Unsupervised detection of lesions in brain mri using constrained adversarial auto encoders
1.
Unsupervised Detection ofLesions in Brain MRI using
constrained adversarial auto-encoders
Masataka Nishimori
2018-11-05
2.
紹介論文
- Title: UnsupervisedDetection of Lesions in Brain MRI using constrained adversarial auto-encoders
- Authors: Xiaoran Chen, Ender Konukoglu
- Submitted on: 13 Jun 2018
CNNを利用した論文[Pereira et al.,2016]
Sérgio Pereira, Adriano Pinto, Victor Alves, and Carlos A Silva. Brain tumor segmentation using convolutional neural networks in mri images. IEEE transactions on
medical imaging, 35(5):1240–1251, 2016.
9.
CNNを利用した論文[Pereira et al.,2016]
Sérgio Pereira, Adriano Pinto, Victor Alves, and Carlos A Silva. Brain tumor segmentation using convolutional neural networks in mri images. IEEE transactions on
medical imaging, 35(5):1240–1251, 2016.
10.
CNNを利用した論文[Kamnitsas et al.,2017]
Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simpson, Andrew D Kane, David K Menon, Daniel Rueckert, and Ben Glocker. Efficient
multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical image analysis, 36:61–78, 2017.
11.
CNNを利用した論文[Kamnitsas et al.,2017]
Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simpson, Andrew D Kane, David K Menon, Daniel Rueckert, and Ben Glocker. Efficient
multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Medical image analysis, 36:61–78, 2017.
Mondal et al.,2018
- Title: Few-shot 3D Multi-modal Medical Image Segmentation using Generative Adversarial Learning
- Authors: Arnab Kumar Mondal, Jose Dolz and Christian Desrosiers
- Submitted on 29 Oct 2018
References
Papers
- Sun, Liyan,et al. "An Adversarial Learning Approach to Medical Image Synthesis for Lesion Removal." arXiv preprint arXiv:1810.10850 (2018).
- Schlegl, Thomas, et al. "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery." International Conference on
Information Processing in Medical Imaging. Springer, Cham, 2017.
- AnoGANの元論文
- Frid-Adar, Maayan, et al. "GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification." arXiv preprint
arXiv:1803.01229 (2018).
- 腹部CTからGANで病変検出
- Tang, Youbao, et al. "CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation
Improvement." International Workshop on Machine Learning in Medical Imaging. Springer, Cham, 2018.
- Ben-Cohen, Avi, et al. "Cross-Modality Synthesis from CT to PET using FCN and GAN Networks for Improved Automated Lesion Detection." arXiv preprint
arXiv:1802.07846 (2018).