SlideShare a Scribd company logo
1 of 16
Download to read offline
Daniel Urban
December 10, 2015
Energy Final Project
Introduction
	
  
A	
  sustainable	
  energy	
  future	
  is	
  a	
  critical	
  need	
  that	
  must	
  be	
  achieved	
  for	
  multiple	
  reasons.	
  
These	
  include	
  but	
  are	
  not	
  limited	
  to:	
  having	
  energy	
  available	
  for	
  the	
  growing	
  population	
  of	
  
the	
  world	
  while	
  fossil	
  fuel	
  stores	
  are	
  being	
  depleted,	
  creating	
  energy	
  that	
  produces	
  less	
  
harmful	
  emissions,	
  and	
  having	
  energy	
  security	
  knowing	
  that	
  we	
  will	
  have	
  a	
  way	
  to	
  produce	
  
energy	
  that	
  doesn’t	
  rely	
  on	
  other,	
  possibly	
  hostile	
  countries.	
  	
  
	
  
A	
  sustainable	
  energy	
  future	
  is	
  not	
  something	
  that	
  will	
  happen	
  over	
  night.	
  We	
  are	
  in	
  what	
  is	
  
called	
  a	
  transition	
  period.	
  This	
  period	
  is	
  characterized	
  by	
  the	
  efforts	
  to	
  optimize	
  our	
  use	
  of	
  
remaining	
  fossil	
  fuel	
  supplies,	
  while	
  putting	
  money	
  into	
  researching	
  and	
  developing	
  more	
  
renewable-­‐based	
  options.	
  Some	
  key	
  advances	
  and	
  strategic	
  implementation	
  of	
  technology	
  
will	
  need	
  to	
  be	
  made	
  during	
  this	
  transition	
  period	
  to	
  ensure	
  that	
  a	
  sustainable	
  energy	
  
future	
  is	
  achievable.	
  
	
  
This	
  report	
  goes	
  over	
  the	
  following	
  nine	
  technologies	
  that	
  support	
  the	
  current	
  energy	
  
supply	
  system,	
  and	
  may	
  contribute	
  to	
  the	
  long-­‐term	
  sustainable	
  energy	
  future.	
  	
  
	
  
Technologies addressed:
1. Grid-connected energy storage
2. Fuel cells
3. MHD
4. Thermoelectric generators and refrigerators
5. Solar photovoltaic
6. Solar thermal
7. Wind
8. Nuclear fission
9. Nuclear fusion
These	
  technologies	
  are	
  briefly	
  described	
  and	
  then	
  analyzed	
  for	
  the	
  benefits	
  and	
  drawbacks	
  
that	
  they	
  each	
  have.	
  A	
  brief	
  role	
  for	
  the	
  future	
  is	
  also	
  included	
  at	
  the	
  end	
  of	
  each	
  
technology’s	
  section.	
  Finally,	
  a	
  summary	
  of	
  my	
  thoughts	
  for	
  the	
  sustainable	
  energy	
  future	
  is	
  
on	
  the	
  last	
  page	
  of	
  the	
  report.
This report has been written to show the reader that there can be a fairly clear path along the
transition towards a sustainable energy system. It also allows the reader to understand the
inherent benefits and drawbacks to each of the current technologies that are supporting the
energy system today.
None of these technologies by themselves are the answer, but a combination of them can provide
a solid platform with which we can shape the energy future. Noted too is the timeline of 100
years. A lot of the information in this report is based off of present technology, but most likely
will be surpassed by advancements made over time. These thoughts are expressed throughout the
report so that we don’t limit ourselves to only the knowledge we have currently.
Grid – Connected Energy Storage
Grid – connected energy storage is made up of devices used to store electrical energy on a large
scale within a power grid. Energy is stored in these devices when production exceeds
consumption, and is returned to the grid when energy consumption exceeds base load
production. This technology primarily enables a sustainable primary energy source to be better
utilized by storing the excess energy produced by intermittent energy producing technologies to
be used when there is a need.
There are six types of grid-connected energy storage that will be evaluated here. These include:
air, batteries, hydrogen, hydro, superconducting magnets, and flywheel. There will be paragraphs
going over the pros and cons of each of these technologies followed by a few paragraphs
analyzing the technology of grid-connected energy storage as a whole.
Compressed air energy storage (CAES) is the first technology to be looked at. Compressed air
energy storage starts with air being compressed and stored in areas like underground caverns.
When electricity is needed, the air is heated and expanded through an expansion turbine driving a
generator for power. One of the cons of this type of storage is that it needs a small amount of
fossil fuel to compress the air and to heat the air. This also means that it creates CO2 emissions to
work. Possible ways to mitigate this is to use heat rejection from a renewable system like a fuel
cell. Another disadvantage of the system is that you must have a lot of storage underground,
which requires a large capitol investment as well as suitable land. This could disturb ecosystems,
and could damage the surrounding if an accident happened. The final con is that an accident in
this system is called a catastrophic tank rupture, which can damage anything around it. The
advantages of this storage technique are that its round trip efficiency is around 70% and the air is
easily accessible.
Another air energy storage technique is liquid air. Liquid air is created through compressing and
cooling the air until it is liquid. When it is needed, the stored liquid air is expanded through a
turbine to create electricity. Because of the need to cool the air so low, the round trip efficiency
is at about 25% but projections have been made that it could increase to around 50%. Currently
only cryogenic distillation of air is commercially viable technology for large-scale energy
storage. The pros of the system include safer storage, and the lack of energy input when energy
is needed. The current low round-trip efficiency is a major disadvantage of this storage
technique.
Batteries are the most well known type of energy storage. There are some general cons to
batteries, which include relatively high prices, high maintenance costs, in some cases being
flammable, use toxic materials most of the time, have low energy density, and have limited life
spans due to pure chemical crystals that form inside the cells during charging and discharching
cycles. These crystals grow large enough to distort the battery and short out the cells. The
advantages of battery storage include that they are clean, relatively efficient, provide stored
energy instantaneously, do not need special geological/geographical requirements, can easily
integrate into the grid, rarely need expensive rare metals, have been tested extensively, and have
a large amount of funding going into research and development.
Hydrogen storage is comprised of compressing or liquefying hydrogen, storing it, and then
converting it back to its original state while collecting the electrical energy or heat produced.
Hydrogen has the advantage of being a high-density fuel. On the downside, you must either
reform natural gas with steam or use electrolysis of water to get the hydrogen needed.
Electrolysis needs high temperature and pressure, which unless supplied by something like a
nuclear plant, are unrealistic. Efficiencies are generally low due to the energy required to
produce the hydrogen. Also, needed equipment and resources include an electrolysis plant,
compressors or liquefiers, storage tanks, and underground caverns or salt domes to store all of
the tanks.
Pumped-storage hydroelectricity is the most utilized grid-connected energy storage in the
world currently. It is used to even out the daily generating load by pumping water to a high
storage reservoir during times of excess production. When the demand is more than the
production, hydroelectric generation is used with the water that was pumped earlier. This energy
storage method has the benefit of being fast in response. It also has 70-85% efficient and is the
most cost-effective form of large-scale power storage currently. It is good for variation in
demand. On the downside, it needs a very specific geography of two lakes near each other that
are separated by a considerable vertical distance. It also has the ability to negatively impact
animal life in these water reservoirs, and the ecosystem around when you drill out part of the
earth to put the hydroelectric generator and other parts needed.
Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field
created by the flow of current in a superconducting coil. The systems have super high efficiency
around 95% with losses from the inerter/rectifier. This is the best efficiency out of any of the grid
connected energy storage systems. Once the coil has been charged, the current will not decay and
the magnetic energy can be stored indefinitely. There is however a large energy requirement for
refrigeration, so short duration energy storage is better for this technology. Also,
superconducting coils of this size are very expensive. Finally, there is the need for a large
amount of infrastructure and land for the magnet and skilled technicians who can run it and
repair it when needed.
The final energy-storage technology to analyze is the flywheel. The flywheel is made up of a
heavy rotating disc that is accelerated by an electric motor when electric power flows into the
device. When the flow of power is reversed, electricity is produced. The method is very
expensive because to get low friction, the flywheel must be in a vacuum and must use magnetic
bearings. Due to the fact that larger flywheel speeds allow for greater storage capacity, the
system is better suited for load leveling, and is not feasible for general storage applications. This
is a very limited technology, but is successful for specialized applications.
When looking at grid-connected energy storage as a whole there are some consistent advantages
and disadvantages. One of the biggest advantages is that it will allow intermittent renewable
energy sources to be utilized effectively. It also greatly enhances the grid reliability by providing
back ups. It will help to fuel the transition by integrating renewable and fossil fuel sources
together. When looking at the cons, the glaring fact is that each has its own issues that are yet to
be answered. None of the technologies are perfect, but thankfully large amounts of money are
being poured into R&D. Also, there is the need for a large amount of new infrastructure to
implement any of these technologies.
The future of energy conversion will have grid-connected energy storage as a major contributor.
To make the transition from fossil fuels to a sustainable energy system will require energy
storage. Currently, pumped-storage hydroelectricity is the major player of this technology, but I
believe that batteries will eventually be the golden child of this technology. It is only a matter of
time before the billions of dollars being poured into this technology will pay off. Batteries have
the efficiency pay off, the immediate energy, and the ease of integration on both large scale and
small-scale platforms to make a huge difference in the path to a sustainable energy future. Other
storage technologies like hydroelectricity, compressed air and hydrogen, and flywheel will be
used where they can be applied best, but I still believe that batteries will eventually make the
largest impact if we are looking at this from a 100-year standpoint.
Fuel	
  Cell	
  Technology	
  
	
  
Fuel	
  cells	
  are	
  devices	
  that	
  convert	
  the	
  chemical	
  energy	
  of	
  different	
  fuels	
  directly	
  into	
  
electricity	
  by	
  utilizing	
  chemical	
  reactions	
  of	
  positively	
  charged	
  hydrogen	
  ions	
  with	
  
oxidizing	
  agents.	
  There	
  are	
  many	
  varieties	
  of	
  fuel	
  cells,	
  but	
  they	
  all	
  work	
  in	
  the	
  same	
  
general	
  manner.	
  They	
  also	
  are	
  all	
  made	
  up	
  of	
  three	
  segments,	
  which	
  are	
  the	
  anode,	
  the	
  
cathode,	
  and	
  the	
  electrolyte.	
  	
  
	
  
Four	
  of	
  the	
  main	
  types	
  of	
  fuel	
  cells	
  are:	
  proton	
  exchange	
  membrane	
  fuel	
  cells	
  (PEMFC),	
  
phosphoric	
  acid	
  (PAFC),	
  solid	
  oxide	
  fuel	
  cells	
  (SOFC),	
  and	
  molten	
  carbonate	
  (MCFC).	
  
PEMFC,	
  PAFC,	
  and	
  SOFC	
  are	
  technologies	
  that	
  enable	
  a	
  sustainable	
  primary	
  energy	
  source	
  
to	
  be	
  utilized,	
  while	
  MCFC	
  is	
  able	
  to	
  extend	
  the	
  availability	
  of	
  existing	
  finite	
  energy	
  
resources.	
  	
  
	
  
There	
  are	
  pros	
  and	
  cons	
  to	
  each	
  of	
  these	
  fuel	
  cells,	
  and	
  also	
  pros	
  and	
  cons	
  of	
  the	
  
overarching	
  fuel	
  cell	
  technology.	
  	
  The	
  following	
  paragraphs	
  will	
  go	
  in	
  depth	
  about	
  the	
  four	
  
fuel	
  cell	
  types	
  above	
  and	
  the	
  paragraphs	
  that	
  remain	
  will	
  look	
  at	
  the	
  technology	
  as	
  a	
  whole.	
  
	
  
The	
  first	
  technology	
  to	
  focus	
  on	
  is	
  the	
  proton	
  exchange	
  membrane	
  fuel	
  cell	
  (PEMFC).	
  
These	
  fuel	
  cells	
  are	
  distinguished	
  by	
  their	
  low	
  temperature	
  and	
  pressure	
  ranges.	
  These	
  
attributes	
  are	
  positives	
  of	
  the	
  technology	
  because	
  they	
  keep	
  from	
  high	
  
temperature/pressure	
  fatigue	
  of	
  the	
  materials.	
  The	
  PEMFC	
  technology	
  also	
  has	
  a	
  fast	
  
response	
  time.	
  This	
  means	
  that	
  it	
  is	
  viable	
  for	
  many	
  applications	
  where	
  quick	
  response	
  is	
  a	
  
necessity.	
  Currently,	
  this	
  technology	
  is	
  looked	
  at	
  primarily	
  for	
  transportation.	
  PEMFC	
  have	
  
efficiencies	
  in	
  the	
  range	
  of	
  40-­‐60%,	
  which	
  is	
  pretty	
  respectable.	
  	
  This	
  efficiency	
  is	
  made	
  up	
  
solely	
  of	
  electricity	
  output.	
  
	
  
PEMFCs	
  also	
  have	
  a	
  specialized	
  polymer	
  electrolyte	
  catalyst.	
  	
  This	
  is	
  a	
  con	
  to	
  the	
  technology	
  
since	
  it	
  is	
  made	
  using	
  platinum,	
  which	
  makes	
  the	
  fuel	
  cell	
  very	
  expensive.	
  Nearly	
  half	
  of	
  the	
  
fuel	
  cell	
  cost	
  is	
  attributed	
  to	
  the	
  catalyst.	
  To	
  overcome	
  this,	
  the	
  platinum	
  need	
  must	
  either	
  
be	
  reduced	
  or	
  a	
  new	
  catalyst	
  material	
  must	
  be	
  found.	
  Increasing	
  the	
  catalytic	
  activity	
  of	
  the	
  
platinum	
  is	
  one	
  way	
  of	
  achieving	
  the	
  reduction	
  in	
  platinum.	
  In	
  addition	
  to	
  cost,	
  water	
  and	
  
air	
  management	
  are	
  design	
  problems	
  for	
  the	
  PEMFC.	
  The	
  membrane	
  of	
  the	
  cell	
  must	
  be	
  
hydrated	
  at	
  all	
  times.	
  If	
  the	
  membrane	
  dries,	
  resistance	
  will	
  build	
  and	
  the	
  cell	
  will	
  crack.	
  If	
  
the	
  cell	
  is	
  flooded,	
  the	
  reactants	
  wont	
  reach	
  the	
  catalyst	
  and	
  the	
  reaction	
  will	
  stop.	
  Methods	
  
like	
  electro	
  osmotic	
  pumps	
  are	
  being	
  developed	
  to	
  help	
  fix	
  this	
  issue.	
  Finally,	
  durability	
  is	
  
an	
  issue	
  for	
  the	
  PEMFCs	
  because	
  they	
  need	
  to	
  operate	
  at	
  a	
  wide	
  variation	
  of	
  temperatures	
  
for	
  many	
  hours.	
  The	
  current	
  technology	
  for	
  PEMFCs	
  does	
  not	
  achieve	
  the	
  life	
  span	
  
requirements	
  of	
  current	
  cars	
  or	
  stationary	
  energy	
  converter	
  requirements.	
  
	
  
The	
  next	
  fuel	
  cell	
  technology	
  to	
  focus	
  on	
  is	
  the	
  phosphoric	
  acid	
  fuel	
  cell	
  (PAFC).	
  PAFCs	
  
use	
  a	
  non-­‐conductive	
  electrolyte	
  to	
  pass	
  positive	
  hydrogen	
  ions	
  from	
  the	
  anode	
  to	
  the	
  
cathode.	
  The	
  technology	
  works	
  best	
  in	
  a	
  temperature	
  range	
  from	
  150-­‐200	
  degrees	
  Celcius.	
  
The	
  efficiency	
  of	
  this	
  technology	
  increases	
  to	
  the	
  80%	
  range	
  if	
  the	
  heat	
  of	
  the	
  system	
  is	
  
used	
  for	
  cogeneration.	
  The	
  split	
  between	
  electrical	
  output	
  and	
  heat	
  output	
  is	
  about	
  50/50	
  
for	
  the	
  above	
  efficiency.	
  The	
  first	
  con	
  of	
  the	
  PAFC	
  is	
  that	
  it	
  again	
  uses	
  platinum	
  as	
  its	
  
catalyst	
  so	
  that	
  the	
  hydrogen	
  ionization	
  rate	
  is	
  high.	
  This	
  makes	
  the	
  technology	
  expensive	
  
like	
  the	
  PEMFC.	
  In	
  addition,	
  the	
  technology	
  uses	
  acidic	
  electrolytes.	
  These	
  make	
  up	
  another	
  
negative	
  for	
  the	
  system	
  because	
  they	
  lessen	
  the	
  durability	
  and	
  life	
  span	
  of	
  the	
  cells	
  by	
  
increasing	
  the	
  corrosion	
  and	
  oxidation	
  of	
  components	
  inside	
  the	
  cell.	
  	
  
	
  
Solid	
  oxide	
  fuel	
  cells	
  (SOFC)	
  are	
  characterized	
  by	
  a	
  solid	
  ceramic	
  material	
  as	
  the	
  
electrolyte.	
  They	
  have	
  the	
  advantage	
  of	
  being	
  able	
  to	
  be	
  made	
  in	
  a	
  variety	
  of	
  shapes	
  and	
  are	
  
not	
  relegated	
  to	
  the	
  flat	
  plan	
  configuration	
  of	
  the	
  other	
  fuel	
  cells	
  types.	
  They	
  also	
  have	
  the	
  
benefit	
  of	
  being	
  able	
  to	
  be	
  run	
  on	
  a	
  variety	
  of	
  fuels,	
  but	
  the	
  fuel	
  must	
  contain	
  hydrogen	
  
atoms	
  for	
  the	
  reaction	
  to	
  work.	
  SOFC	
  technology	
  requires	
  super	
  hot	
  operating	
  
temperatures	
  in	
  the	
  range	
  of	
  800	
  –	
  1000	
  degrees	
  Celsius.	
  The	
  benefit	
  of	
  these	
  high	
  
temperatures	
  is	
  that	
  there	
  is	
  no	
  need	
  for	
  platinum	
  in	
  the	
  catalyst	
  making	
  the	
  system	
  
cheaper.	
  Another	
  benefit	
  of	
  the	
  high	
  temperature	
  is	
  that	
  the	
  waste	
  heat	
  of	
  the	
  system	
  could	
  
be	
  used	
  for	
  cogeneration,	
  which	
  can	
  bump	
  the	
  efficiency	
  into	
  the	
  80%	
  range.	
  The	
  negative	
  
of	
  the	
  hot	
  temperature	
  is	
  that	
  carbon	
  dust	
  can	
  build	
  up	
  on	
  the	
  anode,	
  which	
  lessens	
  the	
  
performance	
  of	
  the	
  whole	
  fuel	
  cell.	
  Another	
  negative	
  of	
  the	
  technology	
  is	
  that	
  there	
  is	
  a	
  
slow	
  start	
  up	
  time	
  due	
  to	
  the	
  ceramic	
  that	
  is	
  used	
  as	
  the	
  cell	
  substrate	
  in	
  addition	
  to	
  the	
  
super	
  high	
  temperatures	
  necessary	
  for	
  the	
  system	
  to	
  work.	
  This	
  keeps	
  the	
  technology	
  from	
  
any	
  automobile	
  or	
  other	
  quick	
  response	
  usages.	
  Finally,	
  SOFCs	
  are	
  currently	
  in	
  early	
  
development	
  and	
  have	
  not	
  been	
  refined	
  enough	
  for	
  mass	
  production.	
  They	
  have	
  a	
  
promising	
  future	
  if	
  developed	
  correctly,	
  but	
  are	
  not	
  viable	
  now.	
  
	
  
The	
  final	
  fuel	
  cell	
  to	
  analyze	
  is	
  the	
  molten	
  carbonate	
  fuel	
  cell	
  (MCFC).	
  MCFCs	
  use	
  liquid	
  
lithium	
  potassium	
  carbonate	
  salt	
  as	
  the	
  electrolyte.	
  The	
  system	
  converts	
  fossil	
  fuels	
  to	
  a	
  
hydrogen-­‐rich	
  gas,	
  which	
  reduces	
  the	
  need	
  for	
  external	
  hydrogen	
  production.	
  The	
  system	
  
has	
  the	
  benefit	
  of	
  using	
  readily	
  available	
  fuels	
  like	
  natural	
  gas,	
  biogas,	
  and	
  gasses	
  from	
  coal.	
  	
  
MCFCs	
  have	
  a	
  resistance	
  to	
  impurities	
  like	
  the	
  carbon	
  build-­‐up	
  on	
  anodes.	
  The	
  system	
  also	
  
has	
  impressive	
  efficiencies.	
  The	
  electrical	
  output	
  efficiency	
  is	
  up	
  to	
  50%,	
  but	
  can	
  rise	
  to	
  the	
  
80%	
  range	
  is	
  used	
  for	
  combined	
  heat	
  and	
  power.	
  The	
  negative	
  of	
  these	
  fuels	
  is	
  that	
  the	
  
reforming	
  process	
  of	
  the	
  system	
  creates	
  CO2	
  emissions.	
  Another	
  negative	
  of	
  the	
  system	
  is	
  
that	
  the	
  high	
  operating	
  temperatures	
  needed	
  for	
  the	
  system	
  create	
  a	
  slow	
  start-­‐up	
  time	
  for	
  
the	
  cell.	
  Also,	
  the	
  cells	
  have	
  short	
  life	
  spans	
  due	
  to	
  the	
  corrosion	
  of	
  the	
  anode	
  and	
  cathode	
  
in	
  response	
  to	
  the	
  high	
  temperatures	
  and	
  the	
  carbonate	
  electrolyte.	
  	
  
	
  
There	
  are	
  some	
  common	
  themes	
  when	
  observing	
  the	
  benefits	
  and	
  disadvantages	
  of	
  fuel	
  cell	
  
technology	
  as	
  a	
  whole.	
  The	
  benefits	
  of	
  fuel	
  cell	
  technology	
  include	
  relatively	
  high	
  efficiency.	
  
PEMFC	
  has	
  electrical	
  output	
  efficiency	
  between	
  40-­‐60%,	
  while	
  the	
  other	
  three	
  systems	
  can	
  
reach	
  around	
  80%	
  efficiency	
  if	
  used	
  for	
  combined	
  heat	
  and	
  power.	
  Other	
  than	
  MCFC,	
  the	
  
systems	
  are	
  carbon	
  free	
  when	
  using	
  H2	
  and	
  O2.	
  The	
  first	
  three	
  systems	
  above	
  enable	
  a	
  
sustainable	
  primary	
  energy	
  source	
  to	
  be	
  better	
  utilized,	
  while	
  MCFCs	
  extend	
  the	
  
availability	
  of	
  existing	
  finite	
  energy	
  resources.	
  These	
  systems	
  can	
  run	
  continuously	
  as	
  long	
  
as	
  fuel	
  is	
  supplied	
  and	
  can	
  provide	
  base	
  load	
  power	
  that	
  can	
  be	
  used	
  in	
  conjunction	
  with	
  
renewable	
  technology.	
  The	
  systems	
  have	
  no	
  moving	
  parts,	
  and	
  are	
  easily	
  scalable	
  to	
  meet	
  
the	
  needs	
  of	
  the	
  public	
  or	
  industries.	
  In	
  addition	
  to	
  the	
  scalability,	
  the	
  system	
  is	
  also	
  well	
  
suited	
  for	
  distributed	
  generation,	
  which	
  also	
  makes	
  it	
  great	
  for	
  meeting	
  the	
  needs	
  of	
  the	
  
surrounding	
  area.	
  Finally,	
  and	
  most	
  notably	
  is	
  the	
  fact	
  that	
  they	
  can	
  run	
  on	
  water,	
  which	
  is	
  
an	
  easily	
  accessible,	
  renewable	
  resource.	
  	
  
	
  
The	
  disadvantages	
  of	
  the	
  technology	
  is	
  that	
  most	
  of	
  the	
  fuel	
  cells	
  require	
  expensive	
  
materials	
  like	
  platinum	
  as	
  cathode	
  and	
  anode	
  material.	
  Service	
  life	
  and	
  durability	
  are	
  also	
  a	
  
big	
  issue	
  especially	
  when	
  considering	
  the	
  high	
  temperature	
  variants.	
  Contamination	
  
sensitivity	
  of	
  the	
  low-­‐temperature	
  variants	
  provides	
  a	
  problem	
  for	
  service	
  life	
  as	
  well.	
  
Currently,	
  hydrogen	
  is	
  not	
  easily	
  accessible	
  in	
  large	
  quantities,	
  and	
  infrastructure	
  for	
  
making	
  it	
  would	
  need	
  to	
  increase	
  greatly	
  if	
  large-­‐scale	
  fuel	
  cell	
  technology	
  is	
  ever	
  to	
  
become	
  a	
  large	
  contributor	
  to	
  the	
  energy	
  production	
  as	
  a	
  whole.	
  Finally,	
  it	
  is	
  predicted	
  that	
  
if	
  battery	
  technology	
  advances	
  enough,	
  fuel	
  cell	
  technology	
  will	
  become	
  irrelevant.	
  
	
  
My	
  thoughts	
  on	
  the	
  future	
  role	
  of	
  fuel	
  cells	
  are	
  mixed.	
  I	
  believe	
  that	
  MCFC	
  technology	
  could	
  
help	
  in	
  the	
  transition	
  time	
  to	
  extend	
  the	
  use	
  of	
  fossil	
  fuels	
  since	
  the	
  combined	
  heat	
  and	
  
power	
  efficiency	
  is	
  around	
  80%.	
  In	
  addition,	
  I	
  believe	
  that	
  SOFCs	
  have	
  the	
  ability	
  to	
  become	
  
very	
  useful	
  for	
  the	
  renewable	
  energy	
  future	
  if	
  cogeneration	
  is	
  a	
  need.	
  The	
  carbon	
  dust	
  
build-­‐up	
  issue	
  will	
  need	
  to	
  be	
  mitigated	
  first	
  though	
  since	
  longevity	
  would	
  become	
  an	
  issue.	
  
Also,	
  PEMFCs	
  are	
  a	
  viable	
  future	
  for	
  renewable	
  base	
  load	
  if	
  electricity	
  output	
  is	
  the	
  main	
  
concern.	
  There	
  needs	
  to	
  be	
  a	
  lessened	
  amount	
  of	
  platinum	
  used	
  to	
  make	
  it	
  affordable	
  
enough,	
  and	
  durability	
  will	
  need	
  to	
  be	
  increased	
  substantially	
  for	
  PEMFCs	
  if	
  they	
  are	
  ever	
  
going	
  to	
  make	
  a	
  huge	
  impact.	
  These	
  technologies	
  have	
  promising	
  futures	
  in	
  the	
  transition	
  
and	
  long-­‐term	
  energy	
  future	
  if	
  critical	
  advances	
  are	
  made.	
  The	
  tricky	
  part	
  to	
  this	
  is	
  that	
  
there	
  would	
  need	
  to	
  be	
  a	
  lot	
  of	
  infrastructure	
  change	
  for	
  large-­‐scale	
  fuel	
  cell	
  energy	
  
production	
  to	
  occur.	
  Getting	
  everyone	
  on	
  board	
  with	
  the	
  switch	
  as	
  well	
  as	
  getting	
  lots	
  of	
  
research	
  money	
  to	
  improve	
  the	
  technology	
  enough.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Magnetohydrodynamic	
  Generators	
  
	
  
A	
  magnetohydrodynamic	
  generator	
  is	
  a	
  device	
  that	
  transforms	
  thermal	
  energy	
  and	
  kinetic	
  
energy	
  into	
  electricity.	
  A	
  conductor	
  is	
  moved	
  through	
  a	
  perpendicular	
  magnetic	
  field	
  to	
  
generate	
  an	
  electric	
  current.	
  This	
  is	
  a	
  system	
  that	
  extends	
  the	
  availability	
  of	
  existing	
  finite	
  
energy	
  resources	
  because	
  it	
  relies	
  on	
  fossil	
  fuel	
  processes	
  before	
  and	
  after	
  the	
  system.	
  	
  
	
  
There	
  are	
  three	
  main	
  types	
  of	
  MHD	
  generators.	
  They	
  are	
  the	
  Faraday	
  Generator,	
  the	
  Hall	
  
Generator,	
  and	
  the	
  Hall	
  Effect	
  Disc	
  Generator.	
  Since	
  the	
  last	
  of	
  these	
  three	
  is	
  superior	
  to	
  the	
  
other	
  two,	
  it	
  will	
  be	
  focused	
  on	
  below.	
  	
  
	
  
The	
  Hall	
  Effect	
  Disc	
  Generator	
  uses	
  an	
  electrically	
  conductive	
  fluid	
  flowing	
  between	
  the	
  
center	
  of	
  a	
  disc	
  with	
  a	
  duct	
  wrapped	
  around	
  the	
  edge.	
  This	
  system	
  does	
  not	
  suffer	
  from	
  the	
  
Hall	
  effect	
  because	
  the	
  Hall	
  effect	
  currents	
  flow	
  between	
  the	
  ring	
  electrodes	
  near	
  the	
  center	
  
and	
  the	
  periphery.	
  This	
  avoids	
  the	
  electrodes	
  that	
  are	
  conducting	
  the	
  electricity.	
  This	
  is	
  
better	
  than	
  the	
  regular	
  Hall	
  generator	
  because	
  the	
  Hall	
  generator	
  shorts	
  the	
  middle	
  
electrodes	
  making	
  the	
  system	
  very	
  sensitive	
  to	
  load.	
  If	
  the	
  load	
  changes	
  too	
  much,	
  the	
  flow	
  
will	
  misalign	
  and	
  the	
  effect	
  won’t	
  continue	
  to	
  be	
  mitigated.	
  The	
  disc	
  generator	
  also	
  benefits	
  
from	
  the	
  magnet	
  being	
  smaller	
  due	
  to	
  the	
  fact	
  that	
  it	
  can	
  be	
  much	
  closer	
  to	
  the	
  fluid	
  in	
  this	
  
system	
  design.	
  These	
  system	
  advantages	
  make	
  it	
  the	
  most	
  efficient	
  MHD	
  generator	
  scheme.	
  
Even	
  so,	
  efficiency	
  is	
  usually	
  well	
  under	
  30%.	
  
	
  
MHD	
  generators	
  have	
  common	
  advantages	
  and	
  disadvantages	
  across	
  the	
  board.	
  They	
  have	
  
the	
  Carnot	
  advantage	
  because	
  you	
  can	
  put	
  in	
  hotter	
  temps	
  than	
  you	
  can	
  for	
  a	
  turbine’s	
  
inlet.	
  Even	
  so,	
  the	
  high	
  resistivity	
  of	
  the	
  fluid	
  and	
  walls	
  of	
  the	
  system	
  take	
  a	
  lot	
  of	
  this	
  
advantage	
  away.	
  They	
  also	
  have	
  no	
  moving	
  parts,	
  which	
  increases	
  reliability	
  over	
  time.	
  
They	
  can	
  be	
  implemented	
  as	
  a	
  topping	
  cycle	
  by	
  using	
  the	
  exhaust	
  to	
  heat	
  the	
  boilers	
  of	
  a	
  
steam	
  plant.	
  This	
  can	
  achieve	
  a	
  combined	
  efficiency	
  of	
  around	
  60%.	
  Efficiency	
  of	
  the	
  system	
  
itself	
  also	
  increases	
  with	
  larger	
  size	
  since	
  you	
  will	
  get	
  a	
  better	
  volume	
  to	
  surface	
  area	
  ratio.	
  
You	
  can	
  also	
  reverse	
  the	
  system	
  if	
  needed.	
  
	
  
The	
  disadvantages	
  of	
  this	
  technology	
  are	
  pretty	
  glaring.	
  First,	
  the	
  system	
  relies	
  on	
  fossil	
  
fuel	
  powered	
  technology	
  before	
  and	
  after.	
  In	
  addition	
  to	
  this,	
  the	
  efficiencies	
  of	
  combined	
  
cycles	
  using	
  natural	
  gas	
  turbines	
  into	
  Rankine	
  cycles	
  are	
  comparable	
  in	
  efficiency	
  and	
  are	
  
also	
  much	
  cheaper.	
  Also,	
  electrodes	
  suffer	
  from	
  electrochemical	
  attack	
  unless	
  coal	
  is	
  used	
  
before,	
  which	
  would	
  allow	
  for	
  mineral	
  slag	
  to	
  protect	
  the	
  electrodes	
  from	
  damage.	
  Finally,	
  
parasitic	
  losses	
  develop	
  to	
  power	
  the	
  electromagnet,	
  seed	
  material	
  is	
  expensive	
  and	
  must	
  
be	
  retrieved	
  later,	
  and	
  rare	
  metals	
  such	
  as	
  platinum	
  are	
  usually	
  needed	
  to	
  cap	
  the	
  
electrodes.	
  	
  
	
  
Looking	
  at	
  the	
  disadvantages	
  compared	
  to	
  the	
  advantages	
  of	
  this	
  technology	
  make	
  me	
  
think	
  that	
  MHD	
  generators	
  will	
  not	
  be	
  a	
  significant	
  part	
  of	
  the	
  sustainable	
  energy	
  system	
  in	
  
100	
  years	
  unless	
  some	
  major	
  breakthroughs	
  happen	
  that	
  allow	
  the	
  efficiency	
  to	
  get	
  
substantially	
  better.	
  If	
  this	
  happens,	
  this	
  technology	
  could	
  be	
  used	
  in	
  the	
  transition	
  period	
  
to	
  extend	
  the	
  effect	
  of	
  the	
  limited	
  fossil	
  fuel	
  resources	
  we	
  have	
  today.	
  
	
  
	
  
	
  
Thermoelectric	
  Generators	
  and	
  Refrigerators	
  
	
  
The	
  thermoelectric	
  generator	
  (TEG)	
  is	
  a	
  device	
  that	
  converts	
  heat	
  directly	
  into	
  electrical	
  
energy	
  using	
  the	
  Seebeck	
  effect.	
  The	
  system	
  acts	
  like	
  a	
  heat	
  engine,	
  but	
  with	
  no	
  moving	
  
parts.	
  This	
  technology	
  can	
  both	
  extend	
  the	
  availability	
  of	
  existing	
  finite	
  energy	
  resources	
  
and	
  enable	
  a	
  sustainable	
  primary	
  energy	
  source	
  to	
  be	
  better	
  utilized.	
  This	
  is	
  because	
  it	
  can	
  
be	
  put	
  at	
  the	
  exhaust	
  of	
  either	
  a	
  fossil	
  fuel	
  burning	
  engine	
  or	
  a	
  renewable	
  energy	
  energy	
  
conversion	
  device	
  to	
  create	
  more	
  energy.	
  All	
  it	
  needs	
  is	
  an	
  input	
  of	
  power.	
  The	
  
thermoelectric	
  refrigerator	
  can	
  do	
  both	
  as	
  well	
  depending	
  on	
  what	
  is	
  creating	
  the	
  current	
  
that	
  it	
  is	
  powered	
  by.	
  	
  
	
  
Two	
  devices	
  are	
  in	
  this	
  category.	
  These	
  are	
  the	
  thermoelectric	
  generator	
  and	
  refrigerator.	
  
The	
  thermoelectric	
  generator	
  uses	
  waste	
  heat	
  to	
  produce	
  power.	
  It	
  acts	
  like	
  a	
  heat	
  engine,	
  
but	
  is	
  less	
  bulky	
  and	
  has	
  no	
  moving	
  parts.	
  It	
  is	
  also	
  small,	
  does	
  not	
  need	
  maintenance,	
  and	
  
is	
  highly	
  reliable.	
  The	
  best	
  application	
  is	
  when	
  the	
  temperature	
  difference	
  between	
  the	
  hot	
  
and	
  the	
  cold	
  is	
  small.	
  Finally,	
  it	
  is	
  Carnot	
  limited	
  like	
  a	
  heat	
  engine.	
  Unfortunately,	
  there	
  are	
  
a	
  lot	
  of	
  disadvantages	
  to	
  this	
  technology.	
  First,	
  the	
  TEG	
  is	
  more	
  expensive	
  and	
  less	
  efficient	
  
than	
  a	
  heat	
  engine.	
  The	
  efficiency	
  of	
  the	
  system	
  is	
  usually	
  under	
  10%.	
  Also,	
  they	
  tend	
  to	
  
develop	
  mechanical	
  fatigue	
  due	
  to	
  the	
  large	
  number	
  of	
  cycle	
  at	
  high	
  temperature.	
  	
  
	
  
The	
  thermoelectric	
  refrigerator	
  or	
  Peltier	
  Refrigerator	
  has	
  a	
  DC	
  current	
  flow	
  through	
  the	
  
device,	
  which	
  heats	
  up	
  one	
  side	
  and	
  cools	
  the	
  other.	
  The	
  hot	
  side	
  is	
  attached	
  to	
  a	
  heat	
  sink	
  
that	
  keeps	
  its	
  temperature	
  constant,	
  while	
  the	
  other	
  side	
  gets	
  colder.	
  The	
  system	
  has	
  
advantages	
  of	
  the	
  vapor-­‐compression	
  refrigeration	
  cycle	
  because	
  it	
  has	
  no	
  moving	
  parts	
  or	
  
circulating	
  fluid,	
  is	
  smaller,	
  has	
  a	
  very	
  long	
  life,	
  and	
  is	
  flexible	
  in	
  shape.	
  Even	
  though	
  these	
  
seem	
  like	
  big	
  advantages,	
  the	
  high	
  cost	
  and	
  poor	
  efficiency	
  of	
  the	
  technology	
  hold	
  it	
  back	
  
from	
  being	
  chosen	
  over	
  the	
  usual	
  refrigeration	
  cycles.	
  	
  
	
  
I	
  do	
  not	
  believe	
  either	
  of	
  these	
  two	
  technologies	
  will	
  make	
  a	
  large	
  impact	
  on	
  the	
  sustainable	
  
energy	
  future.	
  TEGs	
  could	
  be	
  used	
  in	
  the	
  transition	
  period	
  to	
  extend	
  the	
  energy	
  we	
  get	
  out	
  
of	
  fossil	
  fuels	
  or	
  in	
  the	
  energy	
  future	
  by	
  squeezing	
  every	
  efficiency	
  point	
  out	
  of	
  the	
  exhaust	
  
of	
  some	
  techniques	
  like	
  fuel	
  cell	
  energy	
  production.	
  Thermoelectric	
  refrigerators	
  could	
  also	
  
make	
  a	
  difference	
  in	
  refrigeration,	
  but	
  efficiency	
  would	
  need	
  to	
  increase	
  substantially.	
  
Overall,	
  this	
  technology	
  does	
  not	
  seem	
  to	
  be	
  a	
  game	
  changer	
  in	
  my	
  mind	
  100	
  years	
  from	
  
now.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Solar Photovoltaic
Solar photovoltaics (PV) is the method of converting solar energy into DC electricity using
semiconducting materials that have the photovoltaic effect. Solar panels are composed of many
small solar cells to create solar power. This system enables a sustainable primary energy source
to be better utilized. PV is currently the third most producing renewable energy source behind
hydro and wind power. PV is a technology that enables a sustainable primary energy source to be
better utilized.
PV solar cells have a lot of great advantages. They make use of an inexhaustible and abundant
fuel supply. In addition to the fact that there is an endless supply of fuel, the energy is clean.
There is no need to create emissions when you can convert the solar energy directly into DC
electricity. It is available practically everywhere and does not need any specialized geographical
features. There are no moving parts required, which makes them very reliable without the need
for much maintenance over their lifetime. There is no noise pollution compared to technologies
like wind power. Excess heat from the cells could be used for cogeneration if needed. It also
encourages the transition from centralized to distributed power generation. This has major
benefits including less transmission losses, less effect from acts of terrorism, less money spent on
utilities since houses can sell extra energy produced to the utility companies, and huge steps
towards a sustainable energy future. Finally, subsidies from the government are pushing the
technology forward so that it is viable for people to adopt.
There are cons to this technology as with all technologies talked about in this report. First, and
most notably, it is an intermittent source. This means that there will be the need for base load
technology to sustain the grid, and it also means that storage technology like batteries must
become more viable for PV technology to reach its maximum potential. There are relatively high
costs for buying the cells even though it is going down quickly. Also, production of the PV cells
takes a lot of energy, uses fossil fuels, and produces emissions. The payback time can be as much
as 5-15 years! The efficiency goes down when it is colder outside. It requires an inverter to
produce AC current, which is another loss that the system will encounter. In addition, large
amounts of space are required for the systems since the technology is driven by economics, not
efficiency. Finally, there is still fairly low efficiency of the cells. The market average is under
20% efficiency.
I do believe PV cells will be a large contributor to the sustainable energy system in 100 years.
The fact that the sun is an inexhaustible, clean fuel makes it very attractive as well as the fact that
the government has bet on it by subsidizing it so heavily also makes it an attractive option.
Couple these with the billions of dollars in research funding for the technology, and it has a
bright future. This bright future will be utilized at both the community level and the industrial
level. Families will continue to adopt the technology as the benefits continue to rise, while large-
scale solar farms will continue to fill unused space in an effort to create more renewable energy.
Even though all of these things are working to the advantage of this technology, it is not a
compete solution for the future. This technology relies on the advance of storage devices like
batteries to improve substantially so that the excess energy produced can be stored and used
efficiently. Also, base load systems will still need to be in place since this is an intermittent
technology. Even so, it is bound to make a huge difference in the landscape of the future
sustainable energy system.
Solar Thermal
Solar thermal technology harnesses solar energy to generate thermal energy or electricity. This
technology can be used for both residential and industry use. Solar thermal is a technology that
enables a sustainable primary energy source to be better utilized. It does this by taking advantage
of the inexhaustible fuel that the sun provides and turns it into usable power.
Solar thermal is broken down into two main types. These types are solar heating and cooling, and
concentrated solar power. Solar heating and cooling uses solar panels that collect heat and use
the heat directly for applications like hot water, space heating, and air conditioning. The second
type is concentrated solar power which concentrates solar collectors on a point which creates an
intense beam that is shone on a vessel or pipe containing a fluid which is converted to steam to
drive a conventional thermal power plant.
These systems are fairly inexpensive, and pay for themselves quickly. They do not require as
much energy input as PV cells, and use less exotic materials. They are on the order of 3 times as
efficient as PV cells. They can be used for either heating or cooling. Cooling is done through the
use of the absorption cooling cycle. Solar heating energy is available when you most need it,
which is during the day. This system, like PV systems, encourages distributed power generation
with less reliance on the large-scale grid. The system is simple and low-maintenance with a long
life expectancy. In addition, the operating costs of the system are near zero. Finally, these are
modular systems with high efficiency.
	
  
The	
  downside	
  of	
  the	
  technology	
  begins	
  with	
  the	
  fact	
  that	
  they	
  haven’t	
  caught	
  the	
  attention	
  
that	
  PV	
  cells	
  have.	
  This	
  means	
  that	
  there	
  aren’t	
  as	
  many	
  subsidies	
  out	
  there	
  to	
  incentivize	
  
the	
  purchase	
  of	
  these	
  systems.	
  This	
  doesn’t	
  meant	
  that	
  they	
  won’t	
  eventually	
  get	
  the	
  face-­‐
time	
  that	
  they	
  deserve,	
  but	
  currently	
  they	
  are	
  fairly	
  in	
  the	
  dark	
  when	
  it	
  comes	
  to	
  public	
  
knowledge.	
  Solar	
  cooling	
  systems	
  are	
  currently	
  complex	
  and	
  expensive	
  and	
  solar	
  heaters	
  
are	
  more	
  than	
  conventional	
  water	
  heaters.	
  This	
  must	
  get	
  better	
  if	
  the	
  technology	
  is	
  going	
  to	
  
make	
  any	
  market	
  step	
  forward	
  in	
  terms	
  of	
  market	
  share.	
  As	
  with	
  all	
  solar-­‐based	
  systems,	
  
the	
  fuel	
  is	
  intermittent	
  and	
  low	
  in	
  energy	
  density,	
  which	
  means	
  that	
  it	
  must	
  be	
  coupled	
  
with	
  a	
  storage	
  device,	
  and	
  have	
  a	
  base	
  load	
  for	
  a	
  back	
  up	
  system.	
  These	
  systems	
  only	
  create	
  
heat	
  and	
  produce	
  no	
  electricity.	
  Instillation	
  costs	
  can	
  be	
  high	
  and	
  also	
  unavailable	
  in	
  a	
  lot	
  of	
  
the	
  US.	
  These	
  systems	
  are	
  only	
  really	
  effective	
  for	
  small-­‐scale	
  applications	
  currently.	
  
	
  
I	
  do	
  believe	
  that	
  these	
  technologies	
  can	
  play	
  roles	
  in	
  the	
  sustainable	
  energy	
  future.	
  For	
  
solar	
  heating	
  and	
  cooling,	
  I	
  believe	
  that	
  coupled	
  with	
  PV	
  cells	
  and	
  improved	
  batteries,	
  
homes	
  can	
  become	
  almost	
  self-­‐sustainable.	
  The	
  solar	
  heating	
  and	
  cooling	
  could	
  take	
  care	
  of	
  
the	
  air	
  temperature,	
  while	
  the	
  PV	
  cells	
  could	
  take	
  care	
  of	
  general	
  electrical	
  use	
  and	
  store	
  
the	
  excess	
  for	
  use	
  during	
  the	
  night.	
  As	
  said	
  many	
  times	
  already,	
  batteries	
  are	
  crucial	
  to	
  the	
  
success	
  of	
  this	
  technology.	
  Even	
  so,	
  there	
  would	
  still	
  need	
  to	
  be	
  backup	
  to	
  the	
  grid	
  just	
  in	
  
case	
  of	
  an	
  emergency	
  or	
  if	
  there	
  wasn’t	
  enough	
  sunlight	
  to	
  power	
  the	
  home	
  throughout	
  the	
  
night.	
  This	
  will	
  only	
  happen	
  if	
  good	
  subsidies	
  help	
  people	
  to	
  see	
  that	
  adoption	
  of	
  this	
  
technology	
  is	
  worthwhile	
  like	
  has	
  been	
  done	
  with	
  PV	
  cells.	
  The	
  houses	
  could	
  run	
  into	
  issues	
  
with	
  space	
  on	
  their	
  roof,	
  so	
  efficiency	
  might	
  also	
  come	
  into	
  play	
  eventually.	
  Decentralizing	
  
the	
  grid	
  using	
  the	
  combined	
  solar	
  technologies	
  will	
  be	
  important	
  on	
  the	
  road	
  to	
  a	
  
sustainable	
  energy	
  future	
  in	
  100	
  years.	
  
	
  
	
  
Wind
Wind	
  energy	
  is	
  the	
  use	
  of	
  wind	
  turbines	
  or	
  sails	
  to	
  produce	
  mechanical	
  or	
  electrical	
  energy.	
  
This	
  technology	
  enables	
  a	
  sustainable	
  primary	
  energy	
  source	
  to	
  be	
  better	
  utilized	
  by	
  
making	
  use	
  of	
  the	
  inexhaustible	
  fuel	
  of	
  wind	
  currents	
  to	
  create	
  electrical	
  power.	
  
	
  
There	
  are	
  some	
  marked	
  benefits	
  that	
  have	
  made	
  wind	
  energy	
  such	
  an	
  important	
  renewable	
  
energy	
  resource	
  over	
  the	
  last	
  decade.	
  These	
  include	
  the	
  fact	
  that	
  wind	
  energy	
  is	
  abundant	
  
clean,	
  and	
  renewable.	
  Since	
  the	
  sun	
  dictates	
  the	
  wind,	
  there	
  will	
  never	
  be	
  a	
  lack	
  of	
  it	
  as	
  long	
  
as	
  there	
  is	
  still	
  an	
  Earth.	
  Wind	
  power	
  is	
  also	
  widely	
  distributed	
  across	
  the	
  globe,	
  allowing	
  
wind	
  energy	
  to	
  be	
  produced	
  practically	
  anywhere	
  though	
  some	
  places	
  are	
  much	
  better	
  
than	
  others.	
  Power	
  from	
  wind	
  turbines	
  scales	
  with	
  velocity3,	
  which	
  means	
  that	
  it	
  doesn’t	
  
take	
  a	
  large	
  amount	
  of	
  wind	
  to	
  create	
  quite	
  a	
  lot	
  of	
  power.	
  In	
  addition	
  to	
  this,	
  new	
  
techniques	
  like	
  variable	
  angle	
  propellers	
  maximize	
  the	
  wind	
  power	
  that	
  each	
  turbine	
  can	
  
take	
  advantage	
  of.	
  Wind	
  turbines	
  also	
  take	
  up	
  small	
  amounts	
  of	
  land	
  and	
  are	
  relatively	
  
affordable.	
  The	
  breakeven	
  time	
  for	
  turbines	
  is	
  usually	
  around	
  ¾	
  of	
  a	
  year.	
  Finally,	
  once	
  the	
  
infrastructure	
  is	
  in	
  place,	
  the	
  power	
  is	
  practically	
  free.	
  
	
  
The	
  major	
  downside	
  of	
  this	
  technology	
  is	
  that	
  it	
  relies	
  on	
  wind,	
  which	
  is	
  inconsistent,	
  
unsteady,	
  and	
  unpredictable.	
  This	
  is	
  a	
  major	
  drawback	
  to	
  having	
  wind	
  turbines	
  in	
  a	
  lot	
  of	
  
areas	
  of	
  the	
  world	
  that	
  don’t	
  get	
  fairly	
  consistent	
  wind	
  throughout	
  the	
  year.	
  A	
  wind	
  turbine	
  
without	
  wind	
  is	
  practically	
  a	
  very	
  expensive	
  stick,	
  so	
  the	
  systems	
  need	
  to	
  be	
  set	
  up	
  where	
  
wind	
  is	
  guaranteed.	
  	
  This	
  means	
  that	
  even	
  in	
  windy	
  areas,	
  wind	
  power	
  can	
  never	
  be	
  a	
  
stand-­‐along	
  solution.	
  Instead	
  it	
  must	
  be	
  combined	
  with	
  a	
  base	
  load	
  system	
  so	
  that	
  there	
  
isn’t	
  a	
  loss	
  of	
  power	
  when	
  the	
  wind	
  isn’t	
  blowing.	
  Also,	
  the	
  system	
  relies	
  on	
  good	
  energy	
  
storage	
  when	
  the	
  wind	
  is	
  blowing	
  so	
  that	
  the	
  excess	
  energy	
  can	
  be	
  amassed.	
  In	
  addition	
  to	
  
its	
  reliability	
  on	
  unreliable	
  wind	
  gusts,	
  windmills	
  are	
  also	
  considered	
  eyesores	
  in	
  usually	
  
picturesque	
  areas	
  in	
  addition	
  to	
  the	
  fact	
  that	
  they	
  cause	
  noise	
  pollution.	
  Beyond	
  the	
  
aesthetic	
  problems,	
  windmills	
  also	
  have	
  wildlife	
  impacts	
  by	
  killing	
  birds,	
  and	
  also	
  can	
  
negatively	
  affect	
  temperatures	
  and	
  weather	
  in	
  the	
  surrounding	
  areas	
  by	
  causing	
  the	
  air	
  to	
  
be	
  turbulent	
  where	
  it	
  might	
  not	
  usually	
  be	
  turbulent	
  on	
  its	
  own.	
  
	
  
Wind	
  energy	
  will	
  be	
  a	
  very	
  important	
  piece	
  in	
  the	
  sustainable	
  energy	
  system	
  future.	
  Done	
  
correctly,	
  wind	
  energy	
  can	
  produce	
  clean,	
  abundant,	
  and	
  practically	
  free	
  energy.	
  This	
  is	
  
why	
  wind	
  energy	
  has	
  been	
  on	
  the	
  rise	
  and	
  will	
  continue	
  to	
  rise	
  in	
  the	
  next	
  100	
  years.	
  Even	
  
though	
  there	
  are	
  some	
  disadvantages	
  to	
  the	
  technology,	
  the	
  benefits	
  far	
  outweigh	
  them.	
  
The	
  only	
  thing	
  that	
  could	
  slow	
  down	
  the	
  wind	
  energy	
  craze	
  is	
  if	
  all	
  of	
  the	
  government	
  
subsidies	
  are	
  removed,	
  and	
  the	
  cost	
  of	
  the	
  systems	
  is	
  prohibitive.	
  To	
  be	
  as	
  successful	
  as	
  it	
  
can	
  be,	
  it	
  will	
  still	
  need	
  the	
  use	
  of	
  good	
  energy	
  storage	
  devices	
  and	
  a	
  solid	
  renewable	
  base	
  
load	
  so	
  that	
  the	
  wind’s	
  intermittence	
  won’t	
  be	
  very	
  much	
  of	
  a	
  problem.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Nuclear Fission
Nuclear	
  fission	
  is	
  a	
  nuclear	
  reaction	
  in	
  which	
  the	
  nucleus	
  of	
  an	
  atom	
  splits	
  into	
  smaller	
  
parts.	
  Nuclear	
  fission	
  extends	
  the	
  availability	
  of	
  existing	
  finite	
  energy	
  resources	
  namely	
  
uranium.	
  Uranium	
  is	
  not	
  a	
  renewable	
  resource	
  and	
  Uranium235	
  comprises	
  only	
  0.7%	
  of	
  all	
  
Uranium	
  on	
  the	
  Earth.	
  
	
  
Nuclear	
  fission	
  has	
  the	
  benefit	
  of	
  having	
  an	
  incredibly	
  large	
  power	
  generation	
  capacity.	
  
This	
  technology	
  is	
  used	
  as	
  a	
  base	
  load,	
  and	
  can	
  meet	
  industrial	
  and	
  city	
  needs	
  for	
  
electricity.	
  In	
  comparison	
  to	
  fossil	
  fuel	
  burning	
  plants,	
  nuclear	
  plants	
  produce	
  less	
  carbon	
  
dioxide	
  and	
  other	
  greenhouse	
  gasses.	
  Surprisingly,	
  during	
  normal	
  operation,	
  nuclear	
  plants	
  
have	
  low	
  operating	
  costs	
  in	
  comparison	
  to	
  the	
  amount	
  of	
  electricity	
  produced.	
  The	
  system	
  
is	
  currently	
  being	
  used	
  today,	
  which	
  makes	
  it	
  more	
  viable	
  than	
  some	
  unproven	
  
technologies	
  including	
  fusion.	
  Finally,	
  waste	
  recycling	
  is	
  become	
  on	
  option	
  for	
  the	
  future.	
  
This	
  recycling	
  of	
  the	
  waste	
  also	
  would	
  produce	
  more	
  energy.	
  
	
  
To	
  begin	
  with	
  the	
  cons	
  we	
  must	
  start	
  with	
  the	
  extremely	
  high	
  construction	
  costs	
  needed	
  for	
  
radiation	
  containment	
  systems	
  and	
  procedures.	
  These	
  costs	
  are	
  only	
  worthwhile	
  since	
  the	
  
system	
  can	
  produce	
  such	
  large	
  amounts	
  of	
  energy.	
  The	
  only	
  way	
  these	
  plants	
  do	
  get	
  built	
  is	
  
through	
  large	
  government	
  subsidies	
  and	
  loan	
  guarantees.	
  There	
  are	
  also	
  long	
  construction	
  
times	
  needed	
  to	
  create	
  these	
  plants	
  because	
  they	
  need	
  to	
  be	
  done	
  so	
  well	
  to	
  mitigate	
  failure	
  
possibilities.	
  There	
  are	
  known	
  risks	
  of	
  catastrophic	
  failures	
  if	
  something	
  were	
  to	
  go	
  wrong	
  
or	
  if	
  a	
  natural	
  disaster	
  was	
  to	
  hit	
  i.e.	
  Japan.	
  Like	
  all	
  large	
  energy	
  production	
  plants,	
  these	
  
are	
  targets	
  of	
  terrorism.	
  Large	
  coordination	
  with	
  utilities	
  in	
  the	
  surrounding	
  areas	
  must	
  
happen	
  since	
  produced	
  power	
  is	
  so	
  large.	
  This	
  also	
  means	
  that	
  there	
  are	
  substantial	
  losses	
  
in	
  the	
  transport	
  of	
  the	
  energy.	
  As	
  far	
  as	
  fuel,	
  most	
  of	
  the	
  remaining	
  uranium	
  in	
  the	
  world	
  
lies	
  under	
  land	
  controlled	
  by	
  tribes	
  or	
  indigenous	
  peoples	
  who	
  don’t	
  want	
  their	
  land	
  mined.	
  
This	
  poses	
  a	
  problem	
  for	
  future	
  fuel	
  since	
  it	
  is	
  not	
  a	
  renewable	
  resource.	
  Waste	
  is	
  one	
  of	
  the	
  
largest	
  issues	
  of	
  nuclear	
  fission	
  currently.	
  Waste	
  is	
  usually	
  kept	
  in	
  metal	
  barrels	
  in	
  water	
  
tanks	
  to	
  keep	
  from	
  overheating.	
  The	
  problem	
  with	
  this	
  is	
  that	
  there	
  is	
  currently	
  not	
  enough	
  
room	
  for	
  all	
  of	
  the	
  waste,	
  and	
  it	
  lasts	
  for	
  200-­‐500	
  thousand	
  years	
  in	
  the	
  state	
  that	
  it	
  exits	
  
the	
  reaction	
  at.	
  Recycling	
  the	
  waste	
  after	
  reaction	
  can	
  stop	
  this,	
  but	
  there	
  is	
  not	
  very	
  much	
  
of	
  this	
  implemented	
  currently,	
  and	
  more	
  infrastructure	
  must	
  be	
  built	
  before	
  this	
  is	
  viable.	
  
	
  
Nuclear	
  fission	
  will	
  be	
  a	
  part	
  of	
  the	
  transition	
  to	
  the	
  sustainable	
  energy	
  future,	
  and	
  will	
  
most	
  likely	
  be	
  used	
  as	
  a	
  base	
  load	
  for	
  a	
  long	
  time	
  after	
  other	
  fossil	
  fuels	
  stop	
  producing	
  as	
  
long	
  as	
  uranium	
  can	
  be	
  secured	
  and	
  recycling	
  of	
  the	
  waste	
  is	
  done	
  effectively.	
  The	
  power	
  
produced	
  by	
  these	
  plants	
  is	
  crucial	
  to	
  the	
  US	
  currently,	
  and	
  that	
  will	
  not	
  change	
  overnight.	
  
There	
  will	
  need	
  to	
  be	
  base	
  load	
  no	
  matter	
  how	
  large	
  the	
  intermittent	
  technologies	
  get	
  and	
  
how	
  good	
  the	
  battery	
  storage	
  becomes.	
  Some	
  day	
  fusion	
  might	
  erase	
  the	
  need	
  for	
  nuclear	
  
fission	
  plants,	
  but	
  until	
  then,	
  fission	
  will	
  continue	
  to	
  be	
  a	
  key	
  player	
  in	
  every	
  aspect	
  of	
  the	
  
transition	
  to	
  a	
  sustainable	
  energy	
  future	
  over	
  the	
  next	
  100	
  years.	
  
	
  
	
  
	
  
	
  
	
  
	
  
Nuclear Fusion
Fusion is the generation of incredible amounts of energy by a high-energy reaction where two
lighter atomic nuclei fuse to form a heavier nucleus. When they combine, some of the mass is
converted into energy in accordance with E=mc2
. Nuclear fusion is a technology that enables a
sustainable primary energy source to be better utilized. This is because once it is started, fusion
can happen continuously and uses deuterium and tritium as fuel, which can be distilled out of
seawater.
Nuclear fusion is the Holy Grail of energy conversion. If it were realized in its full capacity,
there would never be a need for energy production again. Just like the sun, we would produce
continuous energy from the fusion reactor’s thermonuclear reaction. This energy could boil
steam and generate electricity using conventional turbines. In addition to the benefit of limitless
energy, it would also be clean, carbon free energy. The fuels for the system, as stated before, are
deuterium and tritium. Deuterium can be distilled from seawater and tritium can be “bred” in the
reactor. This means that the fuel will never run out and is very cheap compared to the return in
energy. In comparison to nuclear fission, fusion is easier to control and stop once it’s reacting
since there are no chain reactions happening. Another benefit it has over nuclear fission is that
there is little nuclear waste that only stays radioactive for about 100 years as compared to the
200-500 thousand years of the fission uranium. Finally, cold fusion is being researched heavily
and is said to be much easier to implement.
The const to the system is that you have to over come the electrical repulsion of two hydrogen
atoms using temperatures of around 1 million degrees Celsius. This is hotter than any material on
Earth could possibly withstand. To overcome this issue, a gravity inertia or magnetism is
required to keep the super-hot plasma from melting everything. Unfortunately, both of these
options are extremely hard to create and control. On top of this, there is little room for error
when testing since something that hot would damage many things if not contained properly.
Also, each test is extremely expensive since you need to expend a large amount of energy to get
the system hot enough for a fusion reaction to occur. The earliest projected commercial facility is
not expected until around 2050. As can be expected, start up costs are extreme and will require
many sources of funding to get enough money for a plant.
The other cons are more on a societal and money-usage standpoint. First, the billions being
poured into this research could be put towards other renewables that are guaranteed to work,
while commercial nuclear fusion is still largely unproven. Also, the issue then comes with the
thought of the drawbacks of success if fusion becomes a reality. Is it a good thing to have an
unlimited power supply? Initially this only looks as though it could be a benefit of the
technology, but it has been shown that the more, cheap energy we have available, the more extra
material we will consume, which will deplete resources, and pollute more of the environment. So
a possible con for the future is the ecological impact a limitless energy supply could provide if it
isn’t well regulated.
I believe that fusion will be the ultimate energy source 100 years from now. All signs point to the
fact that with enough funding being poured into it, there should be a realizable solution within 50
years. There are many obstacles along the way, but there is enough time, money, and brainpower
to overcome them in 50 years. Implementation and copying the systems will take time, but 100
years is a long enough time to get the infrastructure in place. This will solve one of the biggest
issues facing the world right now, and will realize the potential of the sustainable energy future.
Again the question arises if we can limit ourselves and not over-indulge on our usage, but
regardless, this technology has a very promising chance of ending our need for fossil fuels
completely.
Summary and Conclusions	
  
	
  
As	
  can	
  be	
  read	
  in	
  the	
  previous	
  15	
  pages	
  of	
  information,	
  there	
  is	
  quite	
  a	
  diverse	
  landscape	
  of	
  
energy	
  conversion	
  technologies	
  being	
  used	
  today.	
  Some	
  of	
  these	
  technologies	
  are	
  being	
  
efficiently	
  used,	
  some	
  are	
  in	
  need	
  of	
  improvements,	
  and	
  others	
  have	
  not	
  yet	
  been	
  realized.	
  
Regardless,	
  it	
  is	
  clear	
  that	
  in	
  the	
  next	
  100	
  years,	
  there	
  will	
  be	
  many	
  necessary	
  changes	
  
being	
  made	
  to	
  energy	
  system.	
  I	
  believe	
  that	
  a	
  sustainable	
  energy	
  system	
  is	
  very	
  likely	
  
within	
  the	
  next	
  100	
  years.	
  My	
  vision	
  for	
  the	
  transition	
  starts	
  with	
  batter	
  improvement.	
  
	
  
Of	
  all	
  of	
  the	
  energy	
  storage	
  devices,	
  batteries	
  seem	
  like	
  the	
  most	
  viable	
  to	
  push	
  forward	
  the	
  
sustainable	
  energy	
  future.	
  Other	
  storage	
  devices	
  will	
  be	
  used	
  in	
  addition	
  to	
  batteries,	
  but	
  
batteries	
  have	
  the	
  benefit	
  of	
  being	
  efficient,	
  quickly	
  discharged,	
  easily	
  integrated	
  in	
  the	
  
grid,	
  and	
  scalable.	
  This	
  versatility	
  makes	
  it	
  critical	
  for	
  the	
  sustainable	
  energy	
  future.	
  
	
  
Battery	
  improvements	
  will	
  push	
  forward	
  many	
  other	
  technologies,	
  especially	
  the	
  
intermittent	
  renewables.	
  PV	
  solar,	
  solar	
  thermal,	
  and	
  wind	
  all	
  stand	
  to	
  gain	
  from	
  
improvements	
  to	
  battery	
  technology.	
  These	
  systems	
  will	
  be	
  integral	
  in	
  the	
  transition	
  away	
  
from	
  fossil	
  fuels	
  into	
  sustainable	
  energy.	
  In	
  addition,	
  they	
  will	
  also	
  be	
  crucial	
  in	
  
decentralizing	
  the	
  grid	
  so	
  that	
  there	
  is	
  less	
  need	
  for	
  base	
  load	
  systems	
  to	
  be	
  as	
  large.	
  This	
  
will	
  take	
  time	
  and	
  government	
  subsidies	
  to	
  correctly	
  implement,	
  but	
  eventually,	
  these	
  
renewable	
  energy	
  devices	
  will	
  be	
  widespread.	
  
	
  
While	
  improvement	
  to	
  the	
  renewable	
  energy	
  infrastructure	
  is	
  happening,	
  optimization	
  of	
  
the	
  use	
  of	
  fossil	
  fuels	
  will	
  need	
  to	
  happen	
  as	
  well.	
  Technologies	
  like	
  MHD	
  and	
  
thermoelectric	
  generators	
  will	
  be	
  implemented	
  in	
  specialized	
  areas	
  along	
  with	
  the	
  
implementation	
  of	
  highly	
  efficient	
  combined	
  cycle	
  plants	
  to	
  make	
  sure	
  that	
  we	
  are	
  getting	
  
the	
  most	
  energy	
  out	
  of	
  the	
  remaining	
  fossil	
  fuels.	
  This	
  will	
  allow	
  more	
  time	
  for	
  renewable	
  
energy	
  to	
  take	
  hold	
  as	
  well	
  as	
  battery	
  technology	
  to	
  improve.	
  
	
  
Base	
  load	
  systems	
  will	
  still	
  need	
  to	
  be	
  around	
  though,	
  and	
  correctly	
  done	
  fuel	
  cell	
  plants	
  
could	
  turn	
  fossil	
  fuel	
  burning	
  base	
  load	
  plants	
  into	
  clean,	
  renewable	
  fuel	
  burning	
  plants.	
  	
  
This	
  movement	
  away	
  from	
  fossil	
  fuels	
  in	
  base	
  load	
  will	
  come	
  when	
  fossil	
  fuel	
  reserves	
  get	
  
depleted	
  and	
  cost	
  of	
  the	
  fuel	
  become	
  too	
  high.	
  If	
  it	
  isn’t	
  fuel	
  cells,	
  then	
  we	
  will	
  lean	
  more	
  
heavily	
  on	
  nuclear	
  fission	
  plants	
  and	
  plants	
  that	
  will	
  recycle	
  all	
  of	
  the	
  uranium	
  waste	
  
coming	
  out	
  of	
  the	
  nuclear	
  fission	
  plants.	
  
	
  
All	
  of	
  this	
  work	
  will	
  act	
  as	
  the	
  transition	
  period	
  before	
  nuclear	
  fusion	
  is	
  realized.	
  Once	
  
nuclear	
  fusion	
  is	
  perfected	
  and	
  made	
  viable	
  for	
  commercial	
  applications,	
  there	
  will	
  be	
  no	
  
need	
  for	
  energy	
  conversion	
  sources	
  except	
  turbines	
  for	
  the	
  steam	
  that	
  is	
  produced	
  and	
  
batteries	
  to	
  store	
  the	
  excess	
  energy.	
  At	
  this	
  point	
  though,	
  renewable	
  technology	
  like	
  solar	
  
will	
  be	
  so	
  widespread	
  that	
  people	
  will	
  opt	
  to	
  keep	
  their	
  decentralized	
  grids	
  running	
  and	
  
use	
  fusion	
  as	
  a	
  new	
  base	
  load.	
  This	
  will	
  allow	
  people	
  to	
  continue	
  to	
  be	
  self-­‐reliant	
  energy-­‐
wise	
  and	
  pull	
  from	
  fusion	
  when	
  needed.	
  	
  
	
  
100	
  years	
  from	
  now	
  the	
  sustainable	
  energy	
  system	
  will	
  be	
  realized	
  and	
  we	
  will	
  be	
  able	
  to	
  
share	
  electricity	
  with	
  those	
  who	
  have	
  never	
  had	
  it	
  since	
  it	
  will	
  be	
  in	
  such	
  abundance.	
  At	
  the	
  
same	
  time	
  though,	
  there	
  will	
  have	
  to	
  be	
  limits	
  on	
  consumption	
  so	
  that	
  our	
  advances	
  don’t	
  
doom	
  our	
  planet.	
  What	
  a	
  bright	
  future	
  indeed!	
  “All	
  pun	
  intended”	
  

More Related Content

What's hot

Ecoult - Energy Storage Introduction to Energy Storage
Ecoult - Energy Storage Introduction to Energy StorageEcoult - Energy Storage Introduction to Energy Storage
Ecoult - Energy Storage Introduction to Energy StorageEcoult123
 
Hydroelectric power
Hydroelectric powerHydroelectric power
Hydroelectric powertams
 
DESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANT
DESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANTDESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANT
DESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANTvivatechijri
 
Floating Solar Panels A New Step towards Sustainability
Floating Solar Panels A New Step towards SustainabilityFloating Solar Panels A New Step towards Sustainability
Floating Solar Panels A New Step towards Sustainabilityijtsrd
 
Floating solar system
Floating solar systemFloating solar system
Floating solar systemSgurrEnergy
 
IRJET- Design of Small Hydro Electric Power Plant at Cheeyappara
IRJET-  	  Design of Small Hydro Electric Power Plant at CheeyapparaIRJET-  	  Design of Small Hydro Electric Power Plant at Cheeyappara
IRJET- Design of Small Hydro Electric Power Plant at CheeyapparaIRJET Journal
 
Floating Solar
Floating SolarFloating Solar
Floating Solarplzsorry
 
HYBRID POWER GENERATION SYSTEM From KMP College
HYBRID POWER  GENERATION SYSTEM From KMP CollegeHYBRID POWER  GENERATION SYSTEM From KMP College
HYBRID POWER GENERATION SYSTEM From KMP CollegeHIGHVOLTEEE
 
Photovoltaic systems
Photovoltaic systemsPhotovoltaic systems
Photovoltaic systemswirethehouse
 
Combine Heating and Power (chp)
Combine Heating and Power (chp)Combine Heating and Power (chp)
Combine Heating and Power (chp)wirethehouse
 
Hybrid wind-solar Power generation system
Hybrid wind-solar Power generation systemHybrid wind-solar Power generation system
Hybrid wind-solar Power generation systemShivam Joshi
 
Hybrid power generation system
Hybrid power generation systemHybrid power generation system
Hybrid power generation systemAlok Kumar Singh
 
Wind & Solar hybrid power generation
Wind & Solar hybrid power generationWind & Solar hybrid power generation
Wind & Solar hybrid power generationMilan Ghimire
 
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...ijtsrd
 
Advantages and Disadvantages of Floating Solar Plants
Advantages and Disadvantages of Floating Solar PlantsAdvantages and Disadvantages of Floating Solar Plants
Advantages and Disadvantages of Floating Solar PlantsMangeshK6
 
Solar canal and floating power plants.
Solar canal  and floating power plants.Solar canal  and floating power plants.
Solar canal and floating power plants.Maharishi Tiwari
 
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEMSOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEMtulasi banala
 
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEESHYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEESBhushith Kumar
 

What's hot (20)

Ecoult - Energy Storage Introduction to Energy Storage
Ecoult - Energy Storage Introduction to Energy StorageEcoult - Energy Storage Introduction to Energy Storage
Ecoult - Energy Storage Introduction to Energy Storage
 
Hydroelectric power
Hydroelectric powerHydroelectric power
Hydroelectric power
 
DESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANT
DESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANTDESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANT
DESIGN AND FABRICATION OF FLOATING SOLAR POWER PLANT
 
Floating Solar Panels A New Step towards Sustainability
Floating Solar Panels A New Step towards SustainabilityFloating Solar Panels A New Step towards Sustainability
Floating Solar Panels A New Step towards Sustainability
 
Floating solar system
Floating solar systemFloating solar system
Floating solar system
 
Energy storage
Energy storageEnergy storage
Energy storage
 
IRJET- Design of Small Hydro Electric Power Plant at Cheeyappara
IRJET-  	  Design of Small Hydro Electric Power Plant at CheeyapparaIRJET-  	  Design of Small Hydro Electric Power Plant at Cheeyappara
IRJET- Design of Small Hydro Electric Power Plant at Cheeyappara
 
Wind Turbines
Wind Turbines Wind Turbines
Wind Turbines
 
Floating Solar
Floating SolarFloating Solar
Floating Solar
 
HYBRID POWER GENERATION SYSTEM From KMP College
HYBRID POWER  GENERATION SYSTEM From KMP CollegeHYBRID POWER  GENERATION SYSTEM From KMP College
HYBRID POWER GENERATION SYSTEM From KMP College
 
Photovoltaic systems
Photovoltaic systemsPhotovoltaic systems
Photovoltaic systems
 
Combine Heating and Power (chp)
Combine Heating and Power (chp)Combine Heating and Power (chp)
Combine Heating and Power (chp)
 
Hybrid wind-solar Power generation system
Hybrid wind-solar Power generation systemHybrid wind-solar Power generation system
Hybrid wind-solar Power generation system
 
Hybrid power generation system
Hybrid power generation systemHybrid power generation system
Hybrid power generation system
 
Wind & Solar hybrid power generation
Wind & Solar hybrid power generationWind & Solar hybrid power generation
Wind & Solar hybrid power generation
 
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
 
Advantages and Disadvantages of Floating Solar Plants
Advantages and Disadvantages of Floating Solar PlantsAdvantages and Disadvantages of Floating Solar Plants
Advantages and Disadvantages of Floating Solar Plants
 
Solar canal and floating power plants.
Solar canal  and floating power plants.Solar canal  and floating power plants.
Solar canal and floating power plants.
 
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEMSOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
 
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEESHYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
 

Similar to Urban_Daniel_Energy_FinalReport

Energy storage Technologies & Innovation
Energy storage Technologies & InnovationEnergy storage Technologies & Innovation
Energy storage Technologies & InnovationMostafa Ahmed Zein
 
Comparative analysis of electrochemical energy storage technologies for smart...
Comparative analysis of electrochemical energy storage technologies for smart...Comparative analysis of electrochemical energy storage technologies for smart...
Comparative analysis of electrochemical energy storage technologies for smart...TELKOMNIKA JOURNAL
 
Us er-electric-storage-paper
Us er-electric-storage-paperUs er-electric-storage-paper
Us er-electric-storage-paperSourav Bhunia
 
Renewable energy
Renewable energy Renewable energy
Renewable energy Andy Brauer
 
Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationDesign and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationIJERA Editor
 
Initial presentation on techno economic analysis of 3kWp stand alone solar ho...
Initial presentation on techno economic analysis of 3kWp stand alone solar ho...Initial presentation on techno economic analysis of 3kWp stand alone solar ho...
Initial presentation on techno economic analysis of 3kWp stand alone solar ho...Himasree Viswanadhapalli
 
Electricity Storage On The Fly | Flywheel
Electricity Storage On The Fly  | Flywheel Electricity Storage On The Fly  | Flywheel
Electricity Storage On The Fly | Flywheel Power System Operation
 
Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)
Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)
Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)IRJET Journal
 
COMET: A combination of multiple-energy technologies - Another alternative to...
COMET: A combination of multiple-energy technologies - Another alternative to...COMET: A combination of multiple-energy technologies - Another alternative to...
COMET: A combination of multiple-energy technologies - Another alternative to...IRJET Journal
 
Electric Energy Storage Systems
Electric Energy Storage SystemsElectric Energy Storage Systems
Electric Energy Storage SystemsHussein Kassem
 
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...Bruce LaCour
 
Control For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart GridsControl For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart GridsPRABHAHARAN429
 
Io ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart gridsIo ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart gridsKAIZEN Group Experts
 
Hydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.pptHydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.pptRaheelMuhammad5
 
UNIT 1 CIV 880.pptx
UNIT 1 CIV 880.pptxUNIT 1 CIV 880.pptx
UNIT 1 CIV 880.pptxmrunmayee20
 

Similar to Urban_Daniel_Energy_FinalReport (20)

Energy storage Technologies & Innovation
Energy storage Technologies & InnovationEnergy storage Technologies & Innovation
Energy storage Technologies & Innovation
 
WHY ENERGY STORAGE
WHY ENERGY STORAGEWHY ENERGY STORAGE
WHY ENERGY STORAGE
 
Comparative analysis of electrochemical energy storage technologies for smart...
Comparative analysis of electrochemical energy storage technologies for smart...Comparative analysis of electrochemical energy storage technologies for smart...
Comparative analysis of electrochemical energy storage technologies for smart...
 
Us er-electric-storage-paper
Us er-electric-storage-paperUs er-electric-storage-paper
Us er-electric-storage-paper
 
Ms2521852190
Ms2521852190Ms2521852190
Ms2521852190
 
Renewable energy
Renewable energy Renewable energy
Renewable energy
 
Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationDesign and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
 
Initial presentation on techno economic analysis of 3kWp stand alone solar ho...
Initial presentation on techno economic analysis of 3kWp stand alone solar ho...Initial presentation on techno economic analysis of 3kWp stand alone solar ho...
Initial presentation on techno economic analysis of 3kWp stand alone solar ho...
 
Electricity Storage On The Fly | Flywheel
Electricity Storage On The Fly  | Flywheel Electricity Storage On The Fly  | Flywheel
Electricity Storage On The Fly | Flywheel
 
12629131.ppt
12629131.ppt12629131.ppt
12629131.ppt
 
Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)
Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)
Perfection of Self-Consumption Energy in ESS using Optimization Technique (GA)
 
COMET: A combination of multiple-energy technologies - Another alternative to...
COMET: A combination of multiple-energy technologies - Another alternative to...COMET: A combination of multiple-energy technologies - Another alternative to...
COMET: A combination of multiple-energy technologies - Another alternative to...
 
S01231117120
S01231117120S01231117120
S01231117120
 
Electric Energy Storage Systems
Electric Energy Storage SystemsElectric Energy Storage Systems
Electric Energy Storage Systems
 
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
 
Mtech RES.pptx
Mtech RES.pptxMtech RES.pptx
Mtech RES.pptx
 
Control For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart GridsControl For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart Grids
 
Io ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart gridsIo ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart grids
 
Hydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.pptHydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.ppt
 
UNIT 1 CIV 880.pptx
UNIT 1 CIV 880.pptxUNIT 1 CIV 880.pptx
UNIT 1 CIV 880.pptx
 

Urban_Daniel_Energy_FinalReport

  • 1. Daniel Urban December 10, 2015 Energy Final Project Introduction   A  sustainable  energy  future  is  a  critical  need  that  must  be  achieved  for  multiple  reasons.   These  include  but  are  not  limited  to:  having  energy  available  for  the  growing  population  of   the  world  while  fossil  fuel  stores  are  being  depleted,  creating  energy  that  produces  less   harmful  emissions,  and  having  energy  security  knowing  that  we  will  have  a  way  to  produce   energy  that  doesn’t  rely  on  other,  possibly  hostile  countries.       A  sustainable  energy  future  is  not  something  that  will  happen  over  night.  We  are  in  what  is   called  a  transition  period.  This  period  is  characterized  by  the  efforts  to  optimize  our  use  of   remaining  fossil  fuel  supplies,  while  putting  money  into  researching  and  developing  more   renewable-­‐based  options.  Some  key  advances  and  strategic  implementation  of  technology   will  need  to  be  made  during  this  transition  period  to  ensure  that  a  sustainable  energy   future  is  achievable.     This  report  goes  over  the  following  nine  technologies  that  support  the  current  energy   supply  system,  and  may  contribute  to  the  long-­‐term  sustainable  energy  future.       Technologies addressed: 1. Grid-connected energy storage 2. Fuel cells 3. MHD 4. Thermoelectric generators and refrigerators 5. Solar photovoltaic 6. Solar thermal 7. Wind 8. Nuclear fission 9. Nuclear fusion These  technologies  are  briefly  described  and  then  analyzed  for  the  benefits  and  drawbacks   that  they  each  have.  A  brief  role  for  the  future  is  also  included  at  the  end  of  each   technology’s  section.  Finally,  a  summary  of  my  thoughts  for  the  sustainable  energy  future  is   on  the  last  page  of  the  report. This report has been written to show the reader that there can be a fairly clear path along the transition towards a sustainable energy system. It also allows the reader to understand the inherent benefits and drawbacks to each of the current technologies that are supporting the energy system today. None of these technologies by themselves are the answer, but a combination of them can provide a solid platform with which we can shape the energy future. Noted too is the timeline of 100 years. A lot of the information in this report is based off of present technology, but most likely will be surpassed by advancements made over time. These thoughts are expressed throughout the report so that we don’t limit ourselves to only the knowledge we have currently.
  • 2. Grid – Connected Energy Storage Grid – connected energy storage is made up of devices used to store electrical energy on a large scale within a power grid. Energy is stored in these devices when production exceeds consumption, and is returned to the grid when energy consumption exceeds base load production. This technology primarily enables a sustainable primary energy source to be better utilized by storing the excess energy produced by intermittent energy producing technologies to be used when there is a need. There are six types of grid-connected energy storage that will be evaluated here. These include: air, batteries, hydrogen, hydro, superconducting magnets, and flywheel. There will be paragraphs going over the pros and cons of each of these technologies followed by a few paragraphs analyzing the technology of grid-connected energy storage as a whole. Compressed air energy storage (CAES) is the first technology to be looked at. Compressed air energy storage starts with air being compressed and stored in areas like underground caverns. When electricity is needed, the air is heated and expanded through an expansion turbine driving a generator for power. One of the cons of this type of storage is that it needs a small amount of fossil fuel to compress the air and to heat the air. This also means that it creates CO2 emissions to work. Possible ways to mitigate this is to use heat rejection from a renewable system like a fuel cell. Another disadvantage of the system is that you must have a lot of storage underground, which requires a large capitol investment as well as suitable land. This could disturb ecosystems, and could damage the surrounding if an accident happened. The final con is that an accident in this system is called a catastrophic tank rupture, which can damage anything around it. The advantages of this storage technique are that its round trip efficiency is around 70% and the air is easily accessible. Another air energy storage technique is liquid air. Liquid air is created through compressing and cooling the air until it is liquid. When it is needed, the stored liquid air is expanded through a turbine to create electricity. Because of the need to cool the air so low, the round trip efficiency is at about 25% but projections have been made that it could increase to around 50%. Currently only cryogenic distillation of air is commercially viable technology for large-scale energy storage. The pros of the system include safer storage, and the lack of energy input when energy is needed. The current low round-trip efficiency is a major disadvantage of this storage technique. Batteries are the most well known type of energy storage. There are some general cons to batteries, which include relatively high prices, high maintenance costs, in some cases being flammable, use toxic materials most of the time, have low energy density, and have limited life spans due to pure chemical crystals that form inside the cells during charging and discharching cycles. These crystals grow large enough to distort the battery and short out the cells. The advantages of battery storage include that they are clean, relatively efficient, provide stored energy instantaneously, do not need special geological/geographical requirements, can easily integrate into the grid, rarely need expensive rare metals, have been tested extensively, and have a large amount of funding going into research and development. Hydrogen storage is comprised of compressing or liquefying hydrogen, storing it, and then converting it back to its original state while collecting the electrical energy or heat produced.
  • 3. Hydrogen has the advantage of being a high-density fuel. On the downside, you must either reform natural gas with steam or use electrolysis of water to get the hydrogen needed. Electrolysis needs high temperature and pressure, which unless supplied by something like a nuclear plant, are unrealistic. Efficiencies are generally low due to the energy required to produce the hydrogen. Also, needed equipment and resources include an electrolysis plant, compressors or liquefiers, storage tanks, and underground caverns or salt domes to store all of the tanks. Pumped-storage hydroelectricity is the most utilized grid-connected energy storage in the world currently. It is used to even out the daily generating load by pumping water to a high storage reservoir during times of excess production. When the demand is more than the production, hydroelectric generation is used with the water that was pumped earlier. This energy storage method has the benefit of being fast in response. It also has 70-85% efficient and is the most cost-effective form of large-scale power storage currently. It is good for variation in demand. On the downside, it needs a very specific geography of two lakes near each other that are separated by a considerable vertical distance. It also has the ability to negatively impact animal life in these water reservoirs, and the ecosystem around when you drill out part of the earth to put the hydroelectric generator and other parts needed. Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of current in a superconducting coil. The systems have super high efficiency around 95% with losses from the inerter/rectifier. This is the best efficiency out of any of the grid connected energy storage systems. Once the coil has been charged, the current will not decay and the magnetic energy can be stored indefinitely. There is however a large energy requirement for refrigeration, so short duration energy storage is better for this technology. Also, superconducting coils of this size are very expensive. Finally, there is the need for a large amount of infrastructure and land for the magnet and skilled technicians who can run it and repair it when needed. The final energy-storage technology to analyze is the flywheel. The flywheel is made up of a heavy rotating disc that is accelerated by an electric motor when electric power flows into the device. When the flow of power is reversed, electricity is produced. The method is very expensive because to get low friction, the flywheel must be in a vacuum and must use magnetic bearings. Due to the fact that larger flywheel speeds allow for greater storage capacity, the system is better suited for load leveling, and is not feasible for general storage applications. This is a very limited technology, but is successful for specialized applications. When looking at grid-connected energy storage as a whole there are some consistent advantages and disadvantages. One of the biggest advantages is that it will allow intermittent renewable energy sources to be utilized effectively. It also greatly enhances the grid reliability by providing back ups. It will help to fuel the transition by integrating renewable and fossil fuel sources together. When looking at the cons, the glaring fact is that each has its own issues that are yet to be answered. None of the technologies are perfect, but thankfully large amounts of money are being poured into R&D. Also, there is the need for a large amount of new infrastructure to implement any of these technologies. The future of energy conversion will have grid-connected energy storage as a major contributor. To make the transition from fossil fuels to a sustainable energy system will require energy storage. Currently, pumped-storage hydroelectricity is the major player of this technology, but I believe that batteries will eventually be the golden child of this technology. It is only a matter of
  • 4. time before the billions of dollars being poured into this technology will pay off. Batteries have the efficiency pay off, the immediate energy, and the ease of integration on both large scale and small-scale platforms to make a huge difference in the path to a sustainable energy future. Other storage technologies like hydroelectricity, compressed air and hydrogen, and flywheel will be used where they can be applied best, but I still believe that batteries will eventually make the largest impact if we are looking at this from a 100-year standpoint.
  • 5. Fuel  Cell  Technology     Fuel  cells  are  devices  that  convert  the  chemical  energy  of  different  fuels  directly  into   electricity  by  utilizing  chemical  reactions  of  positively  charged  hydrogen  ions  with   oxidizing  agents.  There  are  many  varieties  of  fuel  cells,  but  they  all  work  in  the  same   general  manner.  They  also  are  all  made  up  of  three  segments,  which  are  the  anode,  the   cathode,  and  the  electrolyte.       Four  of  the  main  types  of  fuel  cells  are:  proton  exchange  membrane  fuel  cells  (PEMFC),   phosphoric  acid  (PAFC),  solid  oxide  fuel  cells  (SOFC),  and  molten  carbonate  (MCFC).   PEMFC,  PAFC,  and  SOFC  are  technologies  that  enable  a  sustainable  primary  energy  source   to  be  utilized,  while  MCFC  is  able  to  extend  the  availability  of  existing  finite  energy   resources.       There  are  pros  and  cons  to  each  of  these  fuel  cells,  and  also  pros  and  cons  of  the   overarching  fuel  cell  technology.    The  following  paragraphs  will  go  in  depth  about  the  four   fuel  cell  types  above  and  the  paragraphs  that  remain  will  look  at  the  technology  as  a  whole.     The  first  technology  to  focus  on  is  the  proton  exchange  membrane  fuel  cell  (PEMFC).   These  fuel  cells  are  distinguished  by  their  low  temperature  and  pressure  ranges.  These   attributes  are  positives  of  the  technology  because  they  keep  from  high   temperature/pressure  fatigue  of  the  materials.  The  PEMFC  technology  also  has  a  fast   response  time.  This  means  that  it  is  viable  for  many  applications  where  quick  response  is  a   necessity.  Currently,  this  technology  is  looked  at  primarily  for  transportation.  PEMFC  have   efficiencies  in  the  range  of  40-­‐60%,  which  is  pretty  respectable.    This  efficiency  is  made  up   solely  of  electricity  output.     PEMFCs  also  have  a  specialized  polymer  electrolyte  catalyst.    This  is  a  con  to  the  technology   since  it  is  made  using  platinum,  which  makes  the  fuel  cell  very  expensive.  Nearly  half  of  the   fuel  cell  cost  is  attributed  to  the  catalyst.  To  overcome  this,  the  platinum  need  must  either   be  reduced  or  a  new  catalyst  material  must  be  found.  Increasing  the  catalytic  activity  of  the   platinum  is  one  way  of  achieving  the  reduction  in  platinum.  In  addition  to  cost,  water  and   air  management  are  design  problems  for  the  PEMFC.  The  membrane  of  the  cell  must  be   hydrated  at  all  times.  If  the  membrane  dries,  resistance  will  build  and  the  cell  will  crack.  If   the  cell  is  flooded,  the  reactants  wont  reach  the  catalyst  and  the  reaction  will  stop.  Methods   like  electro  osmotic  pumps  are  being  developed  to  help  fix  this  issue.  Finally,  durability  is   an  issue  for  the  PEMFCs  because  they  need  to  operate  at  a  wide  variation  of  temperatures   for  many  hours.  The  current  technology  for  PEMFCs  does  not  achieve  the  life  span   requirements  of  current  cars  or  stationary  energy  converter  requirements.     The  next  fuel  cell  technology  to  focus  on  is  the  phosphoric  acid  fuel  cell  (PAFC).  PAFCs   use  a  non-­‐conductive  electrolyte  to  pass  positive  hydrogen  ions  from  the  anode  to  the   cathode.  The  technology  works  best  in  a  temperature  range  from  150-­‐200  degrees  Celcius.   The  efficiency  of  this  technology  increases  to  the  80%  range  if  the  heat  of  the  system  is   used  for  cogeneration.  The  split  between  electrical  output  and  heat  output  is  about  50/50   for  the  above  efficiency.  The  first  con  of  the  PAFC  is  that  it  again  uses  platinum  as  its   catalyst  so  that  the  hydrogen  ionization  rate  is  high.  This  makes  the  technology  expensive   like  the  PEMFC.  In  addition,  the  technology  uses  acidic  electrolytes.  These  make  up  another  
  • 6. negative  for  the  system  because  they  lessen  the  durability  and  life  span  of  the  cells  by   increasing  the  corrosion  and  oxidation  of  components  inside  the  cell.       Solid  oxide  fuel  cells  (SOFC)  are  characterized  by  a  solid  ceramic  material  as  the   electrolyte.  They  have  the  advantage  of  being  able  to  be  made  in  a  variety  of  shapes  and  are   not  relegated  to  the  flat  plan  configuration  of  the  other  fuel  cells  types.  They  also  have  the   benefit  of  being  able  to  be  run  on  a  variety  of  fuels,  but  the  fuel  must  contain  hydrogen   atoms  for  the  reaction  to  work.  SOFC  technology  requires  super  hot  operating   temperatures  in  the  range  of  800  –  1000  degrees  Celsius.  The  benefit  of  these  high   temperatures  is  that  there  is  no  need  for  platinum  in  the  catalyst  making  the  system   cheaper.  Another  benefit  of  the  high  temperature  is  that  the  waste  heat  of  the  system  could   be  used  for  cogeneration,  which  can  bump  the  efficiency  into  the  80%  range.  The  negative   of  the  hot  temperature  is  that  carbon  dust  can  build  up  on  the  anode,  which  lessens  the   performance  of  the  whole  fuel  cell.  Another  negative  of  the  technology  is  that  there  is  a   slow  start  up  time  due  to  the  ceramic  that  is  used  as  the  cell  substrate  in  addition  to  the   super  high  temperatures  necessary  for  the  system  to  work.  This  keeps  the  technology  from   any  automobile  or  other  quick  response  usages.  Finally,  SOFCs  are  currently  in  early   development  and  have  not  been  refined  enough  for  mass  production.  They  have  a   promising  future  if  developed  correctly,  but  are  not  viable  now.     The  final  fuel  cell  to  analyze  is  the  molten  carbonate  fuel  cell  (MCFC).  MCFCs  use  liquid   lithium  potassium  carbonate  salt  as  the  electrolyte.  The  system  converts  fossil  fuels  to  a   hydrogen-­‐rich  gas,  which  reduces  the  need  for  external  hydrogen  production.  The  system   has  the  benefit  of  using  readily  available  fuels  like  natural  gas,  biogas,  and  gasses  from  coal.     MCFCs  have  a  resistance  to  impurities  like  the  carbon  build-­‐up  on  anodes.  The  system  also   has  impressive  efficiencies.  The  electrical  output  efficiency  is  up  to  50%,  but  can  rise  to  the   80%  range  is  used  for  combined  heat  and  power.  The  negative  of  these  fuels  is  that  the   reforming  process  of  the  system  creates  CO2  emissions.  Another  negative  of  the  system  is   that  the  high  operating  temperatures  needed  for  the  system  create  a  slow  start-­‐up  time  for   the  cell.  Also,  the  cells  have  short  life  spans  due  to  the  corrosion  of  the  anode  and  cathode   in  response  to  the  high  temperatures  and  the  carbonate  electrolyte.       There  are  some  common  themes  when  observing  the  benefits  and  disadvantages  of  fuel  cell   technology  as  a  whole.  The  benefits  of  fuel  cell  technology  include  relatively  high  efficiency.   PEMFC  has  electrical  output  efficiency  between  40-­‐60%,  while  the  other  three  systems  can   reach  around  80%  efficiency  if  used  for  combined  heat  and  power.  Other  than  MCFC,  the   systems  are  carbon  free  when  using  H2  and  O2.  The  first  three  systems  above  enable  a   sustainable  primary  energy  source  to  be  better  utilized,  while  MCFCs  extend  the   availability  of  existing  finite  energy  resources.  These  systems  can  run  continuously  as  long   as  fuel  is  supplied  and  can  provide  base  load  power  that  can  be  used  in  conjunction  with   renewable  technology.  The  systems  have  no  moving  parts,  and  are  easily  scalable  to  meet   the  needs  of  the  public  or  industries.  In  addition  to  the  scalability,  the  system  is  also  well   suited  for  distributed  generation,  which  also  makes  it  great  for  meeting  the  needs  of  the   surrounding  area.  Finally,  and  most  notably  is  the  fact  that  they  can  run  on  water,  which  is   an  easily  accessible,  renewable  resource.       The  disadvantages  of  the  technology  is  that  most  of  the  fuel  cells  require  expensive   materials  like  platinum  as  cathode  and  anode  material.  Service  life  and  durability  are  also  a   big  issue  especially  when  considering  the  high  temperature  variants.  Contamination  
  • 7. sensitivity  of  the  low-­‐temperature  variants  provides  a  problem  for  service  life  as  well.   Currently,  hydrogen  is  not  easily  accessible  in  large  quantities,  and  infrastructure  for   making  it  would  need  to  increase  greatly  if  large-­‐scale  fuel  cell  technology  is  ever  to   become  a  large  contributor  to  the  energy  production  as  a  whole.  Finally,  it  is  predicted  that   if  battery  technology  advances  enough,  fuel  cell  technology  will  become  irrelevant.     My  thoughts  on  the  future  role  of  fuel  cells  are  mixed.  I  believe  that  MCFC  technology  could   help  in  the  transition  time  to  extend  the  use  of  fossil  fuels  since  the  combined  heat  and   power  efficiency  is  around  80%.  In  addition,  I  believe  that  SOFCs  have  the  ability  to  become   very  useful  for  the  renewable  energy  future  if  cogeneration  is  a  need.  The  carbon  dust   build-­‐up  issue  will  need  to  be  mitigated  first  though  since  longevity  would  become  an  issue.   Also,  PEMFCs  are  a  viable  future  for  renewable  base  load  if  electricity  output  is  the  main   concern.  There  needs  to  be  a  lessened  amount  of  platinum  used  to  make  it  affordable   enough,  and  durability  will  need  to  be  increased  substantially  for  PEMFCs  if  they  are  ever   going  to  make  a  huge  impact.  These  technologies  have  promising  futures  in  the  transition   and  long-­‐term  energy  future  if  critical  advances  are  made.  The  tricky  part  to  this  is  that   there  would  need  to  be  a  lot  of  infrastructure  change  for  large-­‐scale  fuel  cell  energy   production  to  occur.  Getting  everyone  on  board  with  the  switch  as  well  as  getting  lots  of   research  money  to  improve  the  technology  enough.                                                              
  • 8. Magnetohydrodynamic  Generators     A  magnetohydrodynamic  generator  is  a  device  that  transforms  thermal  energy  and  kinetic   energy  into  electricity.  A  conductor  is  moved  through  a  perpendicular  magnetic  field  to   generate  an  electric  current.  This  is  a  system  that  extends  the  availability  of  existing  finite   energy  resources  because  it  relies  on  fossil  fuel  processes  before  and  after  the  system.       There  are  three  main  types  of  MHD  generators.  They  are  the  Faraday  Generator,  the  Hall   Generator,  and  the  Hall  Effect  Disc  Generator.  Since  the  last  of  these  three  is  superior  to  the   other  two,  it  will  be  focused  on  below.       The  Hall  Effect  Disc  Generator  uses  an  electrically  conductive  fluid  flowing  between  the   center  of  a  disc  with  a  duct  wrapped  around  the  edge.  This  system  does  not  suffer  from  the   Hall  effect  because  the  Hall  effect  currents  flow  between  the  ring  electrodes  near  the  center   and  the  periphery.  This  avoids  the  electrodes  that  are  conducting  the  electricity.  This  is   better  than  the  regular  Hall  generator  because  the  Hall  generator  shorts  the  middle   electrodes  making  the  system  very  sensitive  to  load.  If  the  load  changes  too  much,  the  flow   will  misalign  and  the  effect  won’t  continue  to  be  mitigated.  The  disc  generator  also  benefits   from  the  magnet  being  smaller  due  to  the  fact  that  it  can  be  much  closer  to  the  fluid  in  this   system  design.  These  system  advantages  make  it  the  most  efficient  MHD  generator  scheme.   Even  so,  efficiency  is  usually  well  under  30%.     MHD  generators  have  common  advantages  and  disadvantages  across  the  board.  They  have   the  Carnot  advantage  because  you  can  put  in  hotter  temps  than  you  can  for  a  turbine’s   inlet.  Even  so,  the  high  resistivity  of  the  fluid  and  walls  of  the  system  take  a  lot  of  this   advantage  away.  They  also  have  no  moving  parts,  which  increases  reliability  over  time.   They  can  be  implemented  as  a  topping  cycle  by  using  the  exhaust  to  heat  the  boilers  of  a   steam  plant.  This  can  achieve  a  combined  efficiency  of  around  60%.  Efficiency  of  the  system   itself  also  increases  with  larger  size  since  you  will  get  a  better  volume  to  surface  area  ratio.   You  can  also  reverse  the  system  if  needed.     The  disadvantages  of  this  technology  are  pretty  glaring.  First,  the  system  relies  on  fossil   fuel  powered  technology  before  and  after.  In  addition  to  this,  the  efficiencies  of  combined   cycles  using  natural  gas  turbines  into  Rankine  cycles  are  comparable  in  efficiency  and  are   also  much  cheaper.  Also,  electrodes  suffer  from  electrochemical  attack  unless  coal  is  used   before,  which  would  allow  for  mineral  slag  to  protect  the  electrodes  from  damage.  Finally,   parasitic  losses  develop  to  power  the  electromagnet,  seed  material  is  expensive  and  must   be  retrieved  later,  and  rare  metals  such  as  platinum  are  usually  needed  to  cap  the   electrodes.       Looking  at  the  disadvantages  compared  to  the  advantages  of  this  technology  make  me   think  that  MHD  generators  will  not  be  a  significant  part  of  the  sustainable  energy  system  in   100  years  unless  some  major  breakthroughs  happen  that  allow  the  efficiency  to  get   substantially  better.  If  this  happens,  this  technology  could  be  used  in  the  transition  period   to  extend  the  effect  of  the  limited  fossil  fuel  resources  we  have  today.        
  • 9. Thermoelectric  Generators  and  Refrigerators     The  thermoelectric  generator  (TEG)  is  a  device  that  converts  heat  directly  into  electrical   energy  using  the  Seebeck  effect.  The  system  acts  like  a  heat  engine,  but  with  no  moving   parts.  This  technology  can  both  extend  the  availability  of  existing  finite  energy  resources   and  enable  a  sustainable  primary  energy  source  to  be  better  utilized.  This  is  because  it  can   be  put  at  the  exhaust  of  either  a  fossil  fuel  burning  engine  or  a  renewable  energy  energy   conversion  device  to  create  more  energy.  All  it  needs  is  an  input  of  power.  The   thermoelectric  refrigerator  can  do  both  as  well  depending  on  what  is  creating  the  current   that  it  is  powered  by.       Two  devices  are  in  this  category.  These  are  the  thermoelectric  generator  and  refrigerator.   The  thermoelectric  generator  uses  waste  heat  to  produce  power.  It  acts  like  a  heat  engine,   but  is  less  bulky  and  has  no  moving  parts.  It  is  also  small,  does  not  need  maintenance,  and   is  highly  reliable.  The  best  application  is  when  the  temperature  difference  between  the  hot   and  the  cold  is  small.  Finally,  it  is  Carnot  limited  like  a  heat  engine.  Unfortunately,  there  are   a  lot  of  disadvantages  to  this  technology.  First,  the  TEG  is  more  expensive  and  less  efficient   than  a  heat  engine.  The  efficiency  of  the  system  is  usually  under  10%.  Also,  they  tend  to   develop  mechanical  fatigue  due  to  the  large  number  of  cycle  at  high  temperature.       The  thermoelectric  refrigerator  or  Peltier  Refrigerator  has  a  DC  current  flow  through  the   device,  which  heats  up  one  side  and  cools  the  other.  The  hot  side  is  attached  to  a  heat  sink   that  keeps  its  temperature  constant,  while  the  other  side  gets  colder.  The  system  has   advantages  of  the  vapor-­‐compression  refrigeration  cycle  because  it  has  no  moving  parts  or   circulating  fluid,  is  smaller,  has  a  very  long  life,  and  is  flexible  in  shape.  Even  though  these   seem  like  big  advantages,  the  high  cost  and  poor  efficiency  of  the  technology  hold  it  back   from  being  chosen  over  the  usual  refrigeration  cycles.       I  do  not  believe  either  of  these  two  technologies  will  make  a  large  impact  on  the  sustainable   energy  future.  TEGs  could  be  used  in  the  transition  period  to  extend  the  energy  we  get  out   of  fossil  fuels  or  in  the  energy  future  by  squeezing  every  efficiency  point  out  of  the  exhaust   of  some  techniques  like  fuel  cell  energy  production.  Thermoelectric  refrigerators  could  also   make  a  difference  in  refrigeration,  but  efficiency  would  need  to  increase  substantially.   Overall,  this  technology  does  not  seem  to  be  a  game  changer  in  my  mind  100  years  from   now.                            
  • 10. Solar Photovoltaic Solar photovoltaics (PV) is the method of converting solar energy into DC electricity using semiconducting materials that have the photovoltaic effect. Solar panels are composed of many small solar cells to create solar power. This system enables a sustainable primary energy source to be better utilized. PV is currently the third most producing renewable energy source behind hydro and wind power. PV is a technology that enables a sustainable primary energy source to be better utilized. PV solar cells have a lot of great advantages. They make use of an inexhaustible and abundant fuel supply. In addition to the fact that there is an endless supply of fuel, the energy is clean. There is no need to create emissions when you can convert the solar energy directly into DC electricity. It is available practically everywhere and does not need any specialized geographical features. There are no moving parts required, which makes them very reliable without the need for much maintenance over their lifetime. There is no noise pollution compared to technologies like wind power. Excess heat from the cells could be used for cogeneration if needed. It also encourages the transition from centralized to distributed power generation. This has major benefits including less transmission losses, less effect from acts of terrorism, less money spent on utilities since houses can sell extra energy produced to the utility companies, and huge steps towards a sustainable energy future. Finally, subsidies from the government are pushing the technology forward so that it is viable for people to adopt. There are cons to this technology as with all technologies talked about in this report. First, and most notably, it is an intermittent source. This means that there will be the need for base load technology to sustain the grid, and it also means that storage technology like batteries must become more viable for PV technology to reach its maximum potential. There are relatively high costs for buying the cells even though it is going down quickly. Also, production of the PV cells takes a lot of energy, uses fossil fuels, and produces emissions. The payback time can be as much as 5-15 years! The efficiency goes down when it is colder outside. It requires an inverter to produce AC current, which is another loss that the system will encounter. In addition, large amounts of space are required for the systems since the technology is driven by economics, not efficiency. Finally, there is still fairly low efficiency of the cells. The market average is under 20% efficiency. I do believe PV cells will be a large contributor to the sustainable energy system in 100 years. The fact that the sun is an inexhaustible, clean fuel makes it very attractive as well as the fact that the government has bet on it by subsidizing it so heavily also makes it an attractive option. Couple these with the billions of dollars in research funding for the technology, and it has a bright future. This bright future will be utilized at both the community level and the industrial level. Families will continue to adopt the technology as the benefits continue to rise, while large- scale solar farms will continue to fill unused space in an effort to create more renewable energy. Even though all of these things are working to the advantage of this technology, it is not a compete solution for the future. This technology relies on the advance of storage devices like batteries to improve substantially so that the excess energy produced can be stored and used efficiently. Also, base load systems will still need to be in place since this is an intermittent technology. Even so, it is bound to make a huge difference in the landscape of the future sustainable energy system.
  • 11. Solar Thermal Solar thermal technology harnesses solar energy to generate thermal energy or electricity. This technology can be used for both residential and industry use. Solar thermal is a technology that enables a sustainable primary energy source to be better utilized. It does this by taking advantage of the inexhaustible fuel that the sun provides and turns it into usable power. Solar thermal is broken down into two main types. These types are solar heating and cooling, and concentrated solar power. Solar heating and cooling uses solar panels that collect heat and use the heat directly for applications like hot water, space heating, and air conditioning. The second type is concentrated solar power which concentrates solar collectors on a point which creates an intense beam that is shone on a vessel or pipe containing a fluid which is converted to steam to drive a conventional thermal power plant. These systems are fairly inexpensive, and pay for themselves quickly. They do not require as much energy input as PV cells, and use less exotic materials. They are on the order of 3 times as efficient as PV cells. They can be used for either heating or cooling. Cooling is done through the use of the absorption cooling cycle. Solar heating energy is available when you most need it, which is during the day. This system, like PV systems, encourages distributed power generation with less reliance on the large-scale grid. The system is simple and low-maintenance with a long life expectancy. In addition, the operating costs of the system are near zero. Finally, these are modular systems with high efficiency.   The  downside  of  the  technology  begins  with  the  fact  that  they  haven’t  caught  the  attention   that  PV  cells  have.  This  means  that  there  aren’t  as  many  subsidies  out  there  to  incentivize   the  purchase  of  these  systems.  This  doesn’t  meant  that  they  won’t  eventually  get  the  face-­‐ time  that  they  deserve,  but  currently  they  are  fairly  in  the  dark  when  it  comes  to  public   knowledge.  Solar  cooling  systems  are  currently  complex  and  expensive  and  solar  heaters   are  more  than  conventional  water  heaters.  This  must  get  better  if  the  technology  is  going  to   make  any  market  step  forward  in  terms  of  market  share.  As  with  all  solar-­‐based  systems,   the  fuel  is  intermittent  and  low  in  energy  density,  which  means  that  it  must  be  coupled   with  a  storage  device,  and  have  a  base  load  for  a  back  up  system.  These  systems  only  create   heat  and  produce  no  electricity.  Instillation  costs  can  be  high  and  also  unavailable  in  a  lot  of   the  US.  These  systems  are  only  really  effective  for  small-­‐scale  applications  currently.     I  do  believe  that  these  technologies  can  play  roles  in  the  sustainable  energy  future.  For   solar  heating  and  cooling,  I  believe  that  coupled  with  PV  cells  and  improved  batteries,   homes  can  become  almost  self-­‐sustainable.  The  solar  heating  and  cooling  could  take  care  of   the  air  temperature,  while  the  PV  cells  could  take  care  of  general  electrical  use  and  store   the  excess  for  use  during  the  night.  As  said  many  times  already,  batteries  are  crucial  to  the   success  of  this  technology.  Even  so,  there  would  still  need  to  be  backup  to  the  grid  just  in   case  of  an  emergency  or  if  there  wasn’t  enough  sunlight  to  power  the  home  throughout  the   night.  This  will  only  happen  if  good  subsidies  help  people  to  see  that  adoption  of  this   technology  is  worthwhile  like  has  been  done  with  PV  cells.  The  houses  could  run  into  issues   with  space  on  their  roof,  so  efficiency  might  also  come  into  play  eventually.  Decentralizing   the  grid  using  the  combined  solar  technologies  will  be  important  on  the  road  to  a   sustainable  energy  future  in  100  years.      
  • 12. Wind Wind  energy  is  the  use  of  wind  turbines  or  sails  to  produce  mechanical  or  electrical  energy.   This  technology  enables  a  sustainable  primary  energy  source  to  be  better  utilized  by   making  use  of  the  inexhaustible  fuel  of  wind  currents  to  create  electrical  power.     There  are  some  marked  benefits  that  have  made  wind  energy  such  an  important  renewable   energy  resource  over  the  last  decade.  These  include  the  fact  that  wind  energy  is  abundant   clean,  and  renewable.  Since  the  sun  dictates  the  wind,  there  will  never  be  a  lack  of  it  as  long   as  there  is  still  an  Earth.  Wind  power  is  also  widely  distributed  across  the  globe,  allowing   wind  energy  to  be  produced  practically  anywhere  though  some  places  are  much  better   than  others.  Power  from  wind  turbines  scales  with  velocity3,  which  means  that  it  doesn’t   take  a  large  amount  of  wind  to  create  quite  a  lot  of  power.  In  addition  to  this,  new   techniques  like  variable  angle  propellers  maximize  the  wind  power  that  each  turbine  can   take  advantage  of.  Wind  turbines  also  take  up  small  amounts  of  land  and  are  relatively   affordable.  The  breakeven  time  for  turbines  is  usually  around  ¾  of  a  year.  Finally,  once  the   infrastructure  is  in  place,  the  power  is  practically  free.     The  major  downside  of  this  technology  is  that  it  relies  on  wind,  which  is  inconsistent,   unsteady,  and  unpredictable.  This  is  a  major  drawback  to  having  wind  turbines  in  a  lot  of   areas  of  the  world  that  don’t  get  fairly  consistent  wind  throughout  the  year.  A  wind  turbine   without  wind  is  practically  a  very  expensive  stick,  so  the  systems  need  to  be  set  up  where   wind  is  guaranteed.    This  means  that  even  in  windy  areas,  wind  power  can  never  be  a   stand-­‐along  solution.  Instead  it  must  be  combined  with  a  base  load  system  so  that  there   isn’t  a  loss  of  power  when  the  wind  isn’t  blowing.  Also,  the  system  relies  on  good  energy   storage  when  the  wind  is  blowing  so  that  the  excess  energy  can  be  amassed.  In  addition  to   its  reliability  on  unreliable  wind  gusts,  windmills  are  also  considered  eyesores  in  usually   picturesque  areas  in  addition  to  the  fact  that  they  cause  noise  pollution.  Beyond  the   aesthetic  problems,  windmills  also  have  wildlife  impacts  by  killing  birds,  and  also  can   negatively  affect  temperatures  and  weather  in  the  surrounding  areas  by  causing  the  air  to   be  turbulent  where  it  might  not  usually  be  turbulent  on  its  own.     Wind  energy  will  be  a  very  important  piece  in  the  sustainable  energy  system  future.  Done   correctly,  wind  energy  can  produce  clean,  abundant,  and  practically  free  energy.  This  is   why  wind  energy  has  been  on  the  rise  and  will  continue  to  rise  in  the  next  100  years.  Even   though  there  are  some  disadvantages  to  the  technology,  the  benefits  far  outweigh  them.   The  only  thing  that  could  slow  down  the  wind  energy  craze  is  if  all  of  the  government   subsidies  are  removed,  and  the  cost  of  the  systems  is  prohibitive.  To  be  as  successful  as  it   can  be,  it  will  still  need  the  use  of  good  energy  storage  devices  and  a  solid  renewable  base   load  so  that  the  wind’s  intermittence  won’t  be  very  much  of  a  problem.                  
  • 13. Nuclear Fission Nuclear  fission  is  a  nuclear  reaction  in  which  the  nucleus  of  an  atom  splits  into  smaller   parts.  Nuclear  fission  extends  the  availability  of  existing  finite  energy  resources  namely   uranium.  Uranium  is  not  a  renewable  resource  and  Uranium235  comprises  only  0.7%  of  all   Uranium  on  the  Earth.     Nuclear  fission  has  the  benefit  of  having  an  incredibly  large  power  generation  capacity.   This  technology  is  used  as  a  base  load,  and  can  meet  industrial  and  city  needs  for   electricity.  In  comparison  to  fossil  fuel  burning  plants,  nuclear  plants  produce  less  carbon   dioxide  and  other  greenhouse  gasses.  Surprisingly,  during  normal  operation,  nuclear  plants   have  low  operating  costs  in  comparison  to  the  amount  of  electricity  produced.  The  system   is  currently  being  used  today,  which  makes  it  more  viable  than  some  unproven   technologies  including  fusion.  Finally,  waste  recycling  is  become  on  option  for  the  future.   This  recycling  of  the  waste  also  would  produce  more  energy.     To  begin  with  the  cons  we  must  start  with  the  extremely  high  construction  costs  needed  for   radiation  containment  systems  and  procedures.  These  costs  are  only  worthwhile  since  the   system  can  produce  such  large  amounts  of  energy.  The  only  way  these  plants  do  get  built  is   through  large  government  subsidies  and  loan  guarantees.  There  are  also  long  construction   times  needed  to  create  these  plants  because  they  need  to  be  done  so  well  to  mitigate  failure   possibilities.  There  are  known  risks  of  catastrophic  failures  if  something  were  to  go  wrong   or  if  a  natural  disaster  was  to  hit  i.e.  Japan.  Like  all  large  energy  production  plants,  these   are  targets  of  terrorism.  Large  coordination  with  utilities  in  the  surrounding  areas  must   happen  since  produced  power  is  so  large.  This  also  means  that  there  are  substantial  losses   in  the  transport  of  the  energy.  As  far  as  fuel,  most  of  the  remaining  uranium  in  the  world   lies  under  land  controlled  by  tribes  or  indigenous  peoples  who  don’t  want  their  land  mined.   This  poses  a  problem  for  future  fuel  since  it  is  not  a  renewable  resource.  Waste  is  one  of  the   largest  issues  of  nuclear  fission  currently.  Waste  is  usually  kept  in  metal  barrels  in  water   tanks  to  keep  from  overheating.  The  problem  with  this  is  that  there  is  currently  not  enough   room  for  all  of  the  waste,  and  it  lasts  for  200-­‐500  thousand  years  in  the  state  that  it  exits   the  reaction  at.  Recycling  the  waste  after  reaction  can  stop  this,  but  there  is  not  very  much   of  this  implemented  currently,  and  more  infrastructure  must  be  built  before  this  is  viable.     Nuclear  fission  will  be  a  part  of  the  transition  to  the  sustainable  energy  future,  and  will   most  likely  be  used  as  a  base  load  for  a  long  time  after  other  fossil  fuels  stop  producing  as   long  as  uranium  can  be  secured  and  recycling  of  the  waste  is  done  effectively.  The  power   produced  by  these  plants  is  crucial  to  the  US  currently,  and  that  will  not  change  overnight.   There  will  need  to  be  base  load  no  matter  how  large  the  intermittent  technologies  get  and   how  good  the  battery  storage  becomes.  Some  day  fusion  might  erase  the  need  for  nuclear   fission  plants,  but  until  then,  fission  will  continue  to  be  a  key  player  in  every  aspect  of  the   transition  to  a  sustainable  energy  future  over  the  next  100  years.              
  • 14. Nuclear Fusion Fusion is the generation of incredible amounts of energy by a high-energy reaction where two lighter atomic nuclei fuse to form a heavier nucleus. When they combine, some of the mass is converted into energy in accordance with E=mc2 . Nuclear fusion is a technology that enables a sustainable primary energy source to be better utilized. This is because once it is started, fusion can happen continuously and uses deuterium and tritium as fuel, which can be distilled out of seawater. Nuclear fusion is the Holy Grail of energy conversion. If it were realized in its full capacity, there would never be a need for energy production again. Just like the sun, we would produce continuous energy from the fusion reactor’s thermonuclear reaction. This energy could boil steam and generate electricity using conventional turbines. In addition to the benefit of limitless energy, it would also be clean, carbon free energy. The fuels for the system, as stated before, are deuterium and tritium. Deuterium can be distilled from seawater and tritium can be “bred” in the reactor. This means that the fuel will never run out and is very cheap compared to the return in energy. In comparison to nuclear fission, fusion is easier to control and stop once it’s reacting since there are no chain reactions happening. Another benefit it has over nuclear fission is that there is little nuclear waste that only stays radioactive for about 100 years as compared to the 200-500 thousand years of the fission uranium. Finally, cold fusion is being researched heavily and is said to be much easier to implement. The const to the system is that you have to over come the electrical repulsion of two hydrogen atoms using temperatures of around 1 million degrees Celsius. This is hotter than any material on Earth could possibly withstand. To overcome this issue, a gravity inertia or magnetism is required to keep the super-hot plasma from melting everything. Unfortunately, both of these options are extremely hard to create and control. On top of this, there is little room for error when testing since something that hot would damage many things if not contained properly. Also, each test is extremely expensive since you need to expend a large amount of energy to get the system hot enough for a fusion reaction to occur. The earliest projected commercial facility is not expected until around 2050. As can be expected, start up costs are extreme and will require many sources of funding to get enough money for a plant. The other cons are more on a societal and money-usage standpoint. First, the billions being poured into this research could be put towards other renewables that are guaranteed to work, while commercial nuclear fusion is still largely unproven. Also, the issue then comes with the thought of the drawbacks of success if fusion becomes a reality. Is it a good thing to have an unlimited power supply? Initially this only looks as though it could be a benefit of the technology, but it has been shown that the more, cheap energy we have available, the more extra material we will consume, which will deplete resources, and pollute more of the environment. So a possible con for the future is the ecological impact a limitless energy supply could provide if it isn’t well regulated. I believe that fusion will be the ultimate energy source 100 years from now. All signs point to the fact that with enough funding being poured into it, there should be a realizable solution within 50 years. There are many obstacles along the way, but there is enough time, money, and brainpower to overcome them in 50 years. Implementation and copying the systems will take time, but 100 years is a long enough time to get the infrastructure in place. This will solve one of the biggest issues facing the world right now, and will realize the potential of the sustainable energy future.
  • 15. Again the question arises if we can limit ourselves and not over-indulge on our usage, but regardless, this technology has a very promising chance of ending our need for fossil fuels completely.
  • 16. Summary and Conclusions     As  can  be  read  in  the  previous  15  pages  of  information,  there  is  quite  a  diverse  landscape  of   energy  conversion  technologies  being  used  today.  Some  of  these  technologies  are  being   efficiently  used,  some  are  in  need  of  improvements,  and  others  have  not  yet  been  realized.   Regardless,  it  is  clear  that  in  the  next  100  years,  there  will  be  many  necessary  changes   being  made  to  energy  system.  I  believe  that  a  sustainable  energy  system  is  very  likely   within  the  next  100  years.  My  vision  for  the  transition  starts  with  batter  improvement.     Of  all  of  the  energy  storage  devices,  batteries  seem  like  the  most  viable  to  push  forward  the   sustainable  energy  future.  Other  storage  devices  will  be  used  in  addition  to  batteries,  but   batteries  have  the  benefit  of  being  efficient,  quickly  discharged,  easily  integrated  in  the   grid,  and  scalable.  This  versatility  makes  it  critical  for  the  sustainable  energy  future.     Battery  improvements  will  push  forward  many  other  technologies,  especially  the   intermittent  renewables.  PV  solar,  solar  thermal,  and  wind  all  stand  to  gain  from   improvements  to  battery  technology.  These  systems  will  be  integral  in  the  transition  away   from  fossil  fuels  into  sustainable  energy.  In  addition,  they  will  also  be  crucial  in   decentralizing  the  grid  so  that  there  is  less  need  for  base  load  systems  to  be  as  large.  This   will  take  time  and  government  subsidies  to  correctly  implement,  but  eventually,  these   renewable  energy  devices  will  be  widespread.     While  improvement  to  the  renewable  energy  infrastructure  is  happening,  optimization  of   the  use  of  fossil  fuels  will  need  to  happen  as  well.  Technologies  like  MHD  and   thermoelectric  generators  will  be  implemented  in  specialized  areas  along  with  the   implementation  of  highly  efficient  combined  cycle  plants  to  make  sure  that  we  are  getting   the  most  energy  out  of  the  remaining  fossil  fuels.  This  will  allow  more  time  for  renewable   energy  to  take  hold  as  well  as  battery  technology  to  improve.     Base  load  systems  will  still  need  to  be  around  though,  and  correctly  done  fuel  cell  plants   could  turn  fossil  fuel  burning  base  load  plants  into  clean,  renewable  fuel  burning  plants.     This  movement  away  from  fossil  fuels  in  base  load  will  come  when  fossil  fuel  reserves  get   depleted  and  cost  of  the  fuel  become  too  high.  If  it  isn’t  fuel  cells,  then  we  will  lean  more   heavily  on  nuclear  fission  plants  and  plants  that  will  recycle  all  of  the  uranium  waste   coming  out  of  the  nuclear  fission  plants.     All  of  this  work  will  act  as  the  transition  period  before  nuclear  fusion  is  realized.  Once   nuclear  fusion  is  perfected  and  made  viable  for  commercial  applications,  there  will  be  no   need  for  energy  conversion  sources  except  turbines  for  the  steam  that  is  produced  and   batteries  to  store  the  excess  energy.  At  this  point  though,  renewable  technology  like  solar   will  be  so  widespread  that  people  will  opt  to  keep  their  decentralized  grids  running  and   use  fusion  as  a  new  base  load.  This  will  allow  people  to  continue  to  be  self-­‐reliant  energy-­‐ wise  and  pull  from  fusion  when  needed.       100  years  from  now  the  sustainable  energy  system  will  be  realized  and  we  will  be  able  to   share  electricity  with  those  who  have  never  had  it  since  it  will  be  in  such  abundance.  At  the   same  time  though,  there  will  have  to  be  limits  on  consumption  so  that  our  advances  don’t   doom  our  planet.  What  a  bright  future  indeed!  “All  pun  intended”