12 0



                   80
                                                          -1
                                                   0,1s
                                                     C osar
                   40                                IF


                    0
                         0,0   0,5   1,0     1,5    2,0        2,5   3,0   3,5   4,0   4,5     5,0

                                                    D eform ação

                                                                                                       (a)                                                                                                     (b)
Figure 3 – (a) Flow stress curves; (b) Fe3C precipitated anchoring grains boundaries (Cosar steel).

                                                                                                                                         100

                                                                                                                                          90

                                                                                                                                          80
                                                                                                               High Angle Boundary [%]




                                                                                                                                          70

                                                                                                                                          60

                                                                                                                                          50

                                                                                                                                          40

                                                                                                                                          30

                                                                                                                                          20

                                                                                                                                          10

                                                                                                                                           0
                                                                                                                                               0   2       4       6         8     10       12       14   16
                                                                                                                                                                         Strain


                                       (a)                                               (b)                                                                           (c)
Figure 4 –a) Inverse polo figure - ε = 0 ; b) colors code [001]; c) strain x % disorientation angle – IF.

More Related Content

What's hot

Salamian dv club_foils_intel_austin
Salamian dv club_foils_intel_austinSalamian dv club_foils_intel_austin
Salamian dv club_foils_intel_austin
Obsidian Software
 
스타마즈-엔젤클럽-협력이벤트
스타마즈-엔젤클럽-협력이벤트스타마즈-엔젤클럽-협력이벤트
스타마즈-엔젤클럽-협력이벤트
Kwangshick Kim
 
Synopsis format
Synopsis formatSynopsis format
Synopsis format
Subrat Srivastava
 
Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...
Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...
Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...
CIAT
 
143. Belmont Stakes
143. Belmont Stakes143. Belmont Stakes
143. Belmont Stakes
racingportal
 
Vitol Group Brochure 2011
Vitol Group Brochure 2011Vitol Group Brochure 2011
Vitol Group Brochure 2011
spratnoco
 
If chemistry workbook ch099 a
If chemistry workbook ch099 aIf chemistry workbook ch099 a
If chemistry workbook ch099 a
Julia vbvvvhgcv
 
Q4 presentation
Q4 presentationQ4 presentation
Q4 presentation
Kjell Brataas
 
Ch099 a ch02-if-wkshts
Ch099 a ch02-if-wkshtsCh099 a ch02-if-wkshts
Ch099 a ch02-if-wkshts
Julia vbvvvhgcv
 
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
CORE-Materials
 
Meta evaluation presentation 010611secondpresentation
Meta evaluation presentation 010611secondpresentationMeta evaluation presentation 010611secondpresentation
Meta evaluation presentation 010611secondpresentation
MacrocellKM
 
NRTEE: Kirsten Vice
NRTEE: Kirsten ViceNRTEE: Kirsten Vice
NRTEE: Kirsten Vice
Izabela Popova
 
Session 55_1 Andreas Tapani
Session 55_1 Andreas TapaniSession 55_1 Andreas Tapani
Session 55_1 Andreas Tapani
Transportforum (VTI)
 
Proyecto en Manila Filipinas.
Proyecto en Manila Filipinas.Proyecto en Manila Filipinas.
Proyecto en Manila Filipinas.
Mauricio Navarro
 
Peter Hofman
Peter HofmanPeter Hofman
Peter Hofman
Avocados Australia
 
Q-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum PrincipleQ-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum Principle
Sean Meyn
 
Extension Works for Djen Djen Port Protection
Extension Works for Djen Djen Port ProtectionExtension Works for Djen Djen Port Protection
Extension Works for Djen Djen Port Protection
lyesdz
 
Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)
Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)
Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)
Steve Williams
 
The Power of Cost Curves in Business Communication
The Power of Cost Curves in Business CommunicationThe Power of Cost Curves in Business Communication
The Power of Cost Curves in Business Communication
Cerebel Consulting
 
Nmb pm35 l-048_stepper_motor
Nmb pm35 l-048_stepper_motorNmb pm35 l-048_stepper_motor
Nmb pm35 l-048_stepper_motor
Total Project Solutions
 

What's hot (20)

Salamian dv club_foils_intel_austin
Salamian dv club_foils_intel_austinSalamian dv club_foils_intel_austin
Salamian dv club_foils_intel_austin
 
스타마즈-엔젤클럽-협력이벤트
스타마즈-엔젤클럽-협력이벤트스타마즈-엔젤클럽-협력이벤트
스타마즈-엔젤클럽-협력이벤트
 
Synopsis format
Synopsis formatSynopsis format
Synopsis format
 
Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...
Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...
Spatial and Temporal Expression of a Citrate Permease and Aluminium-induced C...
 
143. Belmont Stakes
143. Belmont Stakes143. Belmont Stakes
143. Belmont Stakes
 
Vitol Group Brochure 2011
Vitol Group Brochure 2011Vitol Group Brochure 2011
Vitol Group Brochure 2011
 
If chemistry workbook ch099 a
If chemistry workbook ch099 aIf chemistry workbook ch099 a
If chemistry workbook ch099 a
 
Q4 presentation
Q4 presentationQ4 presentation
Q4 presentation
 
Ch099 a ch02-if-wkshts
Ch099 a ch02-if-wkshtsCh099 a ch02-if-wkshts
Ch099 a ch02-if-wkshts
 
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
 
Meta evaluation presentation 010611secondpresentation
Meta evaluation presentation 010611secondpresentationMeta evaluation presentation 010611secondpresentation
Meta evaluation presentation 010611secondpresentation
 
NRTEE: Kirsten Vice
NRTEE: Kirsten ViceNRTEE: Kirsten Vice
NRTEE: Kirsten Vice
 
Session 55_1 Andreas Tapani
Session 55_1 Andreas TapaniSession 55_1 Andreas Tapani
Session 55_1 Andreas Tapani
 
Proyecto en Manila Filipinas.
Proyecto en Manila Filipinas.Proyecto en Manila Filipinas.
Proyecto en Manila Filipinas.
 
Peter Hofman
Peter HofmanPeter Hofman
Peter Hofman
 
Q-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum PrincipleQ-Learning and Pontryagin's Minimum Principle
Q-Learning and Pontryagin's Minimum Principle
 
Extension Works for Djen Djen Port Protection
Extension Works for Djen Djen Port ProtectionExtension Works for Djen Djen Port Protection
Extension Works for Djen Djen Port Protection
 
Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)
Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)
Moffett RAB Progress Report- Sites 26 (EATS) and 28 (WATS)
 
The Power of Cost Curves in Business Communication
The Power of Cost Curves in Business CommunicationThe Power of Cost Curves in Business Communication
The Power of Cost Curves in Business Communication
 
Nmb pm35 l-048_stepper_motor
Nmb pm35 l-048_stepper_motorNmb pm35 l-048_stepper_motor
Nmb pm35 l-048_stepper_motor
 

Viewers also liked

Abm 2000 hc9494_villar
Abm 2000 hc9494_villarAbm 2000 hc9494_villar
Abm 2000 hc9494_villar
Karina Mello
 
Apresentação mig mag
Apresentação mig magApresentação mig mag
Apresentação mig mag
Mara Júnia
 
Esab apostila eletrodosrevestidos
Esab apostila eletrodosrevestidosEsab apostila eletrodosrevestidos
Esab apostila eletrodosrevestidos
Lima Valdecy
 
Trb0807 cobem 2001_villar
Trb0807 cobem 2001_villarTrb0807 cobem 2001_villar
Trb0807 cobem 2001_villar
Karina Mello
 
Curso de-soldagem-mig-mag-1211151057881888-8
Curso de-soldagem-mig-mag-1211151057881888-8Curso de-soldagem-mig-mag-1211151057881888-8
Curso de-soldagem-mig-mag-1211151057881888-8
Ginho_Neder
 
Forjamento
ForjamentoForjamento
Forjamento
dougyanci
 
Solda aula 3- processos
Solda   aula 3- processosSolda   aula 3- processos
Solda aula 3- processos
Roberto Villardo
 
Soldagem Mig Mag Apostila
Soldagem Mig Mag ApostilaSoldagem Mig Mag Apostila
Soldagem Mig Mag Apostila
saitama32
 
Apostila arco submerso
Apostila arco submersoApostila arco submerso
Apostila arco submerso
Okutagawa
 
Villar cim2011 es
Villar cim2011 esVillar cim2011 es
Villar cim2011 es
Karina Mello
 

Viewers also liked (10)

Abm 2000 hc9494_villar
Abm 2000 hc9494_villarAbm 2000 hc9494_villar
Abm 2000 hc9494_villar
 
Apresentação mig mag
Apresentação mig magApresentação mig mag
Apresentação mig mag
 
Esab apostila eletrodosrevestidos
Esab apostila eletrodosrevestidosEsab apostila eletrodosrevestidos
Esab apostila eletrodosrevestidos
 
Trb0807 cobem 2001_villar
Trb0807 cobem 2001_villarTrb0807 cobem 2001_villar
Trb0807 cobem 2001_villar
 
Curso de-soldagem-mig-mag-1211151057881888-8
Curso de-soldagem-mig-mag-1211151057881888-8Curso de-soldagem-mig-mag-1211151057881888-8
Curso de-soldagem-mig-mag-1211151057881888-8
 
Forjamento
ForjamentoForjamento
Forjamento
 
Solda aula 3- processos
Solda   aula 3- processosSolda   aula 3- processos
Solda aula 3- processos
 
Soldagem Mig Mag Apostila
Soldagem Mig Mag ApostilaSoldagem Mig Mag Apostila
Soldagem Mig Mag Apostila
 
Apostila arco submerso
Apostila arco submersoApostila arco submerso
Apostila arco submerso
 
Villar cim2011 es
Villar cim2011 esVillar cim2011 es
Villar cim2011 es
 

Similar to Villar ciasem 2007

Ciasem 2005 villar
Ciasem 2005 villarCiasem 2005 villar
Ciasem 2005 villar
Karina Mello
 
James Bruce, O.C., FRSC
James Bruce, O.C., FRSCJames Bruce, O.C., FRSC
James Bruce, O.C., FRSC
Alliance for the Great Lakes
 
Exemplo+2
Exemplo+2Exemplo+2
Solar Installation Methods
Solar Installation  MethodsSolar Installation  Methods
Solar Installation Methods
ZMERLY & CO
 
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloysConstitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
Alumat Almax Group
 
www.energypluslight.com
www.energypluslight.comwww.energypluslight.com
Chinese Pediatric USCOM values
Chinese Pediatric USCOM valuesChinese Pediatric USCOM values
Chinese Pediatric USCOM values
Uscom - Presentations
 
Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...
Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...
Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...
Scale-up Systems
 
Hi score viz
Hi score vizHi score viz
Hi score viz
HInstitute
 
Shape from Distortion - 3D Digitization
Shape from Distortion - 3D DigitizationShape from Distortion - 3D Digitization
Shape from Distortion - 3D Digitization
Vanya Valindria
 
Characteristics of the kinase mutant TPK2 in bioreactors
Characteristics of the kinase mutant TPK2 in bioreactorsCharacteristics of the kinase mutant TPK2 in bioreactors
Characteristics of the kinase mutant TPK2 in bioreactors
★ Beatriz Barrera Garmón
 
EC4333 Lecture 11
EC4333 Lecture 11EC4333 Lecture 11
EC4333 Lecture 11
Stephen Kinsella
 
TALAT Lecture 2504: Examples and Applications
TALAT Lecture 2504: Examples and ApplicationsTALAT Lecture 2504: Examples and Applications
TALAT Lecture 2504: Examples and Applications
CORE-Materials
 
Everoil Presentation June 09
Everoil Presentation June 09Everoil Presentation June 09
Everoil Presentation June 09
viewwithin
 
Quepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial Results
Quepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial ResultsQuepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial Results
Quepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial Results
MeetMe, Inc
 
Learning analytics for Medical Education
Learning analytics for Medical EducationLearning analytics for Medical Education
Learning analytics for Medical Education
Janet Corral
 
Extending Asphalt Pavement Life Using Thin Whitetopping
Extending Asphalt Pavement Life Using Thin WhitetoppingExtending Asphalt Pavement Life Using Thin Whitetopping
Extending Asphalt Pavement Life Using Thin Whitetopping
Mid-America Transportation Center
 
Aslo 2012
Aslo 2012Aslo 2012
Aslo 2012
emmats
 
Csbmm 2002 otavio
Csbmm 2002 otavioCsbmm 2002 otavio
Csbmm 2002 otavio
Karina Mello
 
Tabla de frecuencia tiempo
Tabla de frecuencia tiempoTabla de frecuencia tiempo
Tabla de frecuencia tiempo
IETI SD
 

Similar to Villar ciasem 2007 (20)

Ciasem 2005 villar
Ciasem 2005 villarCiasem 2005 villar
Ciasem 2005 villar
 
James Bruce, O.C., FRSC
James Bruce, O.C., FRSCJames Bruce, O.C., FRSC
James Bruce, O.C., FRSC
 
Exemplo+2
Exemplo+2Exemplo+2
Exemplo+2
 
Solar Installation Methods
Solar Installation  MethodsSolar Installation  Methods
Solar Installation Methods
 
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloysConstitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
 
www.energypluslight.com
www.energypluslight.comwww.energypluslight.com
www.energypluslight.com
 
Chinese Pediatric USCOM values
Chinese Pediatric USCOM valuesChinese Pediatric USCOM values
Chinese Pediatric USCOM values
 
Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...
Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...
Using DynoChem to Inform Experimental Design of Batch Crystallization. Rahn M...
 
Hi score viz
Hi score vizHi score viz
Hi score viz
 
Shape from Distortion - 3D Digitization
Shape from Distortion - 3D DigitizationShape from Distortion - 3D Digitization
Shape from Distortion - 3D Digitization
 
Characteristics of the kinase mutant TPK2 in bioreactors
Characteristics of the kinase mutant TPK2 in bioreactorsCharacteristics of the kinase mutant TPK2 in bioreactors
Characteristics of the kinase mutant TPK2 in bioreactors
 
EC4333 Lecture 11
EC4333 Lecture 11EC4333 Lecture 11
EC4333 Lecture 11
 
TALAT Lecture 2504: Examples and Applications
TALAT Lecture 2504: Examples and ApplicationsTALAT Lecture 2504: Examples and Applications
TALAT Lecture 2504: Examples and Applications
 
Everoil Presentation June 09
Everoil Presentation June 09Everoil Presentation June 09
Everoil Presentation June 09
 
Quepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial Results
Quepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial ResultsQuepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial Results
Quepasa Corporation (NYSE Amex: QPSA) Q1 2012 Financial Results
 
Learning analytics for Medical Education
Learning analytics for Medical EducationLearning analytics for Medical Education
Learning analytics for Medical Education
 
Extending Asphalt Pavement Life Using Thin Whitetopping
Extending Asphalt Pavement Life Using Thin WhitetoppingExtending Asphalt Pavement Life Using Thin Whitetopping
Extending Asphalt Pavement Life Using Thin Whitetopping
 
Aslo 2012
Aslo 2012Aslo 2012
Aslo 2012
 
Csbmm 2002 otavio
Csbmm 2002 otavioCsbmm 2002 otavio
Csbmm 2002 otavio
 
Tabla de frecuencia tiempo
Tabla de frecuencia tiempoTabla de frecuencia tiempo
Tabla de frecuencia tiempo
 

More from Karina Mello

Silva neto ov conamet_2007
Silva neto ov conamet_2007Silva neto ov conamet_2007
Silva neto ov conamet_2007
Karina Mello
 
Paineis materiais csbmm_2005
Paineis materiais csbmm_2005Paineis materiais csbmm_2005
Paineis materiais csbmm_2005
Karina Mello
 
P083 villar ciasem 2007
P083 villar ciasem 2007P083 villar ciasem 2007
P083 villar ciasem 2007
Karina Mello
 
Micromat 2004 villar
Micromat 2004 villarMicromat 2004 villar
Micromat 2004 villar
Karina Mello
 
Micromat 2004 simposio_i
Micromat 2004 simposio_iMicromat 2004 simposio_i
Micromat 2004 simposio_i
Karina Mello
 
Imc17 2010 i4519
Imc17 2010 i4519Imc17 2010 i4519
Imc17 2010 i4519
Karina Mello
 
Csbmm 2007 silva_neto_ebsd_metals and alloys
Csbmm 2007 silva_neto_ebsd_metals and alloysCsbmm 2007 silva_neto_ebsd_metals and alloys
Csbmm 2007 silva_neto_ebsd_metals and alloys
Karina Mello
 
Csbmm 2003 villar
Csbmm 2003 villarCsbmm 2003 villar
Csbmm 2003 villar
Karina Mello
 
Csbmm 2001 villar
Csbmm 2001 villarCsbmm 2001 villar
Csbmm 2001 villar
Karina Mello
 
Conem 2004 villar
Conem 2004 villarConem 2004 villar
Conem 2004 villar
Karina Mello
 
Conamet 2004 villar
Conamet 2004 villarConamet 2004 villar
Conamet 2004 villar
Karina Mello
 
Conamet 2003 04-421
Conamet 2003 04-421Conamet 2003 04-421
Conamet 2003 04-421
Karina Mello
 
Balancin senafor 2006_villar
Balancin senafor 2006_villarBalancin senafor 2006_villar
Balancin senafor 2006_villar
Karina Mello
 
Acta microscopica 2007_silva netoov
Acta microscopica 2007_silva netoovActa microscopica 2007_silva netoov
Acta microscopica 2007_silva netoov
Karina Mello
 
17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villar17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villar
Karina Mello
 
1 cof11-0274
1   cof11-02741   cof11-0274
1 cof11-0274
Karina Mello
 
Villar sbp mat_2007
Villar sbp mat_2007Villar sbp mat_2007
Villar sbp mat_2007
Karina Mello
 
Chefe x lider
Chefe x liderChefe x lider
Chefe x lider
Karina Mello
 

More from Karina Mello (18)

Silva neto ov conamet_2007
Silva neto ov conamet_2007Silva neto ov conamet_2007
Silva neto ov conamet_2007
 
Paineis materiais csbmm_2005
Paineis materiais csbmm_2005Paineis materiais csbmm_2005
Paineis materiais csbmm_2005
 
P083 villar ciasem 2007
P083 villar ciasem 2007P083 villar ciasem 2007
P083 villar ciasem 2007
 
Micromat 2004 villar
Micromat 2004 villarMicromat 2004 villar
Micromat 2004 villar
 
Micromat 2004 simposio_i
Micromat 2004 simposio_iMicromat 2004 simposio_i
Micromat 2004 simposio_i
 
Imc17 2010 i4519
Imc17 2010 i4519Imc17 2010 i4519
Imc17 2010 i4519
 
Csbmm 2007 silva_neto_ebsd_metals and alloys
Csbmm 2007 silva_neto_ebsd_metals and alloysCsbmm 2007 silva_neto_ebsd_metals and alloys
Csbmm 2007 silva_neto_ebsd_metals and alloys
 
Csbmm 2003 villar
Csbmm 2003 villarCsbmm 2003 villar
Csbmm 2003 villar
 
Csbmm 2001 villar
Csbmm 2001 villarCsbmm 2001 villar
Csbmm 2001 villar
 
Conem 2004 villar
Conem 2004 villarConem 2004 villar
Conem 2004 villar
 
Conamet 2004 villar
Conamet 2004 villarConamet 2004 villar
Conamet 2004 villar
 
Conamet 2003 04-421
Conamet 2003 04-421Conamet 2003 04-421
Conamet 2003 04-421
 
Balancin senafor 2006_villar
Balancin senafor 2006_villarBalancin senafor 2006_villar
Balancin senafor 2006_villar
 
Acta microscopica 2007_silva netoov
Acta microscopica 2007_silva netoovActa microscopica 2007_silva netoov
Acta microscopica 2007_silva netoov
 
17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villar17 cbecimat 311-006-2006_villar
17 cbecimat 311-006-2006_villar
 
1 cof11-0274
1   cof11-02741   cof11-0274
1 cof11-0274
 
Villar sbp mat_2007
Villar sbp mat_2007Villar sbp mat_2007
Villar sbp mat_2007
 
Chefe x lider
Chefe x liderChefe x lider
Chefe x lider
 

Villar ciasem 2007

  • 1. EFFECT OF CEMENTITE PARTICLES IN FORMATION OF HIGH ANGLE BOUNDARIES AND OF ULTRAFINE GRAINS IN LOW CARBON STEEL. Otavio Villar da Silva Neto(1) and Oscar Balancin(1). (1)Department of Materials Engineering, Federal University of São Carlos (DEMa/UFSCar),Via Washington Luiz, Km 235, 13.565-905, São Carlos, São Paulo State, Brazil. Email: pvillar@iris.ufscar.br Nowadays, great efforts have been destining to obtain steels with ultrafine grains through viable industrially routes. These efforts are justified by costs reduction with the alloy elements and the improvement properties from plain carbon steels, which increase the aggregated value and its commercial range application. However, to obtain ultrafine grains steels with stable microstructure represents a hard task, owing a strong tendency for grains growth [1]. For this reason, some fine grains microstructures are inherently unstable which turns necessary to promote mechanisms that restrict grain boundaries movement to stabilize these microstructures [2,3,4]. The cementite particles precipitation during the thermomechanical processing can produce a stable and homogeneous microstructure [5,6,7,8,9,10]. In this work, the influence of cementite precipitation in microstructure refinement of a low carbon steel, as well, the high angle boundaries generation during the warm processing were investigated. During the accomplishment of this work, two steels were used; a 0,16C steel (Cosar) and another of ultra-low carbon (IF), as reference. The subcritic field deformation in quenched and tempered samples, was previously imposed by torsion test. The use of the EBSD (Electron Backscattering Diffraction) technique, accomplished in a Philips microscope of high resolution, XL30 FEG (30KV) model, enabled the attainment of data related to the misorientation amongst grains and/or sub-grains after isothermals torsion test. Heavy deformations ( ε = 5 ) were applied through warm torsion tests at 685ºC at equivalent strain rate of 0.1 s-1. They also carried through tests with interruptions after pre-defined deformation amounts – 0, 1, 2, 3, 4 and 5 – in which the samples were water cooled, allowing the study of the microstructural evolution on the condition of 0.1 s-1 deformation. The 0,16C steel deformation results were compared with the IF steel, which allowed verify the influence of the cementite particles precipitate during the processing. It was evidenced that the cementite precipitation and the ferrite dynamic recristallyzation are responsible for the formation of high angle boundaries, as well as by intense grain refinement during the subcritic deformation. References [1] M. A. F. Oliveira, A.M. Jorge Jr. and O. Balancin, Scripta materialia (2004) 50, 1157-1162. [2] P. A. Manohar; T. Chandra and C. R. Kilmore, ISIJ int. (1996) 36, 1486-1493. [3] X. Liu; J. K. Solberg and R. Gjengendal, Mater. sci. technol. (1996) 12, 345-350. [4] M. Niikura et al., Journal of materials processing technology (2001) 117, 341-346. [5] D. H. Shin; Y. –S. Kim and J. Lavernia, Acta Mater. (2001) vol. 48, 2387-2393. [6] D. H. Shin; K.-T. Park and Y.-S. Kim, Metall. and Mat. Transactions (2001) 32A, 2373-2381. [7] X. J. Hao et al., Materials Science and Technology (2001) vol. 17, 1347-1352. [8] Y. D. Huang et al., Journal of Materials Processing Technology (2003) 134, 19-25. [9] O. V. Silva Neto and O. Balancin, in Proceedings CONAMET/SAM Cong. (2004) 237-242. [10] O. V. Silva Neto and O. Balancin, in 8th Inter American Congress of Electron Microscopy, La Habana, Cuba (2005).
  • 2. (a) (b) (c) Figure 1 – Ultrafine ferrite grains in strained specimens (0,16C steel): a) ε = 0,0 , b) ε = 3,0 e c) ε = 5,0 . 100 90 80 High Angle Boundary [%] 70 60 50 40 30 20 10 0 0 1 2 3 4 5 6 Strain (a) (b) (c) Figure 2 – a) Inverse polo figure- ε = 4 ; b) colors code [001]; c) strain x % disorientation angle - 0,16C. 24 0 20 0 16 0 Stress [MPa] 12 0 80 -1 0,1s C osar 40 IF 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 D eform ação (a) (b) Figure 3 – (a) Flow stress curves; (b) Fe3C precipitated anchoring grains boundaries (Cosar steel). 100 90 80 High Angle Boundary [%] 70 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 Strain (a) (b) (c) Figure 4 –a) Inverse polo figure - ε = 0 ; b) colors code [001]; c) strain x % disorientation angle – IF.