Trigonometric Functions
Sine • Cosine • Tangent
Visual and Interactive Teaching
Real-Life Hook
• • Ferris wheel motion
• • Pendulum swing
• • Ocean tides
• Ask: What patterns do you notice?
Unit Circle
• • Circle with radius 1
• • Point moves counterclockwise
• • x = cos θ, y = sin θ
• • Shadows on axes → trig values
Building the Sine Graph
• • Key points: sin(0°)=0, sin(90°)=1, sin(180°)=0,
sin(270°)=-1, sin(360°)=0
• • Plot points step by step
• • Connect smoothly → wave
Cosine Graph
• • Key points: cos(0°)=1, cos(90°)=0,
cos(180°)=-1, cos(270°)=0, cos(360°)=1
• • Similar to sine but shifted left
Tangent Function
• • tan θ = sin θ / cos θ
• • Undefined when cos θ = 0 (90°, 270°)
• • Graph has vertical asymptotes
Applications of Trig Functions
• • Sound waves (sine)
• • Ocean tides (sine/cosine)
• • Ferris wheel seat height (cosine)
• • Electricity (sine wave)
Interactive Activity: Human Sine
Wave
• • Students stand as 'points' of the sine graph
• • Assign θ values (0°, 30°, 60°, ...)
• • Each student shows y = sin θ with height
• • Together they form a living sine wave!
Summary
• • Trig functions are periodic and repeat
• • Derived from unit circle
• • Sine starts at 0, Cosine starts at 1
• • Tangent = sin/cos with asymptotes

Trigonometric Functions Lecture (brief presentation)

  • 1.
    Trigonometric Functions Sine •Cosine • Tangent Visual and Interactive Teaching
  • 2.
    Real-Life Hook • •Ferris wheel motion • • Pendulum swing • • Ocean tides • Ask: What patterns do you notice?
  • 3.
    Unit Circle • •Circle with radius 1 • • Point moves counterclockwise • • x = cos θ, y = sin θ • • Shadows on axes → trig values
  • 4.
    Building the SineGraph • • Key points: sin(0°)=0, sin(90°)=1, sin(180°)=0, sin(270°)=-1, sin(360°)=0 • • Plot points step by step • • Connect smoothly → wave
  • 5.
    Cosine Graph • •Key points: cos(0°)=1, cos(90°)=0, cos(180°)=-1, cos(270°)=0, cos(360°)=1 • • Similar to sine but shifted left
  • 6.
    Tangent Function • •tan θ = sin θ / cos θ • • Undefined when cos θ = 0 (90°, 270°) • • Graph has vertical asymptotes
  • 7.
    Applications of TrigFunctions • • Sound waves (sine) • • Ocean tides (sine/cosine) • • Ferris wheel seat height (cosine) • • Electricity (sine wave)
  • 8.
    Interactive Activity: HumanSine Wave • • Students stand as 'points' of the sine graph • • Assign θ values (0°, 30°, 60°, ...) • • Each student shows y = sin θ with height • • Together they form a living sine wave!
  • 9.
    Summary • • Trigfunctions are periodic and repeat • • Derived from unit circle • • Sine starts at 0, Cosine starts at 1 • • Tangent = sin/cos with asymptotes