USEFUL CONSTANTS

Constant
Speed of light in vacuum
Elementary charge
Planck’s constant
Boltzmann’s constant
Vacuum permittivity

Symbol
c
q
h
k
ε0

Value
2.998 108
1.6 10-19
6.626 10-34
1.38 10-23
8.854 10-12

USEFUL FORMULAS

Week 1
Speed of light in vacuum
Energy of a photon
Irradiance

Formula

∫

( )

Air mass
Spectral photon flux
Photon flux

( )
∫

( )
( )

Units
m/s
C
Js
J/K
F/m
Week 2
Law of mass action
Diffusion current density
(electrons)
Diffusion current density
(holes)
Drift current density
(electrons)
Drift current density (holes)
Diffusion length (electrons)

Formula

Diffusion length (holes)

√

√

Week 3
J-V curve of an ideal
solar cell

Formula
[

J-V curve of a non-ideal
solar cell

)

(

(

(

)
)

)

[

Open-circuit voltage

(

(

Fill factor
Efficiency

Lambert-Beer´s law
Snell´s law

( )

∫

Short-circuit current
(

)

( )

( )
( )

]

]
)
Fresnel reflection
coefficient, ppolarization
Fresnel transmission
coefficient, ppolarization
Fresnel reflection
coefficient, spolarization
Fresnel transmission
coefficient, spolarization

(

(

Week 4
Finger’s resistance
Fick’s law

)

)

Formula
Week 6
Sensible heat

Formula
(

)

Latent heat
Fourier’s law

Newton’s law
Energy per area emitted by a
black body
Energy per area emitted by a
grey body
Heat in a collector
Energy stored in a water tank
(

Heat loss of a water tank
Heat stored in a phase
change material
Solar-to-hydrogen efficiency

[ (

)

)

(
⋅

3

)]
Week 7
Temperature coefficient

Formula
X (T )  X ST C 

dX
(T TST C )
dT
( NOCT  20C )
800 W 2
m

Tcell  Tambient  G 

NOCT Model

Module Ideality Factor

MIF 

EPV ,T
Eexp ected

At MPP

 
I

 V
V

To the right of MPP

 
I

 V
V

To the left of MPP

 
I
 
 V
V

Battery capacity

C-rate

Storage round-trip efficiency

Ebatt  CbattV

C  rate 



I
Cbatt

Eout
100
Ein

Battery Voltaic efficiency

V 

Vdisch arg e

Battery Coulombic efficiency

C 

Qdisch arg e

Total battery efficiency
State of charge
Depth of discharge

1h

Vch arg e

Qch arg e

100

100

batt  VC
SOC 

DOD 

Eavailable
100
CbattV

Edisch arg ed
CbattV

100

Useful Energy formulas

  • 1.
    USEFUL CONSTANTS Constant Speed oflight in vacuum Elementary charge Planck’s constant Boltzmann’s constant Vacuum permittivity Symbol c q h k ε0 Value 2.998 108 1.6 10-19 6.626 10-34 1.38 10-23 8.854 10-12 USEFUL FORMULAS Week 1 Speed of light in vacuum Energy of a photon Irradiance Formula ∫ ( ) Air mass Spectral photon flux Photon flux ( ) ∫ ( ) ( ) Units m/s C Js J/K F/m
  • 2.
    Week 2 Law ofmass action Diffusion current density (electrons) Diffusion current density (holes) Drift current density (electrons) Drift current density (holes) Diffusion length (electrons) Formula Diffusion length (holes) √ √ Week 3 J-V curve of an ideal solar cell Formula [ J-V curve of a non-ideal solar cell ) ( ( ( ) ) ) [ Open-circuit voltage ( ( Fill factor Efficiency Lambert-Beer´s law Snell´s law ( ) ∫ Short-circuit current ( ) ( ) ( ) ( ) ] ] )
  • 3.
    Fresnel reflection coefficient, ppolarization Fresneltransmission coefficient, ppolarization Fresnel reflection coefficient, spolarization Fresnel transmission coefficient, spolarization ( ( Week 4 Finger’s resistance Fick’s law ) ) Formula
  • 4.
    Week 6 Sensible heat Formula ( ) Latentheat Fourier’s law Newton’s law Energy per area emitted by a black body Energy per area emitted by a grey body Heat in a collector Energy stored in a water tank ( Heat loss of a water tank Heat stored in a phase change material Solar-to-hydrogen efficiency [ ( ) ) ( ⋅ 3 )]
  • 5.
    Week 7 Temperature coefficient Formula X(T )  X ST C  dX (T TST C ) dT ( NOCT  20C ) 800 W 2 m Tcell  Tambient  G  NOCT Model Module Ideality Factor MIF  EPV ,T Eexp ected At MPP   I   V V To the right of MPP   I   V V To the left of MPP   I    V V Battery capacity C-rate Storage round-trip efficiency Ebatt  CbattV C  rate   I Cbatt Eout 100 Ein Battery Voltaic efficiency V  Vdisch arg e Battery Coulombic efficiency C  Qdisch arg e Total battery efficiency State of charge Depth of discharge 1h Vch arg e Qch arg e 100 100 batt  VC SOC  DOD  Eavailable 100 CbattV Edisch arg ed CbattV 100