This document presents a theoretical analysis of the performance of a vapor compression refrigeration system using different refrigerants: R-12, R134a, and R1234yf. The analysis uses a computational model based on the first law of thermodynamics to investigate the effects of evaporating temperature, subcooling, condenser temperature, and liquid-vapor heat exchanger effectiveness on the system's coefficient of performance and refrigerating capacity. The results show that R1234yf has the highest relative capacity increase with increased subcooling and the highest percentage increase in COP. R134a requires the most compressor work. R1234yf is identified as a promising alternative to R134a due to its low global warming potential