SlideShare a Scribd company logo
Chương 7

              ƯỚC LƯỢNG CÁC THAM SỐ THỐNG KÊ
                                                     (Estimation)

7.1     KHÁI NIỆM CHUNG

Xét một tập hợp chính gồm N biến ngẫu nhiên X có hàm mật độ xác suất là f (x,θ); trong
đó θ là các tham số thống kê của tập hợp chính.
Thí dụ:
      Trong phân phối nhị thức:
                 f (x, θ ) = C n ρ x (1 − ρ ) n − x
                               x
                                                                   ⇒ θ = ρ,      θ ∈ [0 , 1]
      Trong phân phối poisson
                               e λ λx
                 f (x, θ ) =
                                 x!                                ⇒θ=λ          λ>0
      Trong phân phối chuẩn
                                                    (x − µ )2
                                   1            −
                 f (x, θ ) =                e         2σ 2

                                 2πσ    2
                                                                   ⇒ θ = (µ, σ2) ;
                                                                      -∞ < µ < +∞ ;     0 < σ2 < +∞
Gọi {x1, x2,.... , xn} là mẫu ngẫu nhiên, cỡ mẫu n được dùng lấy ra từ tập hợp chính tuân
theo hàm mật độ xác suất f (x,θ). Ở đây dạng của hàm f xem như đã biết còn các tham số
thống kê θ của tập hợp chính xem như chưa biết.
Vấn đề đặt ra ở chương trình này là dựa vào các mẫu quan sát {x1,x2,...,xn} ta ước lượng
xem giá trị cụ thể của θ bằng bao nhiêu (bài toán đó gọi là ước lượng điểm ) hoặc ước
lượng xem θ nằm trong khoảng nào (bài toán ước lượng khoảng).


7.2     ƯỚC LƯỢNG ĐIỂM (Point Estimation)

7.2.1     Ước lượng và giá trị ước lượng (Estimator And Estimate)

a)      Ước lượng (Estimator) và hàm ước lượng
-       Là biến ngẫu nhiên hay các tham số thống kê của mẫu được dùng để ước lượng các
        tham số thống kê chưa biết của tập hợp chính.
-                                                                          ˆ
        Ước lượng của tham số thống kê θ của tập hợp chính được ký hiệu là θ
-                                                      ˆ      ˆ
        Dựa vào mẫu {x1,x2...,xn} người ta lập ra Hàm θ = θ (x1,x2,....,xn) để ước lượng
               ˆ
        cho θ. θ được gọi là hàm ước lượng của θ hay gọi tắt là ước lượng của θ.




Cao Hào Thi                                                                                           74
ˆ
          θ chỉ phụ thuộc vào giá trị quan sát x1, x2, ... ,xn chứ không phụ thuộc vào các tham
          số chưa biết θ của tập hợp chính.

b)        Giá trị ước lượng (Estimate) hay còn gọi là giá trị ước lượng điểm (Point
          Estimate)
                                ˆ
Là giá trị cụ thể của ước lượng θ và được xem như giá trị ước lượng của tham số thống
kê θ của tập hợp chính.

     Tham số thống kê và tập hợp                                             Giá trị ước lượng
                                          Ước lượng (Estimation)
     chính (Population Parameter)                                        Estimate (Point estimate)
      Số trung bình                                    µ                             X
      Phương sai                                      σ2
                                                       x                             Sx2
      Độ lệch chuẩn                                   σx                             Sx
      Tỷ lệ                                            p                             ˆ
                                                                                     f

7.2.2 Ước lượng không chệch: (Unbiased Estimators)

a) Ước lượng không chệch:
      Ước lượng θ được gọi là ước lượng không chệch của tham số thống kê θ nếu kỳ vọng
          ˆ
      của θ là θ.
                                           ˆ
                                        E (θ ) = θ
Thí dụ
           E( X ) = µ => X là ước lượng không chệch của µ
           E(Sx2) = σ 2 => Sx2 là ước lượng không chệch cuả σ 2
                      x                                       x

               ˆ          ˆ
           E ( f ) = p => f là ước lượng không chệch của p

b) Độ chệch (The Bias)
          ˆ
      Gọi θ là ước lượng của θ:                 ˆ         ˆ
                                          Bias( θ ) = E ( θ ) - θ
      Đối với ước lượng không chệch ⇒ Bias = độ chệch = 0

c) Ước lượng hiệu quả tốt nhất:
          ˆ      ˆ
      Gọi θ 1 và θ 2 là 2 ước lượng không chệch của θ dựa trên số lượng của mẫu quan sát
      giống nhau.
      o     ˆ                            ˆ
            θ 1 được gọi là hiệu quả hơn θ 2 nếu:                ˆ            ˆ
                                                           Var ( θ 1) < Var ( θ 2)
      o Hiệu quả tương đối giữa hai ước lượng là tỉ số giữa 2 phương sai của chúng.
                                                                          ˆ
                                                                     Var (θ 2 )
                       Hiệu quả tương đối (Relative Efficency) =
                                                                          ˆ
                                                                     Var (θ )
                                                                            1




Cao Hào Thi                                                                                    75
ˆ
    o Nếu θ là ước lượng không chệch của θ và nếu không có một ước lượng không
                                                        ˆ    ˆ
      chệch nào có phương sai nhỏ hơn phương sai của θ thì θ đuợc gọi là ước lượng
                                    ˆ
      tốt nhất (Best Estimator) hay θ còn gọi là ước lượng không chệch có phương sai
      nhỏ nhất của θ (Minimum Variance Unbiased Estimator of θ)



                                                                       θ1
                                     θ2
              θ1

                                                                                        θ2




    ˆ
    θ 1 : ước lượng không chệch của θ                      ˆ ˆ
                                                           θ 1 θ 2: ước lượng không chệch của θ
    ˆ
    θ 2 : ước lượng chệch của θ                            ˆ                          ˆ
                                                           θ 1 ước lượng hiệu quả hơn θ 2:

d) Sai số bình phương trung bình (Mean Squared Error - MSE)

                                                ˆ
    Sai số bình phương trung bình của ước lượng θ được định nghĩa như sau:
                        ˆ          ˆ
                   MSE( θ ) = E [( θ - θ)2]
        Người ta chứng minh được rằng:
                         ˆ          ˆ              ˆ
                   MSE ( θ ) = Var( θ ) + [θ - E ( θ )]2
                         ˆ           ˆ             ˆ
                   MSE ( θ ) = Var ( θ ) + [ Bias( θ )]2
        ˆ
    Nếu θ là ước lượng không chệch ta có:
                         ˆ
                   Bias( θ ) = 0
        ⇒                ˆ           ˆ
                   MSE ( θ ) = Var ( θ )

e) Ước lượng nhất quán vững (Consistent Estimators)

    ˆ     ˆ
    θ n = θ (x1, x2,... xn) gọi là ước lượng vững của θ nếu với mọi ε > 0 ta có:
                            ˆ
                   lim P( | θ n - θ | ≤ ε) = 1
                   i →∞

               ˆ
    tức là dãy θ n hội tụ theo xác suất tới θ khi n → ∞




Cao Hào Thi                                                                                       76
7.3     ƯỚC LƯỢNG KHOẢNG (Interval Estimation)

7.3.1 Khoảng tin cậy (Confidence Interval)

a) Ước lượng khoảng và giá trị ước lượng khoảng
   (Interval Estimator And Interval Estimate).

      Ước lượng khoảng: Ước lượng khoảng đối với tham số thống kê của tập hợp chính θ
      là một quy tắc dựa trên thông tin của mẫu để xác định miền (Range) hay khoảng
      (Interval) mà tham số θ hầu như nằm trong đó.

      Gía trị ước lượng khoảng: là giá trị cụ thể của miền hay khoảng mà tham số θ nằm
      trong đó.

b) Khoảng tin cậy và độ tin cậy (Confidence Interval and Level of Confidence)

      Gọi θ là tham số thống kê chưa biết. Giả sử dựa trên thông tin của mẫu ta có thể xác
      định được 2 biến ngẫu nhiên A và B sao cho

                        P (A < θ < B) = 1 - α                  với 0 < α < 1

      Nếu giá trị cụ thể của biến ngẫu nhiên A và B là a và b thì khoảng (a,b) từ a đến b
      được gọi là khoảng tin cậy của θ với xác suất là (1 - α)

      Xác suất (1 - α) được gọi là độ tin cậy của khoảng.

      Ghi chú:
      o Trong thực tế, độ tin cậy (1-α) do nhà thống kê chọn theo yêu cầu của mình,
        thông thường độ tin cậy được chọn là 0,90; 0,95; 0,99...
      o α là xác suất sai lầm khi chọn khoảng tin cậy (a, b)

7.3.2    Khoảng tin cậy đối với số trung bình của phân phối chuẩn trong trường hợp
         đã biết phương sai của tập hợp chính:

         Nghĩa là đi tìm ước lượng của µ trong N (µ, σx2) khi đã biến σx2

a) Điểm phần trăm giới hạn trên Z (Upper Percentage Cut Off Point)
      Gọi Z là biến ngẫu nhiên chuẩn hóa và α là số bất kỳ sao cho 0 < α < 1
      Zα là điểm phần trăm giới hạn trên nếu.
                                       P (Z > Zα ) = α

      Ghi chú:

      P (Z > Zα) = FZ (Zα) = 1 - α




Cao Hào Thi                                                                            77
α

                                                                                  Z
                                                                  Ζα

    P (-Zα/2 < Z < Zα/2) = 1 - α
Chứng minh:
                                              α
        Do tính đối xứng:         P(Z > Zα/2 ) =
                                              2
                                               α
                              P (Z < -Zα/2) =
                                               2
                                     α α
        ⇒ P (-Zα/2 < Z < Zα/2) = 1 -   -    =1-α
                                     2 2
                                                     fZ(z)




                              α/2                                           α/2
                                                                                  Z

                                      −Ζα            0                 Ζα

b) Khoảng tin cậy của µ trong N(µ, σx2) khi đã biến σx2
    Giả sử ta có mẫu ngẫu nhiên vơí cỡ mẫu n từ phân phối chuẩn N(µ, σx2 ). Nếu σx2 và
    số trung bình mẫu đã biết, giá trị trung bình tập hợp chính được tính bởi.
                         −   Z α / 2σ x        −     Z α / 2σ x
                        x−                < µ < x+
                                  n                       n
    Trong đó Zα/2 là số có P (Z > Zα/2) = α/2 với Z là biến ngẫu nhiên chuẩn chuẩn hóa.
    Chứng minh:
        Ta có:
                 P ( - Zα/2 < Z < Zα/2)         =1-α
                                X −µ
                 P ( - Zα/2 <           < Zα/2) = 1 - α
                               σX / n
                      Z σ                  Z σ
                 P (- α / 2 x < X − µ < α / 2 x ) = 1 - α
                          n                    n
                          Zα / 2σ x             Z σ
                 P( X-              < µ < X + α / 2 x )= 1 - α
                               n                   n




Cao Hào Thi                                                                               78
Thí dụ:
Giả sử trọng lượng của các học sinh lớp 2 tuân theo phân phối chuẩn với độ lệch chuẩn
1,2kg. Mẫu ngẫu nhiên gồm 25 học sinh có trung bình là 19,8kg. Tìm khoảng tin cậy 95%
đối với trọng lượng trung bình của tất cả học sinh lớp 2 trong 1 trường.
Giải:
    Ta có: 100 (1 - α) = 95         ⇒           α = 0,05
                                    ⇒           Zα/2 =Z0,025
                                    ⇒           P(Z > Z0,025) = 0,025
                                                P(Z < Z0,025) = FZ (Z0,025) = 1 - 0,025 = 0,975
    Tra bảng ta có:        Z0,025 = 1,96
    Khoảng tin cậy 95% đối với số trung bình tập chính µ sẽ là
                                Z α / 2σ x                 Z α / 2σ X
                           x−                < µ < x+
                                     n                            n
    Với X = 19,8 kg σx = 1,2 kg                 n = 25 Zα/2 = 1,96
    Vậy : 19,33 < µ < 20,27

    Ghi chú:
          Zα / 2σ x
    ε=                : gọi là độ chính xác của ước lượng hay dung sai
              n
    X là trung tâm của khoảng tin cậy với bề rộng của khoảng tin cậy của µ là
                                                        2Z α / 2 σ x
                                                W=                      = 2ε
                                                              n
    o W càng nhỏ thì ước lượng càng chính xác ( ≡ ε càng nhỏ)
    o Với xác suất α và cỡ mẫu nhỏ, σx càng lớn thì W càng lớn.
    o Với α và σx cho trước, n càng lớn thì W càng nhỏ.
    o Với σx và n cho trước, (1 - α) càng lớn thì W càng nhỏ

                                   n = 25         σx = 1.2 1-α = 0.99

                         n = 25              σx = 1.2                 1-α = 0.95

                                             n = 64 σx = 1.2 1-α = 0.95

                                    n = 25         σx = 1.2            1-α = 0.95

c) Khoảng tin cậy của số trung bình µ trong tập hợp chính trường hợp cỡ mẫu lớn.
    Giả sử ta có mẫu với cỡ mẫu là n được lấy từ tập hợp chính có số trung bình là µ.
    Gọi X là số trung bình của mẫu và Sx là phương sai của mẫu.


Cao Hào Thi                                                                                       79
Nếu n lớn thì khoảng tin cậy với xác suất 100(1-α) % đối với µ được xem đúng là:
                                          Zα / 2 SX                         Zα / 2 Sx
                                     x−                      < µ < x+
                                                 n                              n

    Ghi Chú:
    o Sự ước lượng này gần đúng ngay cả khi tập hợp chính không theo phân phối
      chuẩn.
    o Khi n lớn ta có thể xem gần đúng Sx = σx

7.3.3   Phân phối Stutent t:

Trong phần trước, ta đi tìm khoảng tin cậy của µ trong N (µ, σx2) khi đã biết σx2 hoặc tìm
khoảng tin cậy của µ khi có mẫu lớn.
Trong trường hợp không biết phương sai σx2 và cỡ mẫu không lớn, để tìm khoảng tin cậy
của µ ta cần phải có một phân phối thích hợp hơn, đó là phân phối Student t.

a) Phân phối Student t
Cho mẫu ngẫu nhiên với cỡ n với số trung bình của mẫu X và độ lệch chuẩn mẫu Sx;
mẫu được lấy ra từ tập hợp chính với số trung bình là µ.
Biến ngẫu nhiên :
                                                                   x−µ
                                                     t=
                                                              Sx / n
t tuân theo phân phối Student t với độ tự do là n - 1

                           Phân phối chuẩn                           f(t)




                      Phân phối Student t
                      với độ tự do là 3


                                                                                        t
                                                                    0
Biến ngẫu nhiên X được gọi là tuân theo phân phối Studen t với độ tự do ν nếu hàm mật
độ xác định có dạng.
                                                         (ϑ + 1)
                                            x2       −
                                     (1 +        )         2

                        f x (x ) =          ϑ
                                           1 ϑ
                                       ϑ B( , )
                                                 2 2




Cao Hào Thi                                                                                 80
b) Điểm phần trăm giới hạn trên tν,α:
Biến ngẫu nhiên tuân theo phân phối Student t với độ tự do ν, được ký hiệu là tν. tν,α là
điểm phần trăm giới hạn trên nếu:
                                               P(tν > tν,α) = α
Người ta lập bảng tính sẳn cho các giá trị diện tích ở dưới đường cong từ tν,α đến +∞
                                                           f(tυ)




                                                                                  α
                                                                                         t
                                                          0                tυ,α
Tương tự phần trăm trên ta có:
                                     P(-tν,α/2 < tν < tν,α/2) = 1 - α
                                                              f(tυ)




                               α/2                                                 α/2
                                                                                             t
                                  −tυ,α/2                  0                 tυ,α/2


7.3.4   Khoảng tin cậy đối với số trung bình µ trong phân phối chuẩn khi chưa biết
        phương sai:

(Khoảng tin cậy của µ trong N(µ, σx2) khi chưa biết σx2
Giả sử ta có mẫu ngẫu nhiên với cỡ mẫu n từ phân phối chuẩn với số trung bình là µ và
phương sai σx2 chưa biết. Nếu số trung bình mẫu là X và độ lệch chuẩn mẫu là Sx thì
khoảng tin cậy của số trung bình tập hợp chính µ sẽ được tính bởi .

                                     t n −1,α / 2 S x                 t n −1,α / 2 S x
                                x−                      <µ<x+
                                             n                                n

                                                        α
Trong đó tn-1,α/2 là số có P(tn-1 > tn-1,α/2) =           và tn-1 là biến ngẫu nhiên tuân theo phân phối
                                                        2
Student với độ tự do là n - 1
Chứng minh:



Cao Hào Thi                                                                                          81
P(-tn-1,α/2 < tn-1 < tn-1,α/2) = 1 - α
                  ⎛                   X−µ                  ⎞
                 P⎜ − t n −1,α / 2 <
                  ⎜                         < t n −1,α / 2 ⎟ = 1 − α
                                                           ⎟
                  ⎝                  Sx / n                ⎠
                  ⎛ − t n −1,α / 2 S x          t n −1,α / 2 S x   ⎞
                 P⎜
                  ⎜                    < X −µ <                    ⎟ = 1− α
                                                                   ⎟
                  ⎝          n                          n          ⎠
                  ⎛     t n −1,α / 2 S x       t n −1,α / 2 S x         ⎞
                 P⎜ X −
                  ⎜                      <µ<X+                          ⎟ = 1− α
                                                                        ⎟
                  ⎝             n                      n                ⎠
Thí dụ: Mẫu ngẫu nhiên của trọng lượng 6 học sinh lớp 2 có giá trị như sau:
        18,6kg            18,4kg                  19,2kg              20,8kg               19,4kg   20,5kg
Tìm khoảng tin cậy 90% đối với số trung bình của tất cả học sinh lớp 2. Gỉa sử rằng phân
phối trọng lượng của tất cả học sinh lớp 2 là phân phối chuẩn.
Giải:
Trước hết ta phải tìm số trung bình mẫu X và phương sai mẫu Sx

                                              i             xi     xi
                                                                        2

                                           1                18,6 345,96
                                           2                18,4 338,56
                                           3                19,2 368,64
                                           4                20,8 432,64
                                           5                19,4 376,36
                                           6                20,5 420,25
                                          Tổng             116,9 2282,4

Số trung bình mẫu:
                      1       1
                 x=     ∑ xi = (116.9) = 19.4833
                      n       6
Phương sai mẫu:
                          1              2
                  2
                 Sx =        (∑ x i2 − nx )
                        n −1
            1
              (2.282,41 − 6 × 19,4833 2 ) = 0,96
          = 5

Độ lệch chuẩn: S x = 0,96 = 0.98
Khoảng tin cậy 90% đối với trọng lượng trung bình của tất cả học sinh lớp 2 là:
                                      l n −1 , α / 2 S x              t n −1 , α / 2 S x
                                 x−                        < µ < x+
                                                  n                            n
                 X = 19,4833 ,                    Sx = 0,98 ,         n=6


Cao Hào Thi                                                                                             82
100 (1-α) = 90 =>                       α = 0,10         => α/2 = 0,05
Tra bảng ta có: tn-1,α/2 = t5,0.05 = 2.015
                                 2.015 × 0.098                             2.015 × 0.98
                       19.48 −                             < µ < 19.48 +
                                     6                                           6
                       18.67 < µ < 20.29
Các khoảng tin cậy:

                                                     Khoảng tin cậy 80%
                                               (18.89,4)                      (20.07,4)

                                                    Khoảng tin cậy 90%
                                      (18.67,2)                                      (20.29,2)

                                                    Khoảng tin cậy 95%
                             (18.45,0)                                                     (20.51,0)

                                                    Khoảng tin cậy 99%
          (17.87,-2)                                                                                   (21.09,-2



7.3.5     Khoảng tin cậy đối với phương sai của phân phối chuẩn σ2

Nhắc lại, giả sử ta có mẫu ngẫu nhiên với cỡ mẫu n được lấy ra từ tập hợp chính có phân
phối chuẩn N(µx,sx2) và gọi Sx2 là phương sai của mẫu.
                                     (n − 1) S x2
Biến ngẫu nhiên χ         2
                          γ ,α   =                   sẽ tuân theo phân phối χ 2 với độ tự do n - 1
                                           σ   2
                                               x


a) Điểm phần trăm giới hạn trên χ γ2,α

Biến ngẫu nhiên tuân theo phân phối χ 2 với độ tự do γ được ký hiệu χ γ2,α

χ γ2,α là điểm phần trăm giới hạn trên nếu

        P( χ γ2 > χ γ2,α ) = α
                                     ( )




                                                                                 α

                                                                       χ2υ,α
Thí dụ: Tìm χ 6;5%
              2




Cao Hào Thi                                                                                                        83
P( χ 6 > χ 6;5% ) = 5% ⇒ χ 6;5% = 12,59
              2     2               2



Tương tự ta có:
         ⎡                         α
         ⎢ P( χ γ > χ γ ,α / 2 ) = 2
                2      2


         ⎢
         ⎢ P( χ 2 < χ 2                  α
                      γ ,1−α / 2 ) = 1 −
         ⎢
         ⎣
                γ
                                         2
       P(χ 2,1−α / 2 < χ 2 < χ 2,α / 2 ) = 1 − α
           γ             γ     γ




                               α/2
                                                                                  α/2

                                                                                        t

                                        -χ2ν,1-α/2               χ2ν,α/2


b) Khoảng tin cậy của phương sai phân phối chuẩn σ2:
         Khoảng tin cậy với xác suất 100 (1- α)% của σ2 là
                                        (n − 1)S2                (n − 1)S 2
                                                x
                                                        < σ2 <            x
                                         χ 2 −1,α / 2
                                           n                     χ 2 −1,1−α / 2
                                                                   n


Trong đó χ 2 −1,α / 2 là số có P( χ γ2 > χ 2 −1,α / 2 ) = α/2
           n                               n


Trong đó χ 2 −1,1−α / 2 là số có P( χ γ2 > χ 2 −1,1−α / 2 ) = α/2
           n                                 n


Và biến ngẫu nhiên χ 2 −1 tuân theo phân phối χ 2 với độ tự do là n – 1
                     n

Chứng minh :
         P(χ 2,1−α / 2 < χ 2 < χ 2,α / 2 ) = 1 − α
             γ             γ     γ

         P(χ 2 −1,1−α / 2 < χ 2 −1 < χ 2 −1,α / 2 ) = 1 − α
             n                n        n

          ⎛                  (n − 1)S 2                ⎞
         P⎜ χ 2 −1,1−α / 2 <
          ⎜ n
                                  2
                                      x
                                        < χ 2 −1,α / 2 ⎟ = 1 − α
                                            n          ⎟
          ⎝                     σx                     ⎠
          ⎛ (n − 1)S 2        (n − 1)S2           ⎞
         P⎜ 2         x
                        < σ2 < 2          x       ⎟ = 1− α
          ⎜ χ              x
                              χ n −1,1−α / 2      ⎟
          ⎝ n −1,α / 2                            ⎠
Thí dụ : Một mẫu ngẫu nhiên gồm 15 viên thuốc nhức đầu cho thấy độ lệch chuẩn trong
thành phần cấu tạo thuốc là 0,8. Tìm khoảng tin cậy 90% của phương sai lô thuốc nói trên
(thành phần trong lô thuốc tuân theo phân phối chuẩn)


Cao Hào Thi                                                                                 84
Giải :
n = 15, S2 = 0,82 = 0,64; α = 10%
         x

Tra bảng             χ 2 −1,α / 2 = χ 14;5% = 23,68
                       n
                                      2



Và                   χ 2 −1,1−α / 2 = χ 14;95% = 6,57
                       n
                                        2



                      (n − 1)S 2                  (n − 1)S 2
Vậy:                           x
                                     <   σ2
                                          x   <            x
                      χ 2 −1,α / 2
                        n                         χ 2 −1,1−α / 2
                                                    n

                ⇔         0,378 < σ 2 < 1,364
                                    x

                ⇔         0,61 < σ x < 1,17

7.3.6      Ước lượng khoảng tin cậy của tham số thống kê p trong phân phối nhị thức
           trong điều kiện cỡ mẫu lớn :

                                                                                                X
Nhắc lại, gọi f là tỷ số của số lần thành công trong n phép thử độc lập: f =
                                                                                                n
X tuân theo phân phối chuẩn có                       - số trung bình µ = np
                                                     - Phương sai : σ2 = np(1-p)
Ta có :              E(f) = p                 f là ước lượng không chệch của p.
                                p(1 − p)
                     σf =
                                   n
                                                                              f −p
Khi cỡ mẫu đủ lớn thì biến ngẫu nhiên chuẩn hóa Z =                                        sẽ gần đúng có phân
                                                                            p(1 − p) / m
phối chuẩn chuẩn hóa :
                             p(1 − p) f (1 − f )
                     σ2 =
                      f              ≈           = S2
                                                    f
                                n         n
                                                  f −p
Khi đó biến ngẫu nhiên Z =                                     sẽ có phân phối chuẩn chuẩn hóa.
                                              f (1 − f ) / n
Khi Z tuân theo phân phối chuẩn chuẩn hóa, ta có:
        P(-Zα/2 < Z < Zα/2) = 1 - α
          ⎛                 f −p                  ⎞
         P⎜ − Z α / 2 <                  < Zα / 2 ⎟ = 1 − α
          ⎜               f (1 − f ) / n          ⎟
          ⎝                                       ⎠

          ⎛             f (1 − f )                  f (1 − f ) ⎞
          ⎜
         P⎜ f − Z α / 2            < p < f + Zα / 2            ⎟ =1− α
                            n                           n      ⎟
          ⎝                                                    ⎠
Khoảng tin cậy của p :
Gọi f là tỷ số số lần thành công quan sát được trong phép thử được rút từ tập hợp chính có
tỷ số số lần thành công là p. Nếu n lớn thì khoảng tin cậy của p là:


Cao Hào Thi                                                                                                 85
f (1 − f )                  f (1 − f )
                          f − Zα / 2              < p < f + Zα / 2
                                           n                           n
Trong đó Zα/2 là số có P(Z > Zα/2) = α/2 (Z là biến ngẫu nhiên chẩn hóa)
Thí dụ:
Một công ty đi nhận một lô hàng gồm vài ngàn sản phẩm. Người giám định lô hàng lấy
ngẫu nhiên 81 sản phẩm và nhận thấy 8 sản phẩm không đạt yêu cầu. Tìm khoảng tin cậy
90% của tỷ lệ số sản phẩm không đạt yêu cầu trong toàn bộ lô hàng.
Giải:
Ta có : α = 10% ⇒ tra bảng Zα/2 = Z5% = 1,645,
                X   8                         f (1 − f )
          f =     =   = 0,099 và σ f =                   = 0,033
                n 81                              n
Khoảng tin cậy 90% của p là :
                       0,099 -1,645*0,033 < p < 0,099 + 1,645*0,033
                                         0,045 < p < 0,153

7.3.7     Ước lượng cỡ mẫu (Estimating the Sample Size)

Trong các phần trước, chúng ta đi tìm các ước lượng khoảng đối với các tham số thống kê
θ (µx, σ2x, p …) của tập hợp chính dựa trên các mẫu cho trước (nghĩa là đã biết cỡ mẫu
n). Với cách làm đó, ta có thể gặp những kết quả không mong muốn là bề rộng của
khoảng tin cậy w quá lớn, có nghĩa là độ chính xác của các ước lượng nhỏ (vì độ chính
xác hay dung sai = w/2 có giá trị lớn).
                                               w = 2ε



                        ˆ
                       θ −ε                       θˆ                     θˆ + ε
                                                         ˆ
ε nói lên độ chính xác của ước lượng, nếu ε càng nhỏ thì θ càng gần θ.
Trong thực tế thường sai số cho phép ta ấn định độ chính xác ε (có nghĩa là ấn định trước
bề rộng khoảng tin cậy w) từ đó tính toán chọn cỡ mẫu đủ lớn để đảm bảo độ chính xác ε.
Để xác định cỡ mẫu ta cần các thông tin sau:
-   Định rõ độ tin cậy (1 - α), thường là 90%, 95%, hay 99%.
-   Độ chính xác hay sai số cho phép ε hoặc bề rộng khoảng tin cậy w.
-   Độ lệch chuẩn.
Cỡ mẫu n lớn hay nhỏ phụ thuộc độ phân tán σ, sai số cho phép ε chứ không phụ thuộc
vào kích thước tập hợp chính N.




Cao Hào Thi                                                                           86
a. Cỡ mẫu đối với khoảng tin cậy của trung bình µ trong N(µ;σ2) với σ2 biết trước:
                                                                         w = 2ε



                                       Z α / 2σ                             x                                  Z α / 2σ
                                 x -                                                                     x +
                                                                                                         x
                                           n                                                                       n
                                                  −      Z α / 2σ x                −   Z α / 2σ x
                                               x−                        < µ < x+
                                                                n                            n
                                                                                             Zα / 2σ x
                                       hay :            µ = X ± 2ε                 với ε =
                                                                                                     n
Với sai số cho phép ε cho trước, cỡ mẫu n đối với ước lượng µ trong N(µ;σ2) với σ2 biết
trước được xác định bởi công thức:
                                                                          Z α / 2σ x
                                                                            2      2
                                                                    n=
                                                                              ε2
Thí dụ:
Giả sử độ lệch chuẩn của các đường ống thép được sản xuất ra trong ngày ở một phân
xưởng là 10 kg. Chúng ta muốn ước lượng trong lượng trung bình µ của các đường ống
thép được sản xuất ra trong ngày ở phân xưởng đó với độ chính xác ± 2,5kg và với độ tin
cậy 95%. Tìm cỡ mẫu cần thiết cho sự ước lượng nói trên.
Giải:
    Ta có:          ε = 2,5kg,                 σ = 10 kg,
                    α = 5% ⇒ Zα/2 = Z0,025 = 1,96
                            1,96 2 * 10 2
    Vậy:            n=                    = 61,5
                               2,5 2
    Cỡ mẫu n = 62 (ống thép).

b. Cỡ mẫu đối với khoảng tin cậy của trung bình µ trong N(µ;σ2) khi chưa biết σ2:

    Khoảng tin cậy của trung bình µ trong N(µ;σ2) khi chưa biết σ2:

                                                      t n −1,α / 2 S x                 t n −1,α / 2 S x
                                          x−                             <µ<x+
                                                              n                                  n
              t n −1,α / 2 S x                                 t n −1,α / 2 S x2
                                                                 2

    ⇒ ε=                                       ⇒ n=
                      n                                              ε2
Thí dụ:
Một nhà quản lý công ty may muốn ước lượng khoảng thời gian trung bình để một công
nhân hoàn thành một sản phẩm. Cô ta muốn ước lượng µ với sai số ± 5 phút và với độ tin
cậy 90%. Bởi vì cô ta chưa có khái niệm gì về giá trị độ lệch chuẩn σ của tập hợp chính,


Cao Hào Thi                                                                                                               87
cô ta lấy mẫu đầu tiên với cỡ mẫu n = 15 công nhân và nhận thấy Sx = 20 phút. Hỏi cỡ
mẫu bằng bao nhiêu để đạt được khoảng tin cậy mong muốn.
Giải:
    Ta có:     ε = 5 phút,        Sx = 20 phút,
               α = 10% ⇒ tn-1,α/2 = t14;0,05 = 1,761
                     1,7612 * 20 2
    Vậy:       n=                  = 49,6
                          52
    Cỡ mẫu n = 50 (công nhân).
Ghi chú: sau khi có n = 50 ta phải tính lặp lại lần thứ 2 với cỡ mẫu n = 50 (nghĩa là tìm Sx
và tn-1,α/2 của mẫu mới). Tính lặp nhiều lần ta sẽ được kết quả hội tụ mong muốn.

c. Cỡ mẫu đối với khoảng tin cậy của p trong phân phối nhị thức:
    Khoảng tin cậy của p trong phân phối nhị thức
                                      f (1 − f )                        f (1 − f )
                         f − Zα / 2              < p < f + Zα / 2
                                          n                                 n

                    f (1 − f )                     Z α / 2 f (1 − f )
                                                     2
    ⇒ ε = Zα / 2                            ⇒ n=
                        n                                 ε2
Thí dụ:
Một kỹ sư kiểm tra chất lượng sản phẩm muốn tỷ lệ phế phẩm trong dây chuyền sản xuất
với sai số ± 0,05 và độ tin cậy 95%. Trong lần lấy mẫu đầu tiên với 25 sản phẩm người kỹ
sư nhận thấy có 4 phế phẩm. Hỏi cỡ mẫu bằng bao nhiêu để đạt được khoảng tin cậy
mong muốn.
Giải:
    Ta có:     ε = 0,05,          n = 25,          f = 4/25 = 0,16
               α = 5% ⇒ Zα/2 = Z0,025 = 1,96
                     1,96 2 * 0,16 * (1 − 0,16)
    Vậy:       n=                               = 206,5
                               0,05 2
    Cỡ mẫu n = 207 (sản phẩm).
Ghi chú:
-   Sau khi có n = 207 ta phải tính lặp lại lần thứ 2 với cỡ mẫu n = 207 (nghĩa là tìm f của
    mẫu mới và tính lại n).
-   Nếu ban đầu ta chưa biết cỡ mẫu bằng bao nhiêu ta có thể giả sử f = 0,5 để suy ra n và
    thực hiện các bước lặp như trên. Tính lặp nhiều lần ta sẽ được kết quả hội tụ mong
    muốn.




Cao Hào Thi                                                                              88

More Related Content

What's hot

đề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp ánđề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp ánHọc Huỳnh Bá
 
Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)
Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)
Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)Quynh Anh Nguyen
 
290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢI
290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢI290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢI
290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢIDung Lê
 
Kinh tế chính trị Mac - Lenin
Kinh tế chính trị Mac - LeninKinh tế chính trị Mac - Lenin
Kinh tế chính trị Mac - Lenin
Sơn Bùi
 
Tổng kết công thức kinh tế lượng ( kinh te luong)
Tổng kết công thức kinh tế lượng ( kinh te luong)Tổng kết công thức kinh tế lượng ( kinh te luong)
Tổng kết công thức kinh tế lượng ( kinh te luong)
Quynh Anh Nguyen
 
Bảng giá trị hàm Laplace
Bảng giá trị hàm LaplaceBảng giá trị hàm Laplace
Bảng giá trị hàm Laplace
hiendoanht
 
Giai sach bai tap xstk dh ktqd chuong 1 full v1
Giai sach bai tap xstk dh ktqd chuong 1 full v1Giai sach bai tap xstk dh ktqd chuong 1 full v1
Giai sach bai tap xstk dh ktqd chuong 1 full v1
Ngọc Ánh Nguyễn Thị
 
PHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTION
PHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTIONPHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTION
PHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTION
SoM
 
Bài giảng thống kê (chương ii)
Bài giảng thống kê (chương ii)Bài giảng thống kê (chương ii)
Bài giảng thống kê (chương ii)Học Huỳnh Bá
 
Bảng các thông số trong hồi quy eview
Bảng các thông số trong hồi quy eviewBảng các thông số trong hồi quy eview
Bảng các thông số trong hồi quy eviewthewindcold
 
Mô hình hồi qui đa biến
Mô hình hồi qui đa biếnMô hình hồi qui đa biến
Mô hình hồi qui đa biến
Cẩm Thu Ninh
 
Thống kê ứng dụng Chương 1
Thống kê ứng dụng Chương 1Thống kê ứng dụng Chương 1
Thống kê ứng dụng Chương 1
Thắng Nguyễn
 
12.ma trận và dịnh thức
12.ma trận và dịnh thức12.ma trận và dịnh thức
12.ma trận và dịnh thức
Trinh Yen
 
Bài tập môn nguyên lý kế toán
Bài tập môn nguyên lý kế toánBài tập môn nguyên lý kế toán
Bài tập môn nguyên lý kế toán
Học Huỳnh Bá
 
Bài tập kinh tế lượng
Bài tập kinh tế lượngBài tập kinh tế lượng
Bài tập kinh tế lượngJuz0311
 
Số tương đối động thái
Số tương đối động tháiSố tương đối động thái
Số tương đối động tháiHọc Huỳnh Bá
 
Hồi qui vói biến giả
Hồi qui vói biến giảHồi qui vói biến giả
Hồi qui vói biến giả
Cẩm Thu Ninh
 
9 dạng bài tập định khoản kế toán
9 dạng bài tập định khoản kế toán9 dạng bài tập định khoản kế toán
9 dạng bài tập định khoản kế toánLớp kế toán trưởng
 

What's hot (20)

đề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp ánđề Thi xác suất thống kê và đáp án
đề Thi xác suất thống kê và đáp án
 
Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)
Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)
Hướng dẫn thực hành kinh tế lượng ( phần mềm Eviews)
 
Phương trình hồi quy
Phương trình hồi quyPhương trình hồi quy
Phương trình hồi quy
 
290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢI
290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢI290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢI
290 CÂU TRẮC NGHIỆM KINH TẾ VĨ MÔ CÓ LỜI GIẢI
 
Kinh tế chính trị Mac - Lenin
Kinh tế chính trị Mac - LeninKinh tế chính trị Mac - Lenin
Kinh tế chính trị Mac - Lenin
 
Tổng kết công thức kinh tế lượng ( kinh te luong)
Tổng kết công thức kinh tế lượng ( kinh te luong)Tổng kết công thức kinh tế lượng ( kinh te luong)
Tổng kết công thức kinh tế lượng ( kinh te luong)
 
Bảng giá trị hàm Laplace
Bảng giá trị hàm LaplaceBảng giá trị hàm Laplace
Bảng giá trị hàm Laplace
 
Giai sach bai tap xstk dh ktqd chuong 1 full v1
Giai sach bai tap xstk dh ktqd chuong 1 full v1Giai sach bai tap xstk dh ktqd chuong 1 full v1
Giai sach bai tap xstk dh ktqd chuong 1 full v1
 
PHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTION
PHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTIONPHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTION
PHÂN PHỐI CHUẨN HAI BIẾN _ BIVARIATE NORMAL DISTRIBUTION
 
Bài giảng thống kê (chương ii)
Bài giảng thống kê (chương ii)Bài giảng thống kê (chương ii)
Bài giảng thống kê (chương ii)
 
Bảng các thông số trong hồi quy eview
Bảng các thông số trong hồi quy eviewBảng các thông số trong hồi quy eview
Bảng các thông số trong hồi quy eview
 
Mô hình hồi qui đa biến
Mô hình hồi qui đa biếnMô hình hồi qui đa biến
Mô hình hồi qui đa biến
 
Thống kê ứng dụng Chương 1
Thống kê ứng dụng Chương 1Thống kê ứng dụng Chương 1
Thống kê ứng dụng Chương 1
 
12.ma trận và dịnh thức
12.ma trận và dịnh thức12.ma trận và dịnh thức
12.ma trận và dịnh thức
 
Bài tập môn nguyên lý kế toán
Bài tập môn nguyên lý kế toánBài tập môn nguyên lý kế toán
Bài tập môn nguyên lý kế toán
 
Bài tập kinh tế lượng
Bài tập kinh tế lượngBài tập kinh tế lượng
Bài tập kinh tế lượng
 
Bai 2 gdp
Bai 2  gdpBai 2  gdp
Bai 2 gdp
 
Số tương đối động thái
Số tương đối động tháiSố tương đối động thái
Số tương đối động thái
 
Hồi qui vói biến giả
Hồi qui vói biến giảHồi qui vói biến giả
Hồi qui vói biến giả
 
9 dạng bài tập định khoản kế toán
9 dạng bài tập định khoản kế toán9 dạng bài tập định khoản kế toán
9 dạng bài tập định khoản kế toán
 

Similar to uoc luong tham so thong ke

Quy hoach tuyen tinh C3
Quy hoach tuyen tinh C3Quy hoach tuyen tinh C3
Quy hoach tuyen tinh C3
Ngo Hung Long
 
C8 bai giang kinh te luong
C8 bai giang kinh te luongC8 bai giang kinh te luong
C8 bai giang kinh te luong
robodientu
 
Giáo trình Phân tích và thiết kế giải thuật - CHAP 3
Giáo trình Phân tích và thiết kế giải thuật - CHAP 3Giáo trình Phân tích và thiết kế giải thuật - CHAP 3
Giáo trình Phân tích và thiết kế giải thuật - CHAP 3
Nguyễn Công Hoàng
 
Tapcongthuckinhteluong
TapcongthuckinhteluongTapcongthuckinhteluong
TapcongthuckinhteluongChi Chank
 
he-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdf
he-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdfhe-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdf
he-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdf
Linho749143
 
Bai 6 uoc luong tham so
Bai 6   uoc luong tham soBai 6   uoc luong tham so
Bai 6 uoc luong tham so
batbai
 
1 tomtat kt-ct-tracnghiem-vatly12
1 tomtat kt-ct-tracnghiem-vatly121 tomtat kt-ct-tracnghiem-vatly12
1 tomtat kt-ct-tracnghiem-vatly12Pham Tai
 
Phuong trinh dao_ham_rieng_8948 (1)
Phuong trinh dao_ham_rieng_8948 (1)Phuong trinh dao_ham_rieng_8948 (1)
Phuong trinh dao_ham_rieng_8948 (1)
sondauto10
 
Cross-entropy method
Cross-entropy methodCross-entropy method
Cross-entropy method
Minh Lê
 
Kĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trình
Kĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trìnhKĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trình
Kĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trình
FGMAsTeR94
 
ThiếT Kế Và đáNh Giá ThuậT ToáN
ThiếT Kế Và đáNh Giá ThuậT ToáNThiếT Kế Và đáNh Giá ThuậT ToáN
ThiếT Kế Và đáNh Giá ThuậT ToáNguest717ec2
 
đề Thi thử học kì 2 toán 12 an giang truonghocso.com
đề Thi thử học kì 2 toán 12 an giang   truonghocso.comđề Thi thử học kì 2 toán 12 an giang   truonghocso.com
đề Thi thử học kì 2 toán 12 an giang truonghocso.comThế Giới Tinh Hoa
 
OT HK II - 11
OT HK II - 11OT HK II - 11
OT HK II - 11
Uant Tran
 
Chuong v 7.10.09 l
Chuong v 7.10.09 lChuong v 7.10.09 l
Chuong v 7.10.09 lokconde
 
08 mat101 bai4_v2.3013101225
08 mat101 bai4_v2.301310122508 mat101 bai4_v2.3013101225
08 mat101 bai4_v2.3013101225
Yen Dang
 
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânPhương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânHajunior9x
 

Similar to uoc luong tham so thong ke (20)

Quy hoach tuyen tinh C3
Quy hoach tuyen tinh C3Quy hoach tuyen tinh C3
Quy hoach tuyen tinh C3
 
C8 bai giang kinh te luong
C8 bai giang kinh te luongC8 bai giang kinh te luong
C8 bai giang kinh te luong
 
Giáo trình Phân tích và thiết kế giải thuật - CHAP 3
Giáo trình Phân tích và thiết kế giải thuật - CHAP 3Giáo trình Phân tích và thiết kế giải thuật - CHAP 3
Giáo trình Phân tích và thiết kế giải thuật - CHAP 3
 
Ongtp
OngtpOngtp
Ongtp
 
Tapcongthuckinhteluong
TapcongthuckinhteluongTapcongthuckinhteluong
Tapcongthuckinhteluong
 
he-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdf
he-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdfhe-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdf
he-thong-cong-thuc-mon-nguyen-ly-thong-ke-new.pdf
 
Bai 6 uoc luong tham so
Bai 6   uoc luong tham soBai 6   uoc luong tham so
Bai 6 uoc luong tham so
 
1 tomtat kt-ct-tracnghiem-vatly12
1 tomtat kt-ct-tracnghiem-vatly121 tomtat kt-ct-tracnghiem-vatly12
1 tomtat kt-ct-tracnghiem-vatly12
 
Ttbh Gtln Bdt
Ttbh Gtln BdtTtbh Gtln Bdt
Ttbh Gtln Bdt
 
Phuong trinh dao_ham_rieng_8948 (1)
Phuong trinh dao_ham_rieng_8948 (1)Phuong trinh dao_ham_rieng_8948 (1)
Phuong trinh dao_ham_rieng_8948 (1)
 
Cross-entropy method
Cross-entropy methodCross-entropy method
Cross-entropy method
 
Dãy số tuyến tính
Dãy số tuyến tínhDãy số tuyến tính
Dãy số tuyến tính
 
Chuong04
Chuong04Chuong04
Chuong04
 
Kĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trình
Kĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trìnhKĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trình
Kĩ thuật dự đoán nghiệm và đơn giản hoá cách giải phương trình
 
ThiếT Kế Và đáNh Giá ThuậT ToáN
ThiếT Kế Và đáNh Giá ThuậT ToáNThiếT Kế Và đáNh Giá ThuậT ToáN
ThiếT Kế Và đáNh Giá ThuậT ToáN
 
đề Thi thử học kì 2 toán 12 an giang truonghocso.com
đề Thi thử học kì 2 toán 12 an giang   truonghocso.comđề Thi thử học kì 2 toán 12 an giang   truonghocso.com
đề Thi thử học kì 2 toán 12 an giang truonghocso.com
 
OT HK II - 11
OT HK II - 11OT HK II - 11
OT HK II - 11
 
Chuong v 7.10.09 l
Chuong v 7.10.09 lChuong v 7.10.09 l
Chuong v 7.10.09 l
 
08 mat101 bai4_v2.3013101225
08 mat101 bai4_v2.301310122508 mat101 bai4_v2.3013101225
08 mat101 bai4_v2.3013101225
 
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânPhương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
 

uoc luong tham so thong ke

  • 1. Chương 7 ƯỚC LƯỢNG CÁC THAM SỐ THỐNG KÊ (Estimation) 7.1 KHÁI NIỆM CHUNG Xét một tập hợp chính gồm N biến ngẫu nhiên X có hàm mật độ xác suất là f (x,θ); trong đó θ là các tham số thống kê của tập hợp chính. Thí dụ: Trong phân phối nhị thức: f (x, θ ) = C n ρ x (1 − ρ ) n − x x ⇒ θ = ρ, θ ∈ [0 , 1] Trong phân phối poisson e λ λx f (x, θ ) = x! ⇒θ=λ λ>0 Trong phân phối chuẩn (x − µ )2 1 − f (x, θ ) = e 2σ 2 2πσ 2 ⇒ θ = (µ, σ2) ; -∞ < µ < +∞ ; 0 < σ2 < +∞ Gọi {x1, x2,.... , xn} là mẫu ngẫu nhiên, cỡ mẫu n được dùng lấy ra từ tập hợp chính tuân theo hàm mật độ xác suất f (x,θ). Ở đây dạng của hàm f xem như đã biết còn các tham số thống kê θ của tập hợp chính xem như chưa biết. Vấn đề đặt ra ở chương trình này là dựa vào các mẫu quan sát {x1,x2,...,xn} ta ước lượng xem giá trị cụ thể của θ bằng bao nhiêu (bài toán đó gọi là ước lượng điểm ) hoặc ước lượng xem θ nằm trong khoảng nào (bài toán ước lượng khoảng). 7.2 ƯỚC LƯỢNG ĐIỂM (Point Estimation) 7.2.1 Ước lượng và giá trị ước lượng (Estimator And Estimate) a) Ước lượng (Estimator) và hàm ước lượng - Là biến ngẫu nhiên hay các tham số thống kê của mẫu được dùng để ước lượng các tham số thống kê chưa biết của tập hợp chính. - ˆ Ước lượng của tham số thống kê θ của tập hợp chính được ký hiệu là θ - ˆ ˆ Dựa vào mẫu {x1,x2...,xn} người ta lập ra Hàm θ = θ (x1,x2,....,xn) để ước lượng ˆ cho θ. θ được gọi là hàm ước lượng của θ hay gọi tắt là ước lượng của θ. Cao Hào Thi 74
  • 2. ˆ θ chỉ phụ thuộc vào giá trị quan sát x1, x2, ... ,xn chứ không phụ thuộc vào các tham số chưa biết θ của tập hợp chính. b) Giá trị ước lượng (Estimate) hay còn gọi là giá trị ước lượng điểm (Point Estimate) ˆ Là giá trị cụ thể của ước lượng θ và được xem như giá trị ước lượng của tham số thống kê θ của tập hợp chính. Tham số thống kê và tập hợp Giá trị ước lượng Ước lượng (Estimation) chính (Population Parameter) Estimate (Point estimate) Số trung bình µ X Phương sai σ2 x Sx2 Độ lệch chuẩn σx Sx Tỷ lệ p ˆ f 7.2.2 Ước lượng không chệch: (Unbiased Estimators) a) Ước lượng không chệch: Ước lượng θ được gọi là ước lượng không chệch của tham số thống kê θ nếu kỳ vọng ˆ của θ là θ. ˆ E (θ ) = θ Thí dụ E( X ) = µ => X là ước lượng không chệch của µ E(Sx2) = σ 2 => Sx2 là ước lượng không chệch cuả σ 2 x x ˆ ˆ E ( f ) = p => f là ước lượng không chệch của p b) Độ chệch (The Bias) ˆ Gọi θ là ước lượng của θ: ˆ ˆ Bias( θ ) = E ( θ ) - θ Đối với ước lượng không chệch ⇒ Bias = độ chệch = 0 c) Ước lượng hiệu quả tốt nhất: ˆ ˆ Gọi θ 1 và θ 2 là 2 ước lượng không chệch của θ dựa trên số lượng của mẫu quan sát giống nhau. o ˆ ˆ θ 1 được gọi là hiệu quả hơn θ 2 nếu: ˆ ˆ Var ( θ 1) < Var ( θ 2) o Hiệu quả tương đối giữa hai ước lượng là tỉ số giữa 2 phương sai của chúng. ˆ Var (θ 2 ) Hiệu quả tương đối (Relative Efficency) = ˆ Var (θ ) 1 Cao Hào Thi 75
  • 3. ˆ o Nếu θ là ước lượng không chệch của θ và nếu không có một ước lượng không ˆ ˆ chệch nào có phương sai nhỏ hơn phương sai của θ thì θ đuợc gọi là ước lượng ˆ tốt nhất (Best Estimator) hay θ còn gọi là ước lượng không chệch có phương sai nhỏ nhất của θ (Minimum Variance Unbiased Estimator of θ) θ1 θ2 θ1 θ2 ˆ θ 1 : ước lượng không chệch của θ ˆ ˆ θ 1 θ 2: ước lượng không chệch của θ ˆ θ 2 : ước lượng chệch của θ ˆ ˆ θ 1 ước lượng hiệu quả hơn θ 2: d) Sai số bình phương trung bình (Mean Squared Error - MSE) ˆ Sai số bình phương trung bình của ước lượng θ được định nghĩa như sau: ˆ ˆ MSE( θ ) = E [( θ - θ)2] Người ta chứng minh được rằng: ˆ ˆ ˆ MSE ( θ ) = Var( θ ) + [θ - E ( θ )]2 ˆ ˆ ˆ MSE ( θ ) = Var ( θ ) + [ Bias( θ )]2 ˆ Nếu θ là ước lượng không chệch ta có: ˆ Bias( θ ) = 0 ⇒ ˆ ˆ MSE ( θ ) = Var ( θ ) e) Ước lượng nhất quán vững (Consistent Estimators) ˆ ˆ θ n = θ (x1, x2,... xn) gọi là ước lượng vững của θ nếu với mọi ε > 0 ta có: ˆ lim P( | θ n - θ | ≤ ε) = 1 i →∞ ˆ tức là dãy θ n hội tụ theo xác suất tới θ khi n → ∞ Cao Hào Thi 76
  • 4. 7.3 ƯỚC LƯỢNG KHOẢNG (Interval Estimation) 7.3.1 Khoảng tin cậy (Confidence Interval) a) Ước lượng khoảng và giá trị ước lượng khoảng (Interval Estimator And Interval Estimate). Ước lượng khoảng: Ước lượng khoảng đối với tham số thống kê của tập hợp chính θ là một quy tắc dựa trên thông tin của mẫu để xác định miền (Range) hay khoảng (Interval) mà tham số θ hầu như nằm trong đó. Gía trị ước lượng khoảng: là giá trị cụ thể của miền hay khoảng mà tham số θ nằm trong đó. b) Khoảng tin cậy và độ tin cậy (Confidence Interval and Level of Confidence) Gọi θ là tham số thống kê chưa biết. Giả sử dựa trên thông tin của mẫu ta có thể xác định được 2 biến ngẫu nhiên A và B sao cho P (A < θ < B) = 1 - α với 0 < α < 1 Nếu giá trị cụ thể của biến ngẫu nhiên A và B là a và b thì khoảng (a,b) từ a đến b được gọi là khoảng tin cậy của θ với xác suất là (1 - α) Xác suất (1 - α) được gọi là độ tin cậy của khoảng. Ghi chú: o Trong thực tế, độ tin cậy (1-α) do nhà thống kê chọn theo yêu cầu của mình, thông thường độ tin cậy được chọn là 0,90; 0,95; 0,99... o α là xác suất sai lầm khi chọn khoảng tin cậy (a, b) 7.3.2 Khoảng tin cậy đối với số trung bình của phân phối chuẩn trong trường hợp đã biết phương sai của tập hợp chính: Nghĩa là đi tìm ước lượng của µ trong N (µ, σx2) khi đã biến σx2 a) Điểm phần trăm giới hạn trên Z (Upper Percentage Cut Off Point) Gọi Z là biến ngẫu nhiên chuẩn hóa và α là số bất kỳ sao cho 0 < α < 1 Zα là điểm phần trăm giới hạn trên nếu. P (Z > Zα ) = α Ghi chú: P (Z > Zα) = FZ (Zα) = 1 - α Cao Hào Thi 77
  • 5. α Z Ζα P (-Zα/2 < Z < Zα/2) = 1 - α Chứng minh: α Do tính đối xứng: P(Z > Zα/2 ) = 2 α P (Z < -Zα/2) = 2 α α ⇒ P (-Zα/2 < Z < Zα/2) = 1 - - =1-α 2 2 fZ(z) α/2 α/2 Z −Ζα 0 Ζα b) Khoảng tin cậy của µ trong N(µ, σx2) khi đã biến σx2 Giả sử ta có mẫu ngẫu nhiên vơí cỡ mẫu n từ phân phối chuẩn N(µ, σx2 ). Nếu σx2 và số trung bình mẫu đã biết, giá trị trung bình tập hợp chính được tính bởi. − Z α / 2σ x − Z α / 2σ x x− < µ < x+ n n Trong đó Zα/2 là số có P (Z > Zα/2) = α/2 với Z là biến ngẫu nhiên chuẩn chuẩn hóa. Chứng minh: Ta có: P ( - Zα/2 < Z < Zα/2) =1-α X −µ P ( - Zα/2 < < Zα/2) = 1 - α σX / n Z σ Z σ P (- α / 2 x < X − µ < α / 2 x ) = 1 - α n n Zα / 2σ x Z σ P( X- < µ < X + α / 2 x )= 1 - α n n Cao Hào Thi 78
  • 6. Thí dụ: Giả sử trọng lượng của các học sinh lớp 2 tuân theo phân phối chuẩn với độ lệch chuẩn 1,2kg. Mẫu ngẫu nhiên gồm 25 học sinh có trung bình là 19,8kg. Tìm khoảng tin cậy 95% đối với trọng lượng trung bình của tất cả học sinh lớp 2 trong 1 trường. Giải: Ta có: 100 (1 - α) = 95 ⇒ α = 0,05 ⇒ Zα/2 =Z0,025 ⇒ P(Z > Z0,025) = 0,025 P(Z < Z0,025) = FZ (Z0,025) = 1 - 0,025 = 0,975 Tra bảng ta có: Z0,025 = 1,96 Khoảng tin cậy 95% đối với số trung bình tập chính µ sẽ là Z α / 2σ x Z α / 2σ X x− < µ < x+ n n Với X = 19,8 kg σx = 1,2 kg n = 25 Zα/2 = 1,96 Vậy : 19,33 < µ < 20,27 Ghi chú: Zα / 2σ x ε= : gọi là độ chính xác của ước lượng hay dung sai n X là trung tâm của khoảng tin cậy với bề rộng của khoảng tin cậy của µ là 2Z α / 2 σ x W= = 2ε n o W càng nhỏ thì ước lượng càng chính xác ( ≡ ε càng nhỏ) o Với xác suất α và cỡ mẫu nhỏ, σx càng lớn thì W càng lớn. o Với α và σx cho trước, n càng lớn thì W càng nhỏ. o Với σx và n cho trước, (1 - α) càng lớn thì W càng nhỏ n = 25 σx = 1.2 1-α = 0.99 n = 25 σx = 1.2 1-α = 0.95 n = 64 σx = 1.2 1-α = 0.95 n = 25 σx = 1.2 1-α = 0.95 c) Khoảng tin cậy của số trung bình µ trong tập hợp chính trường hợp cỡ mẫu lớn. Giả sử ta có mẫu với cỡ mẫu là n được lấy từ tập hợp chính có số trung bình là µ. Gọi X là số trung bình của mẫu và Sx là phương sai của mẫu. Cao Hào Thi 79
  • 7. Nếu n lớn thì khoảng tin cậy với xác suất 100(1-α) % đối với µ được xem đúng là: Zα / 2 SX Zα / 2 Sx x− < µ < x+ n n Ghi Chú: o Sự ước lượng này gần đúng ngay cả khi tập hợp chính không theo phân phối chuẩn. o Khi n lớn ta có thể xem gần đúng Sx = σx 7.3.3 Phân phối Stutent t: Trong phần trước, ta đi tìm khoảng tin cậy của µ trong N (µ, σx2) khi đã biết σx2 hoặc tìm khoảng tin cậy của µ khi có mẫu lớn. Trong trường hợp không biết phương sai σx2 và cỡ mẫu không lớn, để tìm khoảng tin cậy của µ ta cần phải có một phân phối thích hợp hơn, đó là phân phối Student t. a) Phân phối Student t Cho mẫu ngẫu nhiên với cỡ n với số trung bình của mẫu X và độ lệch chuẩn mẫu Sx; mẫu được lấy ra từ tập hợp chính với số trung bình là µ. Biến ngẫu nhiên : x−µ t= Sx / n t tuân theo phân phối Student t với độ tự do là n - 1 Phân phối chuẩn f(t) Phân phối Student t với độ tự do là 3 t 0 Biến ngẫu nhiên X được gọi là tuân theo phân phối Studen t với độ tự do ν nếu hàm mật độ xác định có dạng. (ϑ + 1) x2 − (1 + ) 2 f x (x ) = ϑ 1 ϑ ϑ B( , ) 2 2 Cao Hào Thi 80
  • 8. b) Điểm phần trăm giới hạn trên tν,α: Biến ngẫu nhiên tuân theo phân phối Student t với độ tự do ν, được ký hiệu là tν. tν,α là điểm phần trăm giới hạn trên nếu: P(tν > tν,α) = α Người ta lập bảng tính sẳn cho các giá trị diện tích ở dưới đường cong từ tν,α đến +∞ f(tυ) α t 0 tυ,α Tương tự phần trăm trên ta có: P(-tν,α/2 < tν < tν,α/2) = 1 - α f(tυ) α/2 α/2 t −tυ,α/2 0 tυ,α/2 7.3.4 Khoảng tin cậy đối với số trung bình µ trong phân phối chuẩn khi chưa biết phương sai: (Khoảng tin cậy của µ trong N(µ, σx2) khi chưa biết σx2 Giả sử ta có mẫu ngẫu nhiên với cỡ mẫu n từ phân phối chuẩn với số trung bình là µ và phương sai σx2 chưa biết. Nếu số trung bình mẫu là X và độ lệch chuẩn mẫu là Sx thì khoảng tin cậy của số trung bình tập hợp chính µ sẽ được tính bởi . t n −1,α / 2 S x t n −1,α / 2 S x x− <µ<x+ n n α Trong đó tn-1,α/2 là số có P(tn-1 > tn-1,α/2) = và tn-1 là biến ngẫu nhiên tuân theo phân phối 2 Student với độ tự do là n - 1 Chứng minh: Cao Hào Thi 81
  • 9. P(-tn-1,α/2 < tn-1 < tn-1,α/2) = 1 - α ⎛ X−µ ⎞ P⎜ − t n −1,α / 2 < ⎜ < t n −1,α / 2 ⎟ = 1 − α ⎟ ⎝ Sx / n ⎠ ⎛ − t n −1,α / 2 S x t n −1,α / 2 S x ⎞ P⎜ ⎜ < X −µ < ⎟ = 1− α ⎟ ⎝ n n ⎠ ⎛ t n −1,α / 2 S x t n −1,α / 2 S x ⎞ P⎜ X − ⎜ <µ<X+ ⎟ = 1− α ⎟ ⎝ n n ⎠ Thí dụ: Mẫu ngẫu nhiên của trọng lượng 6 học sinh lớp 2 có giá trị như sau: 18,6kg 18,4kg 19,2kg 20,8kg 19,4kg 20,5kg Tìm khoảng tin cậy 90% đối với số trung bình của tất cả học sinh lớp 2. Gỉa sử rằng phân phối trọng lượng của tất cả học sinh lớp 2 là phân phối chuẩn. Giải: Trước hết ta phải tìm số trung bình mẫu X và phương sai mẫu Sx i xi xi 2 1 18,6 345,96 2 18,4 338,56 3 19,2 368,64 4 20,8 432,64 5 19,4 376,36 6 20,5 420,25 Tổng 116,9 2282,4 Số trung bình mẫu: 1 1 x= ∑ xi = (116.9) = 19.4833 n 6 Phương sai mẫu: 1 2 2 Sx = (∑ x i2 − nx ) n −1 1 (2.282,41 − 6 × 19,4833 2 ) = 0,96 = 5 Độ lệch chuẩn: S x = 0,96 = 0.98 Khoảng tin cậy 90% đối với trọng lượng trung bình của tất cả học sinh lớp 2 là: l n −1 , α / 2 S x t n −1 , α / 2 S x x− < µ < x+ n n X = 19,4833 , Sx = 0,98 , n=6 Cao Hào Thi 82
  • 10. 100 (1-α) = 90 => α = 0,10 => α/2 = 0,05 Tra bảng ta có: tn-1,α/2 = t5,0.05 = 2.015 2.015 × 0.098 2.015 × 0.98 19.48 − < µ < 19.48 + 6 6 18.67 < µ < 20.29 Các khoảng tin cậy: Khoảng tin cậy 80% (18.89,4) (20.07,4) Khoảng tin cậy 90% (18.67,2) (20.29,2) Khoảng tin cậy 95% (18.45,0) (20.51,0) Khoảng tin cậy 99% (17.87,-2) (21.09,-2 7.3.5 Khoảng tin cậy đối với phương sai của phân phối chuẩn σ2 Nhắc lại, giả sử ta có mẫu ngẫu nhiên với cỡ mẫu n được lấy ra từ tập hợp chính có phân phối chuẩn N(µx,sx2) và gọi Sx2 là phương sai của mẫu. (n − 1) S x2 Biến ngẫu nhiên χ 2 γ ,α = sẽ tuân theo phân phối χ 2 với độ tự do n - 1 σ 2 x a) Điểm phần trăm giới hạn trên χ γ2,α Biến ngẫu nhiên tuân theo phân phối χ 2 với độ tự do γ được ký hiệu χ γ2,α χ γ2,α là điểm phần trăm giới hạn trên nếu P( χ γ2 > χ γ2,α ) = α ( ) α χ2υ,α Thí dụ: Tìm χ 6;5% 2 Cao Hào Thi 83
  • 11. P( χ 6 > χ 6;5% ) = 5% ⇒ χ 6;5% = 12,59 2 2 2 Tương tự ta có: ⎡ α ⎢ P( χ γ > χ γ ,α / 2 ) = 2 2 2 ⎢ ⎢ P( χ 2 < χ 2 α γ ,1−α / 2 ) = 1 − ⎢ ⎣ γ 2 P(χ 2,1−α / 2 < χ 2 < χ 2,α / 2 ) = 1 − α γ γ γ α/2 α/2 t -χ2ν,1-α/2 χ2ν,α/2 b) Khoảng tin cậy của phương sai phân phối chuẩn σ2: Khoảng tin cậy với xác suất 100 (1- α)% của σ2 là (n − 1)S2 (n − 1)S 2 x < σ2 < x χ 2 −1,α / 2 n χ 2 −1,1−α / 2 n Trong đó χ 2 −1,α / 2 là số có P( χ γ2 > χ 2 −1,α / 2 ) = α/2 n n Trong đó χ 2 −1,1−α / 2 là số có P( χ γ2 > χ 2 −1,1−α / 2 ) = α/2 n n Và biến ngẫu nhiên χ 2 −1 tuân theo phân phối χ 2 với độ tự do là n – 1 n Chứng minh : P(χ 2,1−α / 2 < χ 2 < χ 2,α / 2 ) = 1 − α γ γ γ P(χ 2 −1,1−α / 2 < χ 2 −1 < χ 2 −1,α / 2 ) = 1 − α n n n ⎛ (n − 1)S 2 ⎞ P⎜ χ 2 −1,1−α / 2 < ⎜ n 2 x < χ 2 −1,α / 2 ⎟ = 1 − α n ⎟ ⎝ σx ⎠ ⎛ (n − 1)S 2 (n − 1)S2 ⎞ P⎜ 2 x < σ2 < 2 x ⎟ = 1− α ⎜ χ x χ n −1,1−α / 2 ⎟ ⎝ n −1,α / 2 ⎠ Thí dụ : Một mẫu ngẫu nhiên gồm 15 viên thuốc nhức đầu cho thấy độ lệch chuẩn trong thành phần cấu tạo thuốc là 0,8. Tìm khoảng tin cậy 90% của phương sai lô thuốc nói trên (thành phần trong lô thuốc tuân theo phân phối chuẩn) Cao Hào Thi 84
  • 12. Giải : n = 15, S2 = 0,82 = 0,64; α = 10% x Tra bảng χ 2 −1,α / 2 = χ 14;5% = 23,68 n 2 Và χ 2 −1,1−α / 2 = χ 14;95% = 6,57 n 2 (n − 1)S 2 (n − 1)S 2 Vậy: x < σ2 x < x χ 2 −1,α / 2 n χ 2 −1,1−α / 2 n ⇔ 0,378 < σ 2 < 1,364 x ⇔ 0,61 < σ x < 1,17 7.3.6 Ước lượng khoảng tin cậy của tham số thống kê p trong phân phối nhị thức trong điều kiện cỡ mẫu lớn : X Nhắc lại, gọi f là tỷ số của số lần thành công trong n phép thử độc lập: f = n X tuân theo phân phối chuẩn có - số trung bình µ = np - Phương sai : σ2 = np(1-p) Ta có : E(f) = p f là ước lượng không chệch của p. p(1 − p) σf = n f −p Khi cỡ mẫu đủ lớn thì biến ngẫu nhiên chuẩn hóa Z = sẽ gần đúng có phân p(1 − p) / m phối chuẩn chuẩn hóa : p(1 − p) f (1 − f ) σ2 = f ≈ = S2 f n n f −p Khi đó biến ngẫu nhiên Z = sẽ có phân phối chuẩn chuẩn hóa. f (1 − f ) / n Khi Z tuân theo phân phối chuẩn chuẩn hóa, ta có: P(-Zα/2 < Z < Zα/2) = 1 - α ⎛ f −p ⎞ P⎜ − Z α / 2 < < Zα / 2 ⎟ = 1 − α ⎜ f (1 − f ) / n ⎟ ⎝ ⎠ ⎛ f (1 − f ) f (1 − f ) ⎞ ⎜ P⎜ f − Z α / 2 < p < f + Zα / 2 ⎟ =1− α n n ⎟ ⎝ ⎠ Khoảng tin cậy của p : Gọi f là tỷ số số lần thành công quan sát được trong phép thử được rút từ tập hợp chính có tỷ số số lần thành công là p. Nếu n lớn thì khoảng tin cậy của p là: Cao Hào Thi 85
  • 13. f (1 − f ) f (1 − f ) f − Zα / 2 < p < f + Zα / 2 n n Trong đó Zα/2 là số có P(Z > Zα/2) = α/2 (Z là biến ngẫu nhiên chẩn hóa) Thí dụ: Một công ty đi nhận một lô hàng gồm vài ngàn sản phẩm. Người giám định lô hàng lấy ngẫu nhiên 81 sản phẩm và nhận thấy 8 sản phẩm không đạt yêu cầu. Tìm khoảng tin cậy 90% của tỷ lệ số sản phẩm không đạt yêu cầu trong toàn bộ lô hàng. Giải: Ta có : α = 10% ⇒ tra bảng Zα/2 = Z5% = 1,645, X 8 f (1 − f ) f = = = 0,099 và σ f = = 0,033 n 81 n Khoảng tin cậy 90% của p là : 0,099 -1,645*0,033 < p < 0,099 + 1,645*0,033 0,045 < p < 0,153 7.3.7 Ước lượng cỡ mẫu (Estimating the Sample Size) Trong các phần trước, chúng ta đi tìm các ước lượng khoảng đối với các tham số thống kê θ (µx, σ2x, p …) của tập hợp chính dựa trên các mẫu cho trước (nghĩa là đã biết cỡ mẫu n). Với cách làm đó, ta có thể gặp những kết quả không mong muốn là bề rộng của khoảng tin cậy w quá lớn, có nghĩa là độ chính xác của các ước lượng nhỏ (vì độ chính xác hay dung sai = w/2 có giá trị lớn). w = 2ε ˆ θ −ε θˆ θˆ + ε ˆ ε nói lên độ chính xác của ước lượng, nếu ε càng nhỏ thì θ càng gần θ. Trong thực tế thường sai số cho phép ta ấn định độ chính xác ε (có nghĩa là ấn định trước bề rộng khoảng tin cậy w) từ đó tính toán chọn cỡ mẫu đủ lớn để đảm bảo độ chính xác ε. Để xác định cỡ mẫu ta cần các thông tin sau: - Định rõ độ tin cậy (1 - α), thường là 90%, 95%, hay 99%. - Độ chính xác hay sai số cho phép ε hoặc bề rộng khoảng tin cậy w. - Độ lệch chuẩn. Cỡ mẫu n lớn hay nhỏ phụ thuộc độ phân tán σ, sai số cho phép ε chứ không phụ thuộc vào kích thước tập hợp chính N. Cao Hào Thi 86
  • 14. a. Cỡ mẫu đối với khoảng tin cậy của trung bình µ trong N(µ;σ2) với σ2 biết trước: w = 2ε Z α / 2σ x Z α / 2σ x - x + x n n − Z α / 2σ x − Z α / 2σ x x− < µ < x+ n n Zα / 2σ x hay : µ = X ± 2ε với ε = n Với sai số cho phép ε cho trước, cỡ mẫu n đối với ước lượng µ trong N(µ;σ2) với σ2 biết trước được xác định bởi công thức: Z α / 2σ x 2 2 n= ε2 Thí dụ: Giả sử độ lệch chuẩn của các đường ống thép được sản xuất ra trong ngày ở một phân xưởng là 10 kg. Chúng ta muốn ước lượng trong lượng trung bình µ của các đường ống thép được sản xuất ra trong ngày ở phân xưởng đó với độ chính xác ± 2,5kg và với độ tin cậy 95%. Tìm cỡ mẫu cần thiết cho sự ước lượng nói trên. Giải: Ta có: ε = 2,5kg, σ = 10 kg, α = 5% ⇒ Zα/2 = Z0,025 = 1,96 1,96 2 * 10 2 Vậy: n= = 61,5 2,5 2 Cỡ mẫu n = 62 (ống thép). b. Cỡ mẫu đối với khoảng tin cậy của trung bình µ trong N(µ;σ2) khi chưa biết σ2: Khoảng tin cậy của trung bình µ trong N(µ;σ2) khi chưa biết σ2: t n −1,α / 2 S x t n −1,α / 2 S x x− <µ<x+ n n t n −1,α / 2 S x t n −1,α / 2 S x2 2 ⇒ ε= ⇒ n= n ε2 Thí dụ: Một nhà quản lý công ty may muốn ước lượng khoảng thời gian trung bình để một công nhân hoàn thành một sản phẩm. Cô ta muốn ước lượng µ với sai số ± 5 phút và với độ tin cậy 90%. Bởi vì cô ta chưa có khái niệm gì về giá trị độ lệch chuẩn σ của tập hợp chính, Cao Hào Thi 87
  • 15. cô ta lấy mẫu đầu tiên với cỡ mẫu n = 15 công nhân và nhận thấy Sx = 20 phút. Hỏi cỡ mẫu bằng bao nhiêu để đạt được khoảng tin cậy mong muốn. Giải: Ta có: ε = 5 phút, Sx = 20 phút, α = 10% ⇒ tn-1,α/2 = t14;0,05 = 1,761 1,7612 * 20 2 Vậy: n= = 49,6 52 Cỡ mẫu n = 50 (công nhân). Ghi chú: sau khi có n = 50 ta phải tính lặp lại lần thứ 2 với cỡ mẫu n = 50 (nghĩa là tìm Sx và tn-1,α/2 của mẫu mới). Tính lặp nhiều lần ta sẽ được kết quả hội tụ mong muốn. c. Cỡ mẫu đối với khoảng tin cậy của p trong phân phối nhị thức: Khoảng tin cậy của p trong phân phối nhị thức f (1 − f ) f (1 − f ) f − Zα / 2 < p < f + Zα / 2 n n f (1 − f ) Z α / 2 f (1 − f ) 2 ⇒ ε = Zα / 2 ⇒ n= n ε2 Thí dụ: Một kỹ sư kiểm tra chất lượng sản phẩm muốn tỷ lệ phế phẩm trong dây chuyền sản xuất với sai số ± 0,05 và độ tin cậy 95%. Trong lần lấy mẫu đầu tiên với 25 sản phẩm người kỹ sư nhận thấy có 4 phế phẩm. Hỏi cỡ mẫu bằng bao nhiêu để đạt được khoảng tin cậy mong muốn. Giải: Ta có: ε = 0,05, n = 25, f = 4/25 = 0,16 α = 5% ⇒ Zα/2 = Z0,025 = 1,96 1,96 2 * 0,16 * (1 − 0,16) Vậy: n= = 206,5 0,05 2 Cỡ mẫu n = 207 (sản phẩm). Ghi chú: - Sau khi có n = 207 ta phải tính lặp lại lần thứ 2 với cỡ mẫu n = 207 (nghĩa là tìm f của mẫu mới và tính lại n). - Nếu ban đầu ta chưa biết cỡ mẫu bằng bao nhiêu ta có thể giả sử f = 0,5 để suy ra n và thực hiện các bước lặp như trên. Tính lặp nhiều lần ta sẽ được kết quả hội tụ mong muốn. Cao Hào Thi 88