Towards Universal
Semantic Understanding
of Natural Languages
Yunyao Li (@yunyao_li)
Senior Research Manager
Scalable Knowledge Intelligence
IBM Research - Almaden
How many
languages
are there in the world?
2
3
7,102
known languages
23
most spoken language
4.1+ Billion
people
Source: https://www.iflscience.com/environment/worlds-most-spoken-languages-and-where-they-are-spoken/
4
Asia-Pacific Region
> 3,200 Languages
28 Major language families
Source: https://reliefweb.int/sites/reliefweb.int/files/resources/OCHA_ROAP_Language_v6_110519.pdf
Conventional Approach
towards Language
Enablement
5
English Text English NLU English Applications
German Text German NLU German Applications
Chinese Text Chinese NLU Chinese Applications
Separate NLU pipeline
for each language
Separate application
for each language
Universal Semantic
Understanding of Natural
Languages
6
English Text
German Text Universal NLU Cross-lingual Applications
Chinese Text
Single NLU pipeline for
different languages
Develop once for
different language
The Challenges
7
Models
– Low-frequency exceptions
– Built for one task at a time
Training Data
– High quality labeled data is
required but hard to obtain
Meaning Representation
– Different meaning
representation
• for different languages
• for the same languages
- Data: Auto-generation + crowd-
in-the-loop [ACL’15, EMNLP’16, EMNLP’17,
EMNLP’20 Findings]
- Training: Cross-Lingual transfer
[EMNLP’20 Findings]
Unified Meaning Representation
[ACL’15, ACL’16, ACL-DMR’19]
– Instance-based learning
[COLING’16]
– Deep learning + instance-based
learning [In Submission]
– Human-machine co-creation
[ACL’19, EMNLP’20]
Our Research
7
The Challenges
8
Models
– Low-frequency exceptions
– Built for one task at a time
Training Data
– High quality labeled data is
required but hard to obtain
Meaning Representation
– Different meaning
representation
• for different languages
• for the same languages
- Data: Auto-generation + crowd-
in-the-loop [ACL’15, EMNLP’16, EMNLP’17,
EMNLP’20 Findings]
- Training: Cross-Lingual transfer
[EMNLP’20 Findings]
Unified Meaning Representation
[ACL’15, ACL’16, ACL-DMR’19]
– Instance-based learning
[COLING’16]
– Deep learning + instance-based
learning [In Submission]
– Human-machine co-creation
[ACL’19, EMNLP’20]
Our Research
8
John hastily ordered a dozen dandelions for Mary from Amazon’s Flower Shop.
order.02 (request to be delivered)
A0: Orderer
A1: Thing ordered
A2: Benefactive, ordered-for
A3: Source
A0: Orderer
A1: Thing ordered
A2: Benefactive, ordered-for
A3: SourceAM-MNR: Manner
WHO
HOW
DID
WHAT WHERE
Semantic Role Labeling (SRL)
FOR
WHOM
Who did what to whom, when, where and how?
Dirk broke the window with a hammer.
Break.01A0 A1 A2
The window was broken by Dirk.
The window broke.
A1 Break.01 A0
A1 Break.01
Break.01
A0 – Breaker
A1 – Thing broken
A2 – Instrument
A3 – Pieces
Break.15
A0 – Journalist,
exposer
A1 – Story,
thing exposed
Syntax vs. Semantic Parsing
What type of labels are valid across languages?
• Lexical, morphological and syntactic labels differ greatly
• Shallow semantic labels remain stable
SRL Resources
Other languages
• Chinese Proposition Bank
• Hindi Proposition Bank
• German FrameNet
• French? Spanish? Russian? Arabic? …
English
• FrameNet
• PropBank
1. Limited coverage
2. Language-specific formalisms
订购
A0: buyer
A1: commodity
A2: seller
order.02
A0: orderer
A1: thing ordered
A2: benefactive, ordered-for
A3: source
We want different languages to share the same semantic labels
WhatsApp was bought by Facebook
Facebook hat WhatsApp gekauft
Facebook a achété WhatsApp
buy.01
Facebook WhatsApp
Buyer Thing bought
Cross-lingual representationMultilingual input text
Buy.01 A0A1
Buy.01A1A0
Buy.01A0 A1
Shared Frames Across Languages
A0 A1
The Challenges
13
Models
– Low-frequency exceptions
– Built for one task at a time
Training Data
– High quality labeled data is
required but hard to obtain
Meaning Representation
– Different meaning
representation
• for different languages
• for the same languages
- Data: Auto-generation + crowd-
in-the-loop [ACL’15, EMNLP’16, EMNLP’17,
EMNLP’20 Findings]
- Training: Cross-Lingual transfer
[EMNLP’20 Findings]
Unified Meaning Representation
[ACL’15, ACL’16, ACL-DMR’19]
– Instance-based learning
[COLING’16]
– Deep learning + instance-based
learning [In Submission]
– Human-machine co-creation
[ACL’19, EMNLP’20]
Our Research
13
Generate SRL resources for many other languages
• Shared frame set
• Minimal effort
Il faut qu‘ il y ait des responsables
Need.01A0
Je suis responsable pour le chaos
Be.01A1 A2 AM-PRD
Les services postaux ont achété des …
Be.01 A2A1
Buy.01A0
Corpus of annotated text data
Universal Proposition Banks
Frame set
Buy.01
A0 – Buyer
A1 – Thing bought
A2 – Seller
A3 – Price paid
A4 – Benefactive
Pay.01
A0 – Payer
A1 – Money
A2 – Being payed
A3 – Commodity
Annotator training
months
Annotation
Years
Repeat
for each language!
Current Practices
15
Example: TV subtitles
Our Idea: Annotation projection with parallel corpora
Das würde ich für einen Dollar kaufen German subtitles
I would buy that for a dollar! English subtitles
PRICEBUYER ITEM
BUYERITEM
Training data
• Semantically annotated
• Multilingual
• Large amount
I would buy that for a dollar
PRICE
projection
Das würde ich für einen Dollar kaufen
Auto-Generation of Universal
Preposition Bank
16
Resource: https://www.youtube.com/watch?v=u5HOt0ZOcYk
We need to hold people responsible
Il faut qu‘ il y ait des responsables
English sentence:
Target sentence:
Hold.01A0 A1 A3Need.01
Hold.01
Incorrect projection!
There need to be those responsible
A1
Main error sources:
• Translation shift
• Source-language SRL errors
However: Projections Not
Always Possible
Filtered Projection &
Bootstrapping
Two-step process
– Filters to detect translation shift, block
projections (more precision at cost of
recall)
– Bootstrap learning to increase recall
– Generated 7 universal proposition banks
from 3 language groups
• Version 1.0: https://github.com/System-
T/UniversalPropositions/
• Version 2.0 coming soon
[ACL’15] Generating High Quality Proposition Banks for Multilingual Semantic Role Labeling.
Multilingual Aliasing
• Problem: Target language frame lexicon
automatically generated from alignments
– False frames
– Redundant frames
• Expert curation of frame mappings
[COLING’16] Multilingual Aliasing for Auto-Generating Proposition
Banks
Low-resource Languages
Apply approach to low-resource languages
Bengali, Malayalam, Tamil
– Fewer sources of parallel data
– Almost no NLP: No syntactic parsing,
lemmatization etc.
Crowdsourcing for data curation
[EMNLP’16] Towards Semi-Automatic Generation of Proposition Banks for Low-
Resource Languages
Annotation
Tasks (all)
Task
Routerraw text
Corpus
predicted
annotations
Corpus
curated
annotations
Corpus
Easy tasks are curated by crowd
Difficult tasks are curated by experts
Crowd-in-the-Loop Curation
[EMNLP’17] CROWD-IN-THE-LOOP: A Hybrid Approach for Annotating Semantic Roles
Task Router Classifier
­9pp F1
improvement over SRL
results
Effectiveness of Crowd-in-
the-Loop
¯66.4pp
expert efforts
­10pp F1
improvement over SRL
results
¯87.3pp
expert efforts
Latest: Filter à Select à Expert
[Findings of EMNLP’20] A Novel Workflow for Accurately and Efficiently Crowdsourcing Predicate Senses and Argument Labels
The Challenges
24
Models
– Low-frequency exceptions
– Built for one task at a time
Training Data
– High quality labeled data is
required but hard to obtain
Meaning Representation
– Different meaning
representation
• for different languages
• for the same languages
- Data: Auto-generation + crowd-
in-the-loop [ACL’15, EMNLP’16, EMNLP’17,
EMNLP’20 Findings]
- Training: Cross-Lingual transfer
[EMNLP’20 Findings]
Unified Meaning Representation
[ACL’15, ACL’16, ACL-DMR’19]
– Instance-based learning
[COLING’16]
– Deep learning + instance-based
learning [In Submission]
– Human-machine co-creation
[ACL’19, EMNLP’20]
Our Research
24
WhatsApp was bought by Facebook
Facebook hat WhatsApp gekauft
Facebook a achété WhatsApp
buy.01
Facebook WhatsApp
Buyer Thing bought
Cross-lingual representation
Multilingual input text
Buy.01 A0A1
Buy.01A1A0
Buy.01A0 A1
Cross-lingual Meaning
Representation
Cross-lingual extraction
Task: Extract who bought what
[NAACL’18] SystemT: Declarative Text Understanding for Enterprise
[ACL’16] POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels
[COLING’16] Multilingual Information Extraction with PolyglotIE
Cross-lingual Transfer?
Challenge:
Low-resource languages lacks
- Large monolingual labeled data
- Parallel corpora
Solution:
Transfer knowledge and resources from rich
resource language to low resource language
EN DE YO
. . .
Multilingual or Polyglot
Training
Main Idea
• Combine training data from multiple
languages with multilingual word
embeddings
• Train a common encoder model to enable
parameter sharing.
Challenge
Different languages have different
annotations scheme
EN DE YO
. . .
Different Annotations across
Languages
Observation:
Certain argument labels do share common
semantic meaning across languages.
Intuition:
Identify and exploit the commonalities
between annotation of different languages.
Know.01
A0: Knower
A1: Thing known
A2: A1 known about
AM: Adjuncts
Knnen.01
A0: Knower
A1: Entity
AM: Adjuncts
Hypothesis
Pair Matching:
Identify arguments with similar semantic meaning
across languages and
Source
Manifold
ZH-A0
A0
AM-TMP
ZH-TMP
Target
Manifold
1
2 Argument Regularization
Represent them close to each other in the feature
space.
The Framework
Regularizer is applied at parameters of the last layer of the model.
.…
.…
.…
.…
.…
.…
.…
.…
.…
.…
.. .. ..
Softmax
.. .. .. .. .. .. .. .. .. ..
BiLSTM BiLSTM BiLSTM
BiLSTM
Encoder
Word
Representations
Fixed Sentence Representation
vi<latexit sha1_base64="PUnq/hPkljd9ESWrB39UNwUjUEE=">AAAE5nicdVPLbhMxFHXbAGV4tSCxYWMxjcQiijIpFSwrihBsUJHSh5RJI4/HSax4HvIjyWD8C+wQW8QWPoBf4W/wPJQmk3Klka7OPec+x0HKqJCdzt+t7Z3Grdt3du869+4/ePhob//xuUgUx+QMJyzhlwEShNGYnEkqGblMOUFRwMhFMD3J4xczwgVN4p7MUjKI0DimI4qRtNBw7+mBL8lCFok0J6HRsyE1B8M9t9PuFAY3Ha9yXFDZ6XB/548fJlhFJJaYISH6XieVA424pJgR4/hKkBThKRqTvnVjFBEx0EVdA5sWCeEo4faLJSzQVYVGkRBZFFhmhORE1GM5eFOsr+To9UDTOFWSxLgsNFIMygTm24Ah5QRLllkHYU5trxBPEEdY2p2tZQpnNBVV14uy7bUuFiniYn1OLVGgWohzlLUixSTlybw15iidULyoqYX1SCsaUS6kwq1cyRDPWuUuZMBqmen08zoSJMnUqoRxHP8jmb+tbnGSRBGKQ+0XeWJlb6GE0RYlenhljG46EPoBGdN4zBOVljxGpMaK83JO3TYF68PoHDFFeu+06xkLQH397/Rdb6DdrqnjSwwWlay5h00oJwRWvZTgMrd2Xxo9XE2w0oeNGdOEQgXCHiuVG9ojo6/+pz2qtKm97LW6nIzEYTG9Y7fn+DGZ4+XaGA9M3862vkEd2FvGJl8EtPPVJfObJPMJlWQpWdf0jGUHCQvzvzxhsLfByGqMLC/LySpF1ShqkzKrUWaWYt+6V3/Zm855t+0dtrufuu7xm+rV74Jn4Dl4ATzwChyD9+AUnAEMvoCf4Bf43Zg0vja+Nb6X1O2tSvMErFnjxz+GMq5d</latexit>
ui<latexit sha1_base64="SV6pSr2q35hT+K6jX2dqCFXuEGo=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ4rTaDyZJEPGD80jiRkN38AOsUVsYc2v8DdMbJPGTrmSpatzz7lPT5AwKmS7/Wdre6d24+at3dvOnbv37j+o7z08E7HimJzimMX8IkCCMBqRU0klIxcJJygMGDkPpsfL+PmMcEHjqCvThPRDNI7oiGIkLTSoP973JVnILJEOeDyPjFYDavYHdbfdamcGNx2vcFxQ2Mlgb+e3P4yxCkkkMUNC9Lx2IvsacUkxI8bxlSAJwlM0Jj3rRigkoq+zygY2LDKEo5jbL5IwQ9cVGoVCpGFgmSGSE1GNLcHrYj0lRy/7mkaJkiTCeaGRYlDGcLkPOKScYMlS6yDMqe0V4gniCEu7tVKm4Ywmouh6kbdd6mKRIC7Kc2qJAtVEnKO0GSomqV1wc8xRMqF4UVEL65FmOKJcSIWbSyVDPG3mu5ABq2Sm009lJIjjqVUJ4zj+ezJ/XdziOA5DFA21n+WJlL2FEkZblOjBpTG64UDoB2RMozGPVZLzGJEaK87zOXXLZKx3ozPEFOm+0a5nLAD11d/Tc72+djumiq8wmFWy5h40oJwQWPSSg6vc2n1u9GA9wVofNmZMAwoVCHusRG5oD42+/J/2sNAm9rJX6nwyEg2z6R27PcePyByv1sZ4YHp2tvIG/z0Wuwho56tK5tdJ5hMqyUpS1nSNZQcxGy7/8pjB7gYjrTDSZVlO1imqQlGblFmFMrMU+9a96svedM46Le+g1fnQcY9eFa9+FzwBT8Ez4IEX4Ai8BSfgFGDwGfwAP8Gv2sfal9rX2recur1VaB6BktW+/wX8W69d</latexit>
<latexit sha1_base64="sWOp4y3+vzY+IXL+chq8peFGJow=">AAAE73icdVNJbxMxFHbbACVsKRw5YDGNxCFEmZQKjhVFCC6oSOkiZdLI43ESK54FL1mwfOQ3cENcEVeQ+Cv8GzyL0sykPMnS0/e+7/kttp8wKmSn83dre6d24+at3dv1O3fv3X/Q2Ht4JmLFMTnFMYv5hY8EYTQip5JKRi4STlDoM3LuT4/T+PmMcEHjqCeXCRmEaBzREcVIWmjYeLLvSbKQWSLtM0WMfu6dCAo9TDk2+8OG02l3MoObjls4DijsZLi388cLYqxCEknMkBB9t5PIgUZcUsyIqXtKkAThKRqTvnUjFBIx0FkBBjYtEsBRzO2JJMzQdYVGoRDL0LfMEMmJqMZS8LpYX8nRq4GmUaIkiXB+0UgxKGOYjgUGlBMs2dI6CHNqa4V4gjjC0g6vlCmY0UQUVS/ysktVLBLERblPLZGvWohztGyFiknK43lrzFEyoXhRUQvrkVY4olxIhVupkiG+bOWzkD6rZKbTz2XEj+OpVQlTr3sfyPxNsYvjOAxRFGgvyxMpuwsljLYo0cNLY3SzDqHnkzGNxjxWSc5jRGqsOM/71G2Tsd6PzpB9Kr232nGNBaC+ekR9xx1op2uq+AqD2U3WnIMmlBMCi1pycJVbOy+MHq4nWKvDxoxpQqF8YZeVyA3todGX/9MeFtrEbvZKnXdGoiDrvm6nV/ciMsersTHum77trTxB7dtdRiYdBLT9VSXz6yTzCZVkJSlresay/ZgF6SuPGextMJYVxjK9lpN1iqpQ1CZlVqHMLMX+dbf6szeds27bPWh3P3ado9fFr98Fj8FT8Ay44CU4Au/ACTgFGHwBP8Ev8Lv2qfa19q32PadubxWaR6BktR//AI/psbg=</latexit>
+b<latexit sha1_base64="xTelgJN5oYRxTa8991wB9lSAa5w=">AAAE53icdVPLbhMxFHXbACW8WliwYGMxjYREFGVSKlhWFCHYoCKlDymTRrbjJFY8D/mRZLD8DewQW8QW9vwKf4MzM0ozk2LJ0tW559ynjRPOpGq3/25t79Ru3b6ze7d+7/6Dh4/29h+fy1gLQs9IzGNxiZGknEX0TDHF6WUiKAoxpxd4erL0X8yokCyOuipNaD9E44iNGEHKQYO9pweBoguVBTKYa2rNS4jtwWDPa7fa2YGbhl8YHijO6WB/508wjIkOaaQIR1L2/Hai+gYJxQinth5oSRNEpmhMe86MUEhl32SJLWw4ZAhHsXA3UjBD1xUGhVKmIXbMEKmJrPqW4E2+nlajN33DokQrGpE80UhzqGK4HAccMkGJ4qkzEBHM1QrJBAlElBtaKdJwxhJZVL3Iyy5VsUiQkOU+jUJYN5EQKG2Gmism4nlzLFAyYWRRUUtn0WY4YkIqTZpLJUcibeazUJhXIrPplzKC43jqVNLW68EnOn9X7OIkDkMUDU2QxYm024WW1jiUmsGVtaZRhzDAdMyisYh1kvM4VYZoIfI+TctmrI+jc+SeSPe98XzrAGiuH0/P8/vG69gqvsJglskd77AB1YTCopYcXMU23itrBusB1upwPmsbUGos3bIStaE9subqf9qjQpu4zV6r885oNMy6r7vp1YOIzslqbFxg23O9lSdosNtlZJeDgK6/qmR+k2Q+YYquJGVN1zo2jvlw+cpjDrsbjLTCSJdpBV2n6ApFb1JmFcrMUdxf96s/e9M477T8w1bnc8c7flv8+l3wDDwHL4APXoNj8AGcgjNAgAU/wS/wu8ZqX2vfat9z6vZWoXkCSqf24x8WR65D</latexit>
w1<latexit sha1_base64="XqunA7ZMLIHdlA4ywRCiI90cTAs=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ4rTaDyZJEPGD80jiRkN38AOsUVsYc2v8DdMbJPGTrmSpatzz7lPT5AwKmS7/Wdre6d24+at3dvOnbv37j+o7z08E7HimJzimMX8IkCCMBqRU0klIxcJJygMGDkPpsfL+PmMcEHjqCvThPRDNI7oiGIkLTSoP973JVnILJEOeDyPjJ4PPLM/qLvtVjszuOl4heOCwk4Gezu//WGMVUgiiRkSoue1E9nXiEuKGTGOrwRJEJ6iMelZN0IhEX2dVTawYZEhHMXcfpGEGbqu0CgUIg0DywyRnIhqbAleF+spOXrZ1zRKlCQRzguNFIMyhst9wCHlBEuWWgdhTm2vEE8QR1jarZUyDWc0EUXXi7ztUheLBHFRnlNLFKgm4hylzVAxSe2Cm2OOkgnFi4paWI80wxHlQircXCoZ4mkz34UMWCUznX4qI0EcT61KGMfx35P56+IWx3EYomio/SxPpOwtlDDaokQPLo3RDQdCPyBjGo15rJKcx4jUWHGez6lbJmO9G50hpkj3jXY9YwGor/6enuv1tdsxVXyFwaySNfegAeWEwKKXHFzl1u5zowfrCdb6sDFjGlCoQNhjJXJDe2j05f+0h4U2sZe9UueTkWiYTe/Y7Tl+ROZ4tTbGA9Ozs5U3+O+x2EVAO19VMr9OMp9QSVaSsqZrLDuI2XD5l8cMdjcYaYWRLstysk5RFYrapMwqlJml2LfuVV/2pnPWaXkHrc6Hjnv0qnj1u+AJeAqeAQ+8AEfgLTgBpwCDz+AH+Al+1T7WvtS+1r7l1O2tQvMIlKz2/S8NYa8n</latexit>
w2<latexit sha1_base64="m8LhNnvHy6BEbsZ2bRCfBKMuMVc=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ4rTaDyZJEPGD80jiRkN38AOsUVsYc2v8DdMbJPGTrmSpatzz7lPT5AwKmS7/Wdre6d24+at3dvOnbv37j+o7z08E7HimJzimMX8IkCCMBqRU0klIxcJJygMGDkPpsfL+PmMcEHjqCvThPRDNI7oiGIkLTSoP973JVnILJEOeDyPjJ4POmZ/UHfbrXZmcNPxCscFhZ0M9nZ++8MYq5BEEjMkRM9rJ7KvEZcUM2IcXwmSIDxFY9KzboRCIvo6q2xgwyJDOIq5/SIJM3RdoVEoRBoGlhkiORHV2BK8LtZTcvSyr2mUKEkinBcaKQZlDJf7gEPKCZYstQ7CnNpeIZ4gjrC0WytlGs5oIoquF3nbpS4WCeKiPKeWKFBNxDlKm6FiktoFN8ccJROKFxW1sB5phiPKhVS4uVQyxNNmvgsZsEpmOv1URoI4nlqVMI7jvyfz18UtjuMwRNFQ+1meSNlbKGG0RYkeXBqjGw6EfkDGNBrzWCU5jxGpseI8n1O3TMZ6NzpDTJHuG+16xgJQX/09Pdfra7djqvgKg1kla+5BA8oJgUUvObjKrd3nRg/WE6z1YWPGNKBQgbDHSuSG9tDoy/9pDwttYi97pc4nI9Ewm96x23P8iMzxam2MB6ZnZytv8N9jsYuAdr6qZH6dZD6hkqwkZU3XWHYQs+HyL48Z7G4w0gojXZblZJ2iKhS1SZlVKDNLsW/dq77sTees0/IOWp0PHffoVfHqd8ET8BQ8Ax54AY7AW3ACTgEGn8EP8BP8qn2sfal9rX3LqdtbheYRKFnt+18Rzq8o</latexit>
wn<latexit sha1_base64="hURgb79n4ej3kCCEE9z8zawwLMw=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ0rSaDyZJEPGY2seScxo+AZ2iC1iC2t+hb9hYps0ccqVLF2de859esKEUamazT9b2zuVGzdv7d727ty9d/9Bde/hmYy1wOQUxywWFyGShFFOThVVjFwkgqAoZOQ8nBwv4udTIiSNeVulCelFaMTpkGKkHNSvPt7vKjJXWSITinjGrZn1ud3vV/1mo5kZ3HSCwvFBYSf9vZ3f3UGMdUS4wgxJ2QmaieoZJBTFjFivqyVJEJ6gEek4l6OIyJ7JKltYc8gADmPhPq5ghq4qDIqkTKPQMSOkxrIcW4DXxTpaDV/2DOWJVoTjvNBQM6hiuNgHHFBBsGKpcxAW1PUK8RgJhJXb2lqmwZQmsuh6nre91sU8QUKuz2kUCnUdCYHSeqSZom7B9ZFAyZjieUktnUfq0ZAKqTSuL5QMibSe70KFrJSZTj6tI2EcT5xKWs/rviez18UtjuMoQnxgulkert0ttLTGocT0L601NQ/CbkhGlI9ErJOcx4gyWAuRz2kaNmO9G54hpkn7jfED6wBorv6ejh/0jN+yZXyJwaySM/+gBtWYwKKXHFzmNv5za/qrCVb6cDFra1DqULpjJWpDe2jN5f+0h4U2cZe9UueTET7Ipvfc9rwuJzO8XBsToe242dY3+O+xuEVAN19ZMrtOMhtTRZaSdU3bOnYYs8HiL48ZbG8w0hIjXZQVZJWiSxS9SZmWKFNHcW89KL/sTees1QgOGq0PLf/oVfHqd8ET8BQ8AwF4AY7AW3ACTgEGn8EP8BP8qnysfKl8rXzLqdtbheYRWLPK978baa9k</latexit>
CLAR Performance
Dataset: CoNLL2009
Our is SoTA
- Average performance over all languages
- 3 out of 5 non-English languages- General approach:
- Independent of base model.
- Independent of language.
- Require no parallel data.
The Challenges
32
Models
– Low-frequency exceptions
– Built for one task at a time
Training Data
– High quality labeled data is
required but hard to obtain
Meaning Representation
– Different meaning
representation
• for different languages
• for the same languages
- Data: Auto-generation + crowd-
in-the-loop [ACL’15, EMNLP’16, EMNLP’17,
EMNLP’20 Findings]
- Training: Cross-Lingual transfer
[EMNLP’20 Findings]
Unified Meaning Representation
[ACL’15, ACL’16, ACL-DMR’19]
– Instance-based learning
[COLING’16]
– Deep learning + instance-based
learning [In Submission]
– Human-machine co-creation
[ACL’19, EMNLP’20]
Our Research
32
Dependency Parsing Vs. SRL
75 80 85 90 95 100
WSJ
BROWN
SRL Depeendency Parsing
What Makes SRL So Difficult?
Heavy-tailed distribution of class labels
– Common frames
• say.01 (8243), have.01 (2040), sell.01 (1009)
– Many uncommon frames
• swindle.01, feed.01, hum.01, toast.01
– Almost half of all frames seen fewer than 3
times in training data
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
Distribution of frame labels
Many low-frequency exceptions à Difficult to capture in models
Low-Frequency Exceptions
Strong correlation of syntactic function of an argument to its role
Example: passive subject
The window was broken by Dirk
SBJ
PMOD
VC NMOD
A1
The silver was sold by the man.
SBJ
PMOD
VC NMOD
A1
Creditors were told to hold off.
SBJ
ORPD
VC
IM PRT
TELL.01
A0: speaker (agent)
A1: utterance (topic)
A2: hearer (recipient)
86% of passive
subjects are
labeled A1
(over 4.000x in
training data)
Local Bias 87% of passive
subjects of
Tell.01 are
labeled A2 (53x
in training data)
Most Classifiers
– Bag-of-features
– Learn weights for features to classes
– Perform generalization
Question: How do we explicitly
capture low-frequency exceptions?
Instance-based Learning kNN: k-Nearest Neighbors classification
Find the k most similar instances in training data
Derive class label from nearest neighbors
A0
A1
A1
A2
A1
A1
A1
A1
A1
A0
A0
A1
A0
A2
A2
A2
A2
A1
A2
?
1 2 3 ndistance
Creditors were told to hold off.
SBJ
ORPD
VC
IM PRT
“creditor” passive subject of TELL.01
noun passive subject of TELL.01
COMPOSITE FEATURE DISTANCE
1
2
.
.
.
.
.
.
any passive subject of any agentive verb n
?
Main idea: Back off to composite feature seen at least k times
[COLING 2016] K-SRL: Instance-based Learning for Semantic Role Labeling
Results
In-domain Out-of-domain
• Significantly outperform previous approaches
– Especially on out-of-domain data
• Small neighborhoods suffice (k=3)
• Fast runtime ­1.4pp F1
In-Domain
­5.1pp F1
Out-of-Domain
Latest results (improvement over SoAT.
with DL + IL, in submission)
[In Submission] Deep learning + Instance-based Learning
[COLING 2016] K-SRL: Instance-based Learning for Semantic Role Labeling
The Challenges
39
Models
– Low-frequency exceptions
– Built for one task at a time
Training Data
– High quality labeled data is
required but hard to obtain
Meaning Representation
– Different meaning
representation
• for different languages
• for the same languages
- Data: Auto-generation + crowd-
in-the-loop [ACL’15, EMNLP’16, EMNLP’17,
EMNLP’20 Findings]
- Training: Cross-Lingual transfer
[EMNLP’20 Findings]
Unified Meaning Representation
[ACL’15, ACL’16, ACL-DMR’19]
– Instance-based learning
[COLING’16]
– Deep learning + instance-based
learning [In Submission]
– Human-machine co-creation
[ACL’19, EMNLP’20]
Our Research
39
WhatsApp was bought by Facebook
Facebook hat WhatsApp gekauft
Facebook a achété WhatsApp
buy.01
Facebook WhatsApp
Buyer Thing bought
Cross-lingual representation
Multilingual input text
Buy.01 A0A1
Buy.01A1A0
Buy.01A0 A1
Crosslingual Information
Extraction
Sentence Verb Buyer Thing bought
1 buy.01 Facebook WhatsApp
2 buy.01 Facebook WhatsApp
3 buy.01 Facebook WhatsApp
Crosslingual extraction
Task: Extract who bought what
[NAACL’18] SystemT: Declarative Text Understanding for Enterprise
[ACL’16] POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels
[COLING’16] Multilingual Information Extraction with PolyglotIE https://vimeo.com/180382223
Transparent Linguistic Models for Contract Understanding
41
[NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
Transparent Model Design
Purchaser will
purchase the Assets
by a cash payment.
Element
Obligation for
Purchaser
[NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
Transparent Model Design
Purchaser will
purchase the Assets
by a cash payment.
Element
[Purchaser]A0
[will]TENSE-FUTURE
purchase
[the Assets]A1
[by a cash payment]ARGM-MNR
Core NLP Understanding
Core NLP Primitives &
Operators
Provided by SystemT
[ACL '10, NAACL ‘18]
Semantic NLP Primitives
[NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
Transparent Model Design
Purchaser will
purchase the Assets
by a cash payment.
Element Legal Domain LLEs
[Purchaser]ARG0
[will]TENSE-FUTURE
purchase
[the Assets]ARG1
[by a cash payment]ARGM-MNR
LLE1:
PREDICATE ∈ DICT Business-Transaction
∧ TENSE = Future
∧ POLARITY = Positive
→ NATURE = Obligation ∧ PARTY =
ARG0
LLE2:
…........
Domain Specific Concepts
Business transact. verbs
in future tense
with positive polarity
Core NLP Primitives &
Operators
Semantic NLP Primitives
[NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
Transparent Model Design
Purchaser will
purchase the Assets
by a cash payment.
Element Model Output
[Purchaser]ARG0
[will]TENSE-FUTURE
purchase
[the Assets]ARG1
[by a cash payment]ARGM-MNR
Obligation for
Purchaser
Nature/Party:
Domain Specific Concepts
Core NLP Primitives &
Operators
LLE1:
PREDICATE ∈ DICT Business-Transaction
∧ TENSE = Future
∧ POLARITY = Positive
→ NATURE = Obligation ∧ PARTY =
ARG0
LLE2:
…........
Legal Domain LLEsSemantic NLP Primitives
[NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
Human & Machine Co-Creation
Labeled
Data
Evaluati
on
Results
Productio
n
Deep
Learning
Learned Rules
(Explainable)
Modify Rules
Machine performs heavy lifting to abstract out patterns Humans verify/
transparent model
Evaluation & Deployment
Raises the abstraction level for domain experts to interact with
[EMNLP’20] Learning Explainable Linguistic Expressions with Neural Inductive Logic Programming for Sentence Classification
Label being assigned
Various ways of
selecting/ranking
ranking rules
Center panel lists all rules
HEIDL Demo
Rule-specific performance
metrics
[ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
HEIDL Demo
Examples available at the
click of a button
[ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
Center panel lists all rules
HEIDL Demo
Playground mode allows
adding and dropping of
predicates from a rule
[ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
User Study: Human+Machine
Co-Created Model
Performance
User study
– 4 NLP Engineers with 1-2 year experience
– 2 NLP experts with 10+ years experience
Key Takeaways
– Explanation of learned rrules: Visualization tool is very
effective
– Reduction in human labor: Co-created model created within
1.5 person-hrs outperforms black-box sentence classifier
– Lower requirement on human expertise: Co-created model is
at par with the model created by Super-Experts
Ua Ub Uc Ud
0.0
0.1
0.2
0.3
0.4
0.5
0.6
F-measure
RuleNN+Human
BiLSTM
[ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
Conclusion
Research
prototype
Early adaption (EN)
Cross-lingual
adaptation
• Watson products
• Customer engagements
• Research projects …
• 10+ languages
• SoAT models
• Paper: 10+ publications
• Patent: 6 patent filed
• Data: ibm.biz/LanguageData
• Code: Chinese SOUNDEX https://pypi.org/project/chinesesoundex-1.0/
• ongoing
Thank You
52
Our collaborators in
• Within IBM
• Product: Watson NLP, Watson Discovery, Watson Health, CODAIT, …
• Research: AURL, IBMRA, BRL, DRL, HRL, IRL, TRL, YKT, ZRL
• Outside of IBM
• Allen AI Institute
• Humboldt University of Berlin
• IIT-Bombay
• NYU – Abu Dhabi
• Sapienza U. of Rome
• UCSD
• UIUC
• U. of Malta
• U. of Maryland, College Park
• U. of Michigan, Ann Arbor
• U. of Washington
• Vietnamese National U.
• …
Yunyao Li
Huaiyu Zhu
Kun Qian
Nancy Wang Fred Reiss
Yannis KatsisDoug Burdick
Ban Kawas
Lucian Popa
Ishan JindalPritthvi Sen
Marina DanilevskyKhoi-Nguyen Tran
Sairam Gurajada
Alexandre Evfimievski
Thank You!
53
To learn more:
• Role of AI in Enterprise Application ( ibm.biz/RoleOfAI)
Research Projects:
• ibm.biz/ScalableKnowledgeIntelligence
• ibm.biz/SystemT
Data Sets:
• ibm.biz/LanguageData
Follow me:
• LinkedIn: https://www.linkedin.com/in/yunyao-li/
• Twitter: @yunyao_li
By now, you should be able to:
– Identify challenges towards universal semantic
understanding of natural languages
– Understand current state-of-the-arts in
addressing the challenges
– Define general use cases for universal semantic
understanding of natural languages

Towards Universal Language Understanding (2020 version)

  • 1.
    Towards Universal Semantic Understanding ofNatural Languages Yunyao Li (@yunyao_li) Senior Research Manager Scalable Knowledge Intelligence IBM Research - Almaden
  • 2.
  • 3.
    3 7,102 known languages 23 most spokenlanguage 4.1+ Billion people Source: https://www.iflscience.com/environment/worlds-most-spoken-languages-and-where-they-are-spoken/
  • 4.
    4 Asia-Pacific Region > 3,200Languages 28 Major language families Source: https://reliefweb.int/sites/reliefweb.int/files/resources/OCHA_ROAP_Language_v6_110519.pdf
  • 5.
    Conventional Approach towards Language Enablement 5 EnglishText English NLU English Applications German Text German NLU German Applications Chinese Text Chinese NLU Chinese Applications Separate NLU pipeline for each language Separate application for each language
  • 6.
    Universal Semantic Understanding ofNatural Languages 6 English Text German Text Universal NLU Cross-lingual Applications Chinese Text Single NLU pipeline for different languages Develop once for different language
  • 7.
    The Challenges 7 Models – Low-frequencyexceptions – Built for one task at a time Training Data – High quality labeled data is required but hard to obtain Meaning Representation – Different meaning representation • for different languages • for the same languages - Data: Auto-generation + crowd- in-the-loop [ACL’15, EMNLP’16, EMNLP’17, EMNLP’20 Findings] - Training: Cross-Lingual transfer [EMNLP’20 Findings] Unified Meaning Representation [ACL’15, ACL’16, ACL-DMR’19] – Instance-based learning [COLING’16] – Deep learning + instance-based learning [In Submission] – Human-machine co-creation [ACL’19, EMNLP’20] Our Research 7
  • 8.
    The Challenges 8 Models – Low-frequencyexceptions – Built for one task at a time Training Data – High quality labeled data is required but hard to obtain Meaning Representation – Different meaning representation • for different languages • for the same languages - Data: Auto-generation + crowd- in-the-loop [ACL’15, EMNLP’16, EMNLP’17, EMNLP’20 Findings] - Training: Cross-Lingual transfer [EMNLP’20 Findings] Unified Meaning Representation [ACL’15, ACL’16, ACL-DMR’19] – Instance-based learning [COLING’16] – Deep learning + instance-based learning [In Submission] – Human-machine co-creation [ACL’19, EMNLP’20] Our Research 8
  • 9.
    John hastily ordereda dozen dandelions for Mary from Amazon’s Flower Shop. order.02 (request to be delivered) A0: Orderer A1: Thing ordered A2: Benefactive, ordered-for A3: Source A0: Orderer A1: Thing ordered A2: Benefactive, ordered-for A3: SourceAM-MNR: Manner WHO HOW DID WHAT WHERE Semantic Role Labeling (SRL) FOR WHOM Who did what to whom, when, where and how?
  • 10.
    Dirk broke thewindow with a hammer. Break.01A0 A1 A2 The window was broken by Dirk. The window broke. A1 Break.01 A0 A1 Break.01 Break.01 A0 – Breaker A1 – Thing broken A2 – Instrument A3 – Pieces Break.15 A0 – Journalist, exposer A1 – Story, thing exposed Syntax vs. Semantic Parsing What type of labels are valid across languages? • Lexical, morphological and syntactic labels differ greatly • Shallow semantic labels remain stable
  • 11.
    SRL Resources Other languages •Chinese Proposition Bank • Hindi Proposition Bank • German FrameNet • French? Spanish? Russian? Arabic? … English • FrameNet • PropBank 1. Limited coverage 2. Language-specific formalisms 订购 A0: buyer A1: commodity A2: seller order.02 A0: orderer A1: thing ordered A2: benefactive, ordered-for A3: source We want different languages to share the same semantic labels
  • 12.
    WhatsApp was boughtby Facebook Facebook hat WhatsApp gekauft Facebook a achété WhatsApp buy.01 Facebook WhatsApp Buyer Thing bought Cross-lingual representationMultilingual input text Buy.01 A0A1 Buy.01A1A0 Buy.01A0 A1 Shared Frames Across Languages A0 A1
  • 13.
    The Challenges 13 Models – Low-frequencyexceptions – Built for one task at a time Training Data – High quality labeled data is required but hard to obtain Meaning Representation – Different meaning representation • for different languages • for the same languages - Data: Auto-generation + crowd- in-the-loop [ACL’15, EMNLP’16, EMNLP’17, EMNLP’20 Findings] - Training: Cross-Lingual transfer [EMNLP’20 Findings] Unified Meaning Representation [ACL’15, ACL’16, ACL-DMR’19] – Instance-based learning [COLING’16] – Deep learning + instance-based learning [In Submission] – Human-machine co-creation [ACL’19, EMNLP’20] Our Research 13
  • 14.
    Generate SRL resourcesfor many other languages • Shared frame set • Minimal effort Il faut qu‘ il y ait des responsables Need.01A0 Je suis responsable pour le chaos Be.01A1 A2 AM-PRD Les services postaux ont achété des … Be.01 A2A1 Buy.01A0 Corpus of annotated text data Universal Proposition Banks Frame set Buy.01 A0 – Buyer A1 – Thing bought A2 – Seller A3 – Price paid A4 – Benefactive Pay.01 A0 – Payer A1 – Money A2 – Being payed A3 – Commodity
  • 15.
  • 16.
    Example: TV subtitles OurIdea: Annotation projection with parallel corpora Das würde ich für einen Dollar kaufen German subtitles I would buy that for a dollar! English subtitles PRICEBUYER ITEM BUYERITEM Training data • Semantically annotated • Multilingual • Large amount I would buy that for a dollar PRICE projection Das würde ich für einen Dollar kaufen Auto-Generation of Universal Preposition Bank 16 Resource: https://www.youtube.com/watch?v=u5HOt0ZOcYk
  • 17.
    We need tohold people responsible Il faut qu‘ il y ait des responsables English sentence: Target sentence: Hold.01A0 A1 A3Need.01 Hold.01 Incorrect projection! There need to be those responsible A1 Main error sources: • Translation shift • Source-language SRL errors However: Projections Not Always Possible
  • 18.
    Filtered Projection & Bootstrapping Two-stepprocess – Filters to detect translation shift, block projections (more precision at cost of recall) – Bootstrap learning to increase recall – Generated 7 universal proposition banks from 3 language groups • Version 1.0: https://github.com/System- T/UniversalPropositions/ • Version 2.0 coming soon [ACL’15] Generating High Quality Proposition Banks for Multilingual Semantic Role Labeling.
  • 19.
    Multilingual Aliasing • Problem:Target language frame lexicon automatically generated from alignments – False frames – Redundant frames • Expert curation of frame mappings [COLING’16] Multilingual Aliasing for Auto-Generating Proposition Banks
  • 20.
    Low-resource Languages Apply approachto low-resource languages Bengali, Malayalam, Tamil – Fewer sources of parallel data – Almost no NLP: No syntactic parsing, lemmatization etc. Crowdsourcing for data curation [EMNLP’16] Towards Semi-Automatic Generation of Proposition Banks for Low- Resource Languages
  • 21.
    Annotation Tasks (all) Task Routerraw text Corpus predicted annotations Corpus curated annotations Corpus Easytasks are curated by crowd Difficult tasks are curated by experts Crowd-in-the-Loop Curation [EMNLP’17] CROWD-IN-THE-LOOP: A Hybrid Approach for Annotating Semantic Roles
  • 22.
  • 23.
    ­9pp F1 improvement overSRL results Effectiveness of Crowd-in- the-Loop ¯66.4pp expert efforts ­10pp F1 improvement over SRL results ¯87.3pp expert efforts Latest: Filter à Select à Expert [Findings of EMNLP’20] A Novel Workflow for Accurately and Efficiently Crowdsourcing Predicate Senses and Argument Labels
  • 24.
    The Challenges 24 Models – Low-frequencyexceptions – Built for one task at a time Training Data – High quality labeled data is required but hard to obtain Meaning Representation – Different meaning representation • for different languages • for the same languages - Data: Auto-generation + crowd- in-the-loop [ACL’15, EMNLP’16, EMNLP’17, EMNLP’20 Findings] - Training: Cross-Lingual transfer [EMNLP’20 Findings] Unified Meaning Representation [ACL’15, ACL’16, ACL-DMR’19] – Instance-based learning [COLING’16] – Deep learning + instance-based learning [In Submission] – Human-machine co-creation [ACL’19, EMNLP’20] Our Research 24
  • 25.
    WhatsApp was boughtby Facebook Facebook hat WhatsApp gekauft Facebook a achété WhatsApp buy.01 Facebook WhatsApp Buyer Thing bought Cross-lingual representation Multilingual input text Buy.01 A0A1 Buy.01A1A0 Buy.01A0 A1 Cross-lingual Meaning Representation Cross-lingual extraction Task: Extract who bought what [NAACL’18] SystemT: Declarative Text Understanding for Enterprise [ACL’16] POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels [COLING’16] Multilingual Information Extraction with PolyglotIE
  • 26.
    Cross-lingual Transfer? Challenge: Low-resource languageslacks - Large monolingual labeled data - Parallel corpora Solution: Transfer knowledge and resources from rich resource language to low resource language EN DE YO . . .
  • 27.
    Multilingual or Polyglot Training MainIdea • Combine training data from multiple languages with multilingual word embeddings • Train a common encoder model to enable parameter sharing. Challenge Different languages have different annotations scheme EN DE YO . . .
  • 28.
    Different Annotations across Languages Observation: Certainargument labels do share common semantic meaning across languages. Intuition: Identify and exploit the commonalities between annotation of different languages. Know.01 A0: Knower A1: Thing known A2: A1 known about AM: Adjuncts Knnen.01 A0: Knower A1: Entity AM: Adjuncts
  • 29.
    Hypothesis Pair Matching: Identify argumentswith similar semantic meaning across languages and Source Manifold ZH-A0 A0 AM-TMP ZH-TMP Target Manifold 1 2 Argument Regularization Represent them close to each other in the feature space.
  • 30.
    The Framework Regularizer isapplied at parameters of the last layer of the model. .… .… .… .… .… .… .… .… .… .… .. .. .. Softmax .. .. .. .. .. .. .. .. .. .. BiLSTM BiLSTM BiLSTM BiLSTM Encoder Word Representations Fixed Sentence Representation vi<latexit sha1_base64="PUnq/hPkljd9ESWrB39UNwUjUEE=">AAAE5nicdVPLbhMxFHXbAGV4tSCxYWMxjcQiijIpFSwrihBsUJHSh5RJI4/HSax4HvIjyWD8C+wQW8QWPoBf4W/wPJQmk3Klka7OPec+x0HKqJCdzt+t7Z3Grdt3du869+4/ePhob//xuUgUx+QMJyzhlwEShNGYnEkqGblMOUFRwMhFMD3J4xczwgVN4p7MUjKI0DimI4qRtNBw7+mBL8lCFok0J6HRsyE1B8M9t9PuFAY3Ha9yXFDZ6XB/548fJlhFJJaYISH6XieVA424pJgR4/hKkBThKRqTvnVjFBEx0EVdA5sWCeEo4faLJSzQVYVGkRBZFFhmhORE1GM5eFOsr+To9UDTOFWSxLgsNFIMygTm24Ah5QRLllkHYU5trxBPEEdY2p2tZQpnNBVV14uy7bUuFiniYn1OLVGgWohzlLUixSTlybw15iidULyoqYX1SCsaUS6kwq1cyRDPWuUuZMBqmen08zoSJMnUqoRxHP8jmb+tbnGSRBGKQ+0XeWJlb6GE0RYlenhljG46EPoBGdN4zBOVljxGpMaK83JO3TYF68PoHDFFeu+06xkLQH397/Rdb6DdrqnjSwwWlay5h00oJwRWvZTgMrd2Xxo9XE2w0oeNGdOEQgXCHiuVG9ojo6/+pz2qtKm97LW6nIzEYTG9Y7fn+DGZ4+XaGA9M3862vkEd2FvGJl8EtPPVJfObJPMJlWQpWdf0jGUHCQvzvzxhsLfByGqMLC/LySpF1ShqkzKrUWaWYt+6V3/Zm855t+0dtrufuu7xm+rV74Jn4Dl4ATzwChyD9+AUnAEMvoCf4Bf43Zg0vja+Nb6X1O2tSvMErFnjxz+GMq5d</latexit> ui<latexit sha1_base64="SV6pSr2q35hT+K6jX2dqCFXuEGo=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ4rTaDyZJEPGD80jiRkN38AOsUVsYc2v8DdMbJPGTrmSpatzz7lPT5AwKmS7/Wdre6d24+at3dvOnbv37j+o7z08E7HimJzimMX8IkCCMBqRU0klIxcJJygMGDkPpsfL+PmMcEHjqCvThPRDNI7oiGIkLTSoP973JVnILJEOeDyPjFYDavYHdbfdamcGNx2vcFxQ2Mlgb+e3P4yxCkkkMUNC9Lx2IvsacUkxI8bxlSAJwlM0Jj3rRigkoq+zygY2LDKEo5jbL5IwQ9cVGoVCpGFgmSGSE1GNLcHrYj0lRy/7mkaJkiTCeaGRYlDGcLkPOKScYMlS6yDMqe0V4gniCEu7tVKm4Ywmouh6kbdd6mKRIC7Kc2qJAtVEnKO0GSomqV1wc8xRMqF4UVEL65FmOKJcSIWbSyVDPG3mu5ABq2Sm009lJIjjqVUJ4zj+ezJ/XdziOA5DFA21n+WJlL2FEkZblOjBpTG64UDoB2RMozGPVZLzGJEaK87zOXXLZKx3ozPEFOm+0a5nLAD11d/Tc72+djumiq8wmFWy5h40oJwQWPSSg6vc2n1u9GA9wVofNmZMAwoVCHusRG5oD42+/J/2sNAm9rJX6nwyEg2z6R27PcePyByv1sZ4YHp2tvIG/z0Wuwho56tK5tdJ5hMqyUpS1nSNZQcxGy7/8pjB7gYjrTDSZVlO1imqQlGblFmFMrMU+9a96svedM46Le+g1fnQcY9eFa9+FzwBT8Ez4IEX4Ai8BSfgFGDwGfwAP8Gv2sfal9rX2recur1VaB6BktW+/wX8W69d</latexit> <latexit sha1_base64="sWOp4y3+vzY+IXL+chq8peFGJow=">AAAE73icdVNJbxMxFHbbACVsKRw5YDGNxCFEmZQKjhVFCC6oSOkiZdLI43ESK54FL1mwfOQ3cENcEVeQ+Cv8GzyL0sykPMnS0/e+7/kttp8wKmSn83dre6d24+at3dv1O3fv3X/Q2Ht4JmLFMTnFMYv5hY8EYTQip5JKRi4STlDoM3LuT4/T+PmMcEHjqCeXCRmEaBzREcVIWmjYeLLvSbKQWSLtM0WMfu6dCAo9TDk2+8OG02l3MoObjls4DijsZLi388cLYqxCEknMkBB9t5PIgUZcUsyIqXtKkAThKRqTvnUjFBIx0FkBBjYtEsBRzO2JJMzQdYVGoRDL0LfMEMmJqMZS8LpYX8nRq4GmUaIkiXB+0UgxKGOYjgUGlBMs2dI6CHNqa4V4gjjC0g6vlCmY0UQUVS/ysktVLBLERblPLZGvWohztGyFiknK43lrzFEyoXhRUQvrkVY4olxIhVupkiG+bOWzkD6rZKbTz2XEj+OpVQlTr3sfyPxNsYvjOAxRFGgvyxMpuwsljLYo0cNLY3SzDqHnkzGNxjxWSc5jRGqsOM/71G2Tsd6PzpB9Kr232nGNBaC+ekR9xx1op2uq+AqD2U3WnIMmlBMCi1pycJVbOy+MHq4nWKvDxoxpQqF8YZeVyA3todGX/9MeFtrEbvZKnXdGoiDrvm6nV/ciMsersTHum77trTxB7dtdRiYdBLT9VSXz6yTzCZVkJSlresay/ZgF6SuPGextMJYVxjK9lpN1iqpQ1CZlVqHMLMX+dbf6szeds27bPWh3P3ado9fFr98Fj8FT8Ay44CU4Au/ACTgFGHwBP8Ev8Lv2qfa19q32PadubxWaR6BktR//AI/psbg=</latexit> +b<latexit sha1_base64="xTelgJN5oYRxTa8991wB9lSAa5w=">AAAE53icdVPLbhMxFHXbACW8WliwYGMxjYREFGVSKlhWFCHYoCKlDymTRrbjJFY8D/mRZLD8DewQW8QW9vwKf4MzM0ozk2LJ0tW559ynjRPOpGq3/25t79Ru3b6ze7d+7/6Dh4/29h+fy1gLQs9IzGNxiZGknEX0TDHF6WUiKAoxpxd4erL0X8yokCyOuipNaD9E44iNGEHKQYO9pweBoguVBTKYa2rNS4jtwWDPa7fa2YGbhl8YHijO6WB/508wjIkOaaQIR1L2/Hai+gYJxQinth5oSRNEpmhMe86MUEhl32SJLWw4ZAhHsXA3UjBD1xUGhVKmIXbMEKmJrPqW4E2+nlajN33DokQrGpE80UhzqGK4HAccMkGJ4qkzEBHM1QrJBAlElBtaKdJwxhJZVL3Iyy5VsUiQkOU+jUJYN5EQKG2Gmism4nlzLFAyYWRRUUtn0WY4YkIqTZpLJUcibeazUJhXIrPplzKC43jqVNLW68EnOn9X7OIkDkMUDU2QxYm024WW1jiUmsGVtaZRhzDAdMyisYh1kvM4VYZoIfI+TctmrI+jc+SeSPe98XzrAGiuH0/P8/vG69gqvsJglskd77AB1YTCopYcXMU23itrBusB1upwPmsbUGos3bIStaE9subqf9qjQpu4zV6r885oNMy6r7vp1YOIzslqbFxg23O9lSdosNtlZJeDgK6/qmR+k2Q+YYquJGVN1zo2jvlw+cpjDrsbjLTCSJdpBV2n6ApFb1JmFcrMUdxf96s/e9M477T8w1bnc8c7flv8+l3wDDwHL4APXoNj8AGcgjNAgAU/wS/wu8ZqX2vfat9z6vZWoXkCSqf24x8WR65D</latexit> w1<latexit sha1_base64="XqunA7ZMLIHdlA4ywRCiI90cTAs=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ4rTaDyZJEPGD80jiRkN38AOsUVsYc2v8DdMbJPGTrmSpatzz7lPT5AwKmS7/Wdre6d24+at3dvOnbv37j+o7z08E7HimJzimMX8IkCCMBqRU0klIxcJJygMGDkPpsfL+PmMcEHjqCvThPRDNI7oiGIkLTSoP973JVnILJEOeDyPjJ4PPLM/qLvtVjszuOl4heOCwk4Gezu//WGMVUgiiRkSoue1E9nXiEuKGTGOrwRJEJ6iMelZN0IhEX2dVTawYZEhHMXcfpGEGbqu0CgUIg0DywyRnIhqbAleF+spOXrZ1zRKlCQRzguNFIMyhst9wCHlBEuWWgdhTm2vEE8QR1jarZUyDWc0EUXXi7ztUheLBHFRnlNLFKgm4hylzVAxSe2Cm2OOkgnFi4paWI80wxHlQircXCoZ4mkz34UMWCUznX4qI0EcT61KGMfx35P56+IWx3EYomio/SxPpOwtlDDaokQPLo3RDQdCPyBjGo15rJKcx4jUWHGez6lbJmO9G50hpkj3jXY9YwGor/6enuv1tdsxVXyFwaySNfegAeWEwKKXHFzl1u5zowfrCdb6sDFjGlCoQNhjJXJDe2j05f+0h4U2sZe9UueTkWiYTe/Y7Tl+ROZ4tTbGA9Ozs5U3+O+x2EVAO19VMr9OMp9QSVaSsqZrLDuI2XD5l8cMdjcYaYWRLstysk5RFYrapMwqlJml2LfuVV/2pnPWaXkHrc6Hjnv0qnj1u+AJeAqeAQ+8AEfgLTgBpwCDz+AH+Al+1T7WvtS+1r7l1O2tQvMIlKz2/S8NYa8n</latexit> w2<latexit sha1_base64="m8LhNnvHy6BEbsZ2bRCfBKMuMVc=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ4rTaDyZJEPGD80jiRkN38AOsUVsYc2v8DdMbJPGTrmSpatzz7lPT5AwKmS7/Wdre6d24+at3dvOnbv37j+o7z08E7HimJzimMX8IkCCMBqRU0klIxcJJygMGDkPpsfL+PmMcEHjqCvThPRDNI7oiGIkLTSoP973JVnILJEOeDyPjJ4POmZ/UHfbrXZmcNPxCscFhZ0M9nZ++8MYq5BEEjMkRM9rJ7KvEZcUM2IcXwmSIDxFY9KzboRCIvo6q2xgwyJDOIq5/SIJM3RdoVEoRBoGlhkiORHV2BK8LtZTcvSyr2mUKEkinBcaKQZlDJf7gEPKCZYstQ7CnNpeIZ4gjrC0WytlGs5oIoquF3nbpS4WCeKiPKeWKFBNxDlKm6FiktoFN8ccJROKFxW1sB5phiPKhVS4uVQyxNNmvgsZsEpmOv1URoI4nlqVMI7jvyfz18UtjuMwRNFQ+1meSNlbKGG0RYkeXBqjGw6EfkDGNBrzWCU5jxGpseI8n1O3TMZ6NzpDTJHuG+16xgJQX/09Pdfra7djqvgKg1kla+5BA8oJgUUvObjKrd3nRg/WE6z1YWPGNKBQgbDHSuSG9tDoy/9pDwttYi97pc4nI9Ewm96x23P8iMzxam2MB6ZnZytv8N9jsYuAdr6qZH6dZD6hkqwkZU3XWHYQs+HyL48Z7G4w0gojXZblZJ2iKhS1SZlVKDNLsW/dq77sTees0/IOWp0PHffoVfHqd8ET8BQ8Ax54AY7AW3ACTgEGn8EP8BP8qn2sfal9rX3LqdtbheYRKFnt+18Rzq8o</latexit> wn<latexit sha1_base64="hURgb79n4ej3kCCEE9z8zawwLMw=">AAAE6HicdVPLbtNAFJ22AYp5pbBBYjPCjcQiiuKUCpYVRQg2qEjpQ0rSaDyZJEPGY2seScxo+AZ2iC1iC2t+hb9hYps0ccqVLF2de859esKEUamazT9b2zuVGzdv7d727ty9d/9Bde/hmYy1wOQUxywWFyGShFFOThVVjFwkgqAoZOQ8nBwv4udTIiSNeVulCelFaMTpkGKkHNSvPt7vKjJXWSITinjGrZn1ud3vV/1mo5kZ3HSCwvFBYSf9vZ3f3UGMdUS4wgxJ2QmaieoZJBTFjFivqyVJEJ6gEek4l6OIyJ7JKltYc8gADmPhPq5ghq4qDIqkTKPQMSOkxrIcW4DXxTpaDV/2DOWJVoTjvNBQM6hiuNgHHFBBsGKpcxAW1PUK8RgJhJXb2lqmwZQmsuh6nre91sU8QUKuz2kUCnUdCYHSeqSZom7B9ZFAyZjieUktnUfq0ZAKqTSuL5QMibSe70KFrJSZTj6tI2EcT5xKWs/rviez18UtjuMoQnxgulkert0ttLTGocT0L601NQ/CbkhGlI9ErJOcx4gyWAuRz2kaNmO9G54hpkn7jfED6wBorv6ejh/0jN+yZXyJwaySM/+gBtWYwKKXHFzmNv5za/qrCVb6cDFra1DqULpjJWpDe2jN5f+0h4U2cZe9UueTET7Ipvfc9rwuJzO8XBsToe242dY3+O+xuEVAN19ZMrtOMhtTRZaSdU3bOnYYs8HiL48ZbG8w0hIjXZQVZJWiSxS9SZmWKFNHcW89KL/sTees1QgOGq0PLf/oVfHqd8ET8BQ8AwF4AY7AW3ACTgEGn8EP8BP8qnysfKl8rXzLqdtbheYRWLPK978baa9k</latexit>
  • 31.
    CLAR Performance Dataset: CoNLL2009 Ouris SoTA - Average performance over all languages - 3 out of 5 non-English languages- General approach: - Independent of base model. - Independent of language. - Require no parallel data.
  • 32.
    The Challenges 32 Models – Low-frequencyexceptions – Built for one task at a time Training Data – High quality labeled data is required but hard to obtain Meaning Representation – Different meaning representation • for different languages • for the same languages - Data: Auto-generation + crowd- in-the-loop [ACL’15, EMNLP’16, EMNLP’17, EMNLP’20 Findings] - Training: Cross-Lingual transfer [EMNLP’20 Findings] Unified Meaning Representation [ACL’15, ACL’16, ACL-DMR’19] – Instance-based learning [COLING’16] – Deep learning + instance-based learning [In Submission] – Human-machine co-creation [ACL’19, EMNLP’20] Our Research 32
  • 33.
    Dependency Parsing Vs.SRL 75 80 85 90 95 100 WSJ BROWN SRL Depeendency Parsing
  • 34.
    What Makes SRLSo Difficult? Heavy-tailed distribution of class labels – Common frames • say.01 (8243), have.01 (2040), sell.01 (1009) – Many uncommon frames • swindle.01, feed.01, hum.01, toast.01 – Almost half of all frames seen fewer than 3 times in training data 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Distribution of frame labels Many low-frequency exceptions à Difficult to capture in models
  • 35.
    Low-Frequency Exceptions Strong correlationof syntactic function of an argument to its role Example: passive subject The window was broken by Dirk SBJ PMOD VC NMOD A1 The silver was sold by the man. SBJ PMOD VC NMOD A1 Creditors were told to hold off. SBJ ORPD VC IM PRT TELL.01 A0: speaker (agent) A1: utterance (topic) A2: hearer (recipient)
  • 36.
    86% of passive subjectsare labeled A1 (over 4.000x in training data) Local Bias 87% of passive subjects of Tell.01 are labeled A2 (53x in training data) Most Classifiers – Bag-of-features – Learn weights for features to classes – Perform generalization Question: How do we explicitly capture low-frequency exceptions?
  • 37.
    Instance-based Learning kNN:k-Nearest Neighbors classification Find the k most similar instances in training data Derive class label from nearest neighbors A0 A1 A1 A2 A1 A1 A1 A1 A1 A0 A0 A1 A0 A2 A2 A2 A2 A1 A2 ? 1 2 3 ndistance Creditors were told to hold off. SBJ ORPD VC IM PRT “creditor” passive subject of TELL.01 noun passive subject of TELL.01 COMPOSITE FEATURE DISTANCE 1 2 . . . . . . any passive subject of any agentive verb n ? Main idea: Back off to composite feature seen at least k times [COLING 2016] K-SRL: Instance-based Learning for Semantic Role Labeling
  • 38.
    Results In-domain Out-of-domain • Significantlyoutperform previous approaches – Especially on out-of-domain data • Small neighborhoods suffice (k=3) • Fast runtime ­1.4pp F1 In-Domain ­5.1pp F1 Out-of-Domain Latest results (improvement over SoAT. with DL + IL, in submission) [In Submission] Deep learning + Instance-based Learning [COLING 2016] K-SRL: Instance-based Learning for Semantic Role Labeling
  • 39.
    The Challenges 39 Models – Low-frequencyexceptions – Built for one task at a time Training Data – High quality labeled data is required but hard to obtain Meaning Representation – Different meaning representation • for different languages • for the same languages - Data: Auto-generation + crowd- in-the-loop [ACL’15, EMNLP’16, EMNLP’17, EMNLP’20 Findings] - Training: Cross-Lingual transfer [EMNLP’20 Findings] Unified Meaning Representation [ACL’15, ACL’16, ACL-DMR’19] – Instance-based learning [COLING’16] – Deep learning + instance-based learning [In Submission] – Human-machine co-creation [ACL’19, EMNLP’20] Our Research 39
  • 40.
    WhatsApp was boughtby Facebook Facebook hat WhatsApp gekauft Facebook a achété WhatsApp buy.01 Facebook WhatsApp Buyer Thing bought Cross-lingual representation Multilingual input text Buy.01 A0A1 Buy.01A1A0 Buy.01A0 A1 Crosslingual Information Extraction Sentence Verb Buyer Thing bought 1 buy.01 Facebook WhatsApp 2 buy.01 Facebook WhatsApp 3 buy.01 Facebook WhatsApp Crosslingual extraction Task: Extract who bought what [NAACL’18] SystemT: Declarative Text Understanding for Enterprise [ACL’16] POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels [COLING’16] Multilingual Information Extraction with PolyglotIE https://vimeo.com/180382223
  • 41.
    Transparent Linguistic Modelsfor Contract Understanding 41 [NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
  • 42.
    Transparent Model Design Purchaserwill purchase the Assets by a cash payment. Element Obligation for Purchaser [NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
  • 43.
    Transparent Model Design Purchaserwill purchase the Assets by a cash payment. Element [Purchaser]A0 [will]TENSE-FUTURE purchase [the Assets]A1 [by a cash payment]ARGM-MNR Core NLP Understanding Core NLP Primitives & Operators Provided by SystemT [ACL '10, NAACL ‘18] Semantic NLP Primitives [NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
  • 44.
    Transparent Model Design Purchaserwill purchase the Assets by a cash payment. Element Legal Domain LLEs [Purchaser]ARG0 [will]TENSE-FUTURE purchase [the Assets]ARG1 [by a cash payment]ARGM-MNR LLE1: PREDICATE ∈ DICT Business-Transaction ∧ TENSE = Future ∧ POLARITY = Positive → NATURE = Obligation ∧ PARTY = ARG0 LLE2: …........ Domain Specific Concepts Business transact. verbs in future tense with positive polarity Core NLP Primitives & Operators Semantic NLP Primitives [NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
  • 45.
    Transparent Model Design Purchaserwill purchase the Assets by a cash payment. Element Model Output [Purchaser]ARG0 [will]TENSE-FUTURE purchase [the Assets]ARG1 [by a cash payment]ARGM-MNR Obligation for Purchaser Nature/Party: Domain Specific Concepts Core NLP Primitives & Operators LLE1: PREDICATE ∈ DICT Business-Transaction ∧ TENSE = Future ∧ POLARITY = Positive → NATURE = Obligation ∧ PARTY = ARG0 LLE2: …........ Legal Domain LLEsSemantic NLP Primitives [NAACL-NLLP’19] Transparent Linguistic Models for Contract Understanding and Comparison https://www.ibm.com/cloud/compare-and-comply
  • 46.
    Human & MachineCo-Creation Labeled Data Evaluati on Results Productio n Deep Learning Learned Rules (Explainable) Modify Rules Machine performs heavy lifting to abstract out patterns Humans verify/ transparent model Evaluation & Deployment Raises the abstraction level for domain experts to interact with [EMNLP’20] Learning Explainable Linguistic Expressions with Neural Inductive Logic Programming for Sentence Classification
  • 47.
    Label being assigned Variousways of selecting/ranking ranking rules Center panel lists all rules HEIDL Demo Rule-specific performance metrics [ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
  • 48.
    HEIDL Demo Examples availableat the click of a button [ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
  • 49.
    Center panel listsall rules HEIDL Demo Playground mode allows adding and dropping of predicates from a rule [ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
  • 50.
    User Study: Human+Machine Co-CreatedModel Performance User study – 4 NLP Engineers with 1-2 year experience – 2 NLP experts with 10+ years experience Key Takeaways – Explanation of learned rrules: Visualization tool is very effective – Reduction in human labor: Co-created model created within 1.5 person-hrs outperforms black-box sentence classifier – Lower requirement on human expertise: Co-created model is at par with the model created by Super-Experts Ua Ub Uc Ud 0.0 0.1 0.2 0.3 0.4 0.5 0.6 F-measure RuleNN+Human BiLSTM [ACL’19] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
  • 51.
    Conclusion Research prototype Early adaption (EN) Cross-lingual adaptation •Watson products • Customer engagements • Research projects … • 10+ languages • SoAT models • Paper: 10+ publications • Patent: 6 patent filed • Data: ibm.biz/LanguageData • Code: Chinese SOUNDEX https://pypi.org/project/chinesesoundex-1.0/ • ongoing
  • 52.
    Thank You 52 Our collaboratorsin • Within IBM • Product: Watson NLP, Watson Discovery, Watson Health, CODAIT, … • Research: AURL, IBMRA, BRL, DRL, HRL, IRL, TRL, YKT, ZRL • Outside of IBM • Allen AI Institute • Humboldt University of Berlin • IIT-Bombay • NYU – Abu Dhabi • Sapienza U. of Rome • UCSD • UIUC • U. of Malta • U. of Maryland, College Park • U. of Michigan, Ann Arbor • U. of Washington • Vietnamese National U. • … Yunyao Li Huaiyu Zhu Kun Qian Nancy Wang Fred Reiss Yannis KatsisDoug Burdick Ban Kawas Lucian Popa Ishan JindalPritthvi Sen Marina DanilevskyKhoi-Nguyen Tran Sairam Gurajada Alexandre Evfimievski
  • 53.
    Thank You! 53 To learnmore: • Role of AI in Enterprise Application ( ibm.biz/RoleOfAI) Research Projects: • ibm.biz/ScalableKnowledgeIntelligence • ibm.biz/SystemT Data Sets: • ibm.biz/LanguageData Follow me: • LinkedIn: https://www.linkedin.com/in/yunyao-li/ • Twitter: @yunyao_li By now, you should be able to: – Identify challenges towards universal semantic understanding of natural languages – Understand current state-of-the-arts in addressing the challenges – Define general use cases for universal semantic understanding of natural languages