SlideShare a Scribd company logo
Topics	
  “Volatility”	
  
Helios	
  Padilla	
  Mayer	
  
February	
  22,	
  2012	
  
	
  
	
  
1.	
  (a)	
  	
  The	
  term	
  asymmetric	
  volatility	
  arises	
  from	
  observation	
  that	
  we	
  observe	
  higher	
  
volatilities	
  (higher	
  risk)	
  during	
  the	
  market	
  downturn	
  than	
  in	
  the	
  market	
  upturns.	
  The	
  
most	
   common	
   mentioned	
   factor	
   that	
   contributes	
   to	
   such	
   risk	
   behavior	
   is	
   increased	
  
market	
  leverage	
  that	
  was	
  produced	
  by	
  a	
  negative	
  shock;	
  however,	
  there	
  are	
  also	
  other	
  
factors,	
  such	
  as	
  perceived	
  risk/reward	
  balance	
  in	
  different	
  stages	
  of	
  market	
  behavior.	
  As	
  
explained	
  in	
  V-­‐‑Lab	
  documentation,	
  the	
  plain	
  GARCH	
  model1	
  cannot	
  take	
  into	
  account	
  the	
  
stronger	
  impact	
  of	
  negative	
  shocks	
  in	
  time	
  t-­‐‑1	
  on	
  the	
  variance	
  in	
  time	
  t	
  than	
  in	
  case	
  of	
  
positive	
  shocks	
  –	
  an	
  asymmetry	
  impact	
  of	
  negative	
  shock.	
  For	
  that	
  reason,	
  the	
  GARCH	
  
model	
  has	
  been	
  augmented	
  into	
  models	
  such	
  as	
  the	
  Threshold	
  GARCH	
  (TGARCH),	
  the	
  
Asymmetric	
   GARCH	
   (AGARCH)	
   and	
   the	
   Exponential	
   GARCH	
   (EGARCH).	
   The	
   V-­‐‑Lab	
  
documentation	
  and	
  the	
  task	
  in	
  this	
  exam	
  indicate	
  that	
  GJR	
  GARCH	
  should	
  be	
  used	
  to	
  
introduce	
  an	
  asymmetry	
  into	
  the	
  variance	
  analysis.	
  Thus,	
  my	
  answers	
  will	
  be	
  based	
  on	
  
the	
  use	
  of	
  the	
  GJR	
  GARCH	
  model.	
  2	
  I	
  also	
  assume	
  that	
  p=1,	
  q=1,	
  so	
  I	
  will	
  be	
  talking	
  about	
  
GJR	
  GARCH	
  (1,	
  1)	
  and	
  GARCH	
  (1,	
  1).	
  
	
  
We	
  assume	
  that	
  the	
  return	
  time	
  series	
  can	
  take	
  the	
  following	
  form:	
  
	
  
,	
  where	
   is	
  expected	
  return	
  and	
   is	
  the	
  white	
  noise,	
  zero-­‐‑mean	
  error	
  term.	
  	
  
The	
   assumption	
   is	
   that	
   is	
   serially	
   uncorrelated,	
   but	
   not	
   necessarily	
   serially	
  
independent	
   –	
   it	
   can	
   present	
   a	
   conditional	
   heteroskedasticity,	
   which	
   is	
   taken	
   into	
  
consideration	
  by	
  GJR	
  GARCH	
  model.	
  Error	
  term	
  is	
  then	
  split	
  into	
  a	
  stochastic	
  component	
  
( )	
  and	
  time-­‐‑dependent	
  standard	
  deviation	
  ( ):	
  
	
  
,	
   where	
   is	
   assumed	
   to	
   be	
   drawn	
   from	
   Gaussian	
   distribution	
   and	
   i.i.d.	
  
(mean=0,	
  variance	
  =	
  1).	
  The	
  variance	
  is	
  then	
  formulated	
  as:	
  
	
  
,	
   	
   	
  	
   	
   (1)	
  
	
  
where	
  
	
  
	
  
	
  
	
  
So,	
  GJR	
  GARCH	
  models	
  asymmetry	
  in	
  the	
  ARCH	
  model	
  and	
  as	
  the	
  basic	
  ARCH	
  includes	
  
(a)	
  the	
  error	
  term,	
  	
  (b)	
  a	
  conditional	
  variance	
  (which	
  brings	
  ARCH	
  model	
  to	
  GARCH),	
  
plus	
   (c)	
   innovation	
   term,	
   which	
   for	
   asymmetry:	
   negative	
   shocks	
   in	
   time	
   t-­‐‑1	
   have	
  
stronger	
  impact	
  on	
  variance	
  than	
  positive	
  shocks.	
  Therefore	
  the	
  term	
   	
  takes	
  value	
  of	
  
1
GARCH stands for general autoregressive (meaning that past observations are incorporated into the
present situation) conditional (variance is conditioned on time) heteroskedascticity (a time-varying
variance).
2
I am also using a formulation of GJR GARCH consistent with VLAB in order to be able to interpret
results correctly.
ttr eµ += µ te
te
tz ts
ttt zse = tz
2
1
2
11
2
)( --- +++= tttt I bsegaws
þ
ý
ü
î
í
ì
á
³
=-
µ
µ
1-­‐t
1-­‐t
rif          
rif        
1
0
1tI
1-tI
1,	
  when	
  returns	
  in	
  time	
  t-­‐‑1	
  are	
  lower	
  than	
  expected	
  return	
  and	
  value	
  0	
  when	
  returns	
  in	
  
time	
  t-­‐‑1	
  are	
  higher	
  than	
  expected	
  return.	
  	
  As	
  explained	
  in	
  VLAB,	
  the	
  effective	
  coefficient	
  
associated	
  with	
  a	
  negative	
  shock	
  is	
  α+γ.	
  In	
  financial	
  time	
  series,	
  we	
  generally	
  find	
  that	
  γ	
  
is	
  statistically	
  significant.	
  	
  
The	
   estimate	
   of	
   the	
   coefficients	
   is	
   performed	
   through	
   V-­‐‑Lab	
   simultaneously	
   by	
  
maximizing	
  the	
  log	
  likelihood	
  (MLE).	
  GJR	
  GARCH	
  also	
  captures	
  the	
  volatility	
  clustering:	
  
if	
  volatility	
  was	
  high	
  at	
  time	
  t-­‐‑1,	
  it	
  will	
  also	
  be	
  high	
  at	
  time	
  t.	
  Alternatively,	
  the	
  shock	
  at	
  
time	
   t-­‐‑1	
   will	
   also	
   impact	
   variance	
   at	
   time	
   t.	
   There	
   are	
   the	
   following	
   constraints	
   on	
  
coefficients:	
  
,	
   , , .	
  
If	
  also	
   	
  is	
  true,	
  the	
  volatility	
  is	
  mean	
  reverting	
  and	
  fluctuates	
  around .	
  If	
  this	
  
is	
  true,	
  then	
  we	
  can	
  write	
  down	
  the	
  unconditional	
  variance	
  as	
  	
  
	
   	
   (2)	
  
	
  In	
  our	
  case,	
  we	
  observe	
  a	
  Carnival	
  Corp	
  volatility	
  data	
  range	
  from	
  02/21/2010	
  to	
  
02/21/2012.	
  The	
  annual	
  GJR-­‐‑GARCH	
  volatility	
  is	
  plotted	
  below,	
  along	
  with	
  the	
  volatility	
  
summary	
  table	
  and	
  estimated	
  parameters.	
  
1-­‐‑year	
  volatility	
  prediction	
  with	
  the	
  GJR-­‐‑GARCH	
  model	
  
	
  
	
  
	
  
Volatility	
  summary	
  table	
  	
  
	
  
Price	
   30.74	
   Return	
   -­‐‑0.75	
   1	
  Week	
  Pred:	
   42.9	
  
Avg	
  Week	
  Vol:	
   43.84	
   Avg	
  Month	
  Vol:	
   49.89	
   1	
  Month	
  Pred:	
   43.5	
  
Min	
  Vol:	
   16.32	
   Max	
  Vol:	
   189.91	
   6	
  Months	
  Pred:	
   47.2	
  
Avg	
  Vol:	
   39.57	
   Vol	
  of	
  Vol:	
   45.17	
   1	
  Year	
  Pred:	
   50.8	
  
	
  
0³w 0³a 0³b 0³+ga
1
2
á++ b
g
a s
)var(
2
1
2
tr=
---
=
b
g
a
w
s
 
Parameter	
  Estimates	
  
	
   Parameter	
   t-­‐‑stat	
  
	
   0.03981	
   8.693	
  
	
   0.01802	
   6.273	
  
	
   0.94189	
   393.603	
  
	
   0.07686	
   19.875	
  
	
  
t-­‐‑stat	
  for	
  estimated	
  parameters	
  shows	
  that	
  all	
  estimates	
  are	
  statistically	
  significant	
  at	
  
1%;	
  thus,	
  all	
  restrictions	
  on	
  coefficients	
  are	
  fulfilled	
  and	
  the	
  process	
  does	
  follow	
  GJR-­‐‑	
  
GARCH	
  model.	
  The	
  Corp	
  Carnival	
  GJR-­‐‑GARCH	
  model	
  can	
  be	
  then	
  written	
  as:	
  
	
  
	
   	
   (3)	
  
	
  
A	
  constant	
  in	
  the	
  model	
  shows	
  that	
  if	
  the	
  error	
  term	
  and	
  variance	
  in	
  time	
  t-­‐‑1	
  were	
  0	
  and	
  
returns	
  in	
  time	
  t-­‐‑1	
  are	
  higher	
  than	
  expected	
  return,	
  the	
  variance	
  for	
  Corp	
  Carnival	
  would	
  
be	
  0.03981.	
  Secondly,	
  a	
  1%	
  change	
  in	
  variance	
  in	
  time	
  t-­‐‑1	
  would	
  increase	
  variance	
  in	
  
time	
  t	
  by	
  0.94189%.	
  Third,	
  a	
  1%	
  negative	
  shock	
  on	
  returns	
  in	
  time	
  t-­‐‑1	
  would	
  impact	
  
variance	
  in	
  time	
  t	
  by	
  (0.01802+0.07686=)	
  0.09488	
  %.	
  
	
  
As ,	
   volatility	
   is	
   mean	
   reverting	
   and	
   unconditional	
   variance,	
  
=23.98193.	
  
	
  
	
  (b)	
  Below	
  I	
  plot	
  volatilities	
  over	
  the	
  last	
  3	
  months	
  for	
  GARCH	
  and	
  GJR-­‐‑GARCH	
  models.	
  
Given	
   the	
   definition	
   of	
   GJR-­‐‑GARCH	
   model,	
   asymmetric	
   impact	
   of	
   negative	
   shock	
   is	
  
captured	
  (unlike	
  in	
  GARCH	
  model)	
  and	
  therefore	
  the	
  volatility	
  prediction	
  on	
  the	
  basis	
  of	
  
GJR-­‐‑GARCH	
  model	
  is	
  bigger	
  than	
  volatility	
  prediction	
  on	
  the	
  basis	
  of	
  on	
  GARCH	
  model.	
  
This	
  is	
  specifically	
  noticed	
   in	
   the	
   case	
  of	
  the	
  biggest	
  negative	
   shock	
  in	
   returns	
  on	
  14	
  
January,	
  2012.	
  The	
  immediate	
  spike	
  in	
  volatility	
  after	
  this	
  date	
  is	
  significantly	
  higher	
  for	
  
GJR-­‐‑GARCH	
  than	
  for	
  GARCH	
  model.	
  	
  
	
  
3-­‐‑month	
  volatility	
  prediction	
  with	
  the	
  GARCH	
  model	
  
	
  
	
  
w
a
b
g
2
1
2
11
2
94189.0)07686.001802.0(03981.0 --- +++= tttt I ses
199834.0
2
á=++ b
g
a
)var( tr
 
Volatility	
  summary	
  table	
  	
  
	
  
Price	
   30.74	
   Return	
   -­‐‑0.75	
   1	
  Week	
  Pred:	
   40.19	
  
Avg	
  Week	
  Vol:	
   40.66	
   Avg	
  Month	
  Vol:	
   43.23	
   1	
  Month	
  Pred:	
   40.38	
  
Min	
  Vol:	
   17.33	
   Max	
  Vol:	
   107.53	
   6	
  Months	
  Pred:	
   41.68	
  
Avg	
  Vol:	
   38.77	
   Vol	
  of	
  Vol:	
   36.61	
   1	
  Year	
  Pred:	
   43.04	
  
	
  
Parameter	
  Estimates	
  
	
   Parameter	
   t-­‐‑stat	
  
	
   0.01141	
   6.306	
  
	
   0.02821	
   18.816	
  
	
   0.97128	
   906.887	
  
	
  
	
  
3-­‐‑month	
  volatility	
  prediction	
  with	
  the	
  GJR-­‐‑GARCH	
  Model	
  
	
  
	
  
Volatility	
  summary	
  table	
  	
  
	
  
Price	
   30.74	
   Return	
   -­‐‑0.75	
   1	
  Week	
  Pred:	
   42.9	
  
Avg	
  Week	
  Vol:	
   43.84	
   Avg	
  Month	
  Vol:	
   49.89	
   1	
  Month	
  Pred:	
   43.5	
  
Min	
  Vol:	
   16.32	
   Max	
  Vol:	
   189.91	
   6	
  Months	
  Pred:	
   47.2	
  
Avg	
  Vol:	
   39.57	
   Vol	
  of	
  Vol:	
   45.17	
   1	
  Year	
  Pred:	
   50.8	
  
	
  
Parameter	
  Estimates	
  
	
   Parameter	
   t-­‐‑stat	
  
	
   0.03981	
   8.693	
  
	
   0.01802	
   6.273	
  
	
   0.94189	
   393.603	
  
	
   0.07686	
   19.875	
  
	
  
	
  
	
  
(c)	
  In	
  both	
  cases,	
  when	
  volatility	
  is	
  estimated	
  with	
  GARCH	
  of	
  with	
  GJR-­‐‑GARCH	
  models,	
  
volatility	
   predications	
   are	
   higher	
   over	
   the	
   long-­‐‑term	
   horizon	
   (1	
   year)	
   than	
   over	
   the	
  
w
a
b
w
a
b
g
short-­‐‑term	
   horizon	
   (1	
   week)	
   –	
   see	
   plots	
   from	
   V-­‐‑Lab	
   below.	
   	
   When	
   we	
   take	
   into	
  
consideration	
  longer	
  horizons,	
  we	
  implicitly	
  “tag	
  along”	
  t-­‐‑k	
  period	
  impacts	
  for	
  a	
  larger	
  
number	
  of	
  k.	
  For	
  example,	
  if	
  we	
  observe	
  1	
  week	
  data,	
  we	
  would	
  be	
  considering	
  5	
  lagged	
  
period	
   effects.	
   When	
   we	
   observe	
   1	
   year	
   data,	
   we	
   would	
   be	
   considering	
   250	
   lagged	
  
period	
   effects.	
   The	
   volatility	
   impact	
   is	
   therefore	
   multiplying	
   through	
   periods	
   and	
  
therefore	
  longer-­‐‑term	
  forecasts	
  result	
  in	
  higher	
  volatilities	
  than	
  short-­‐‑term	
  forecasts.	
  	
  
	
  
	
  	
  	
  
	
  
Annualized	
  Volatility	
  Predictions	
  with	
  the	
  GARCH	
  Model	
  
	
  
	
  
	
  
Annualized	
  Volatility	
  Predictions	
  with	
  the	
  GJR-­‐‑GARCH	
  Model	
  
	
  
	
  
2.	
  The	
  VIX	
  index	
  measures	
  the	
  short-­‐‑term	
  implied	
  volatility	
  of	
  the	
  S&P	
  500	
  index	
  and	
  
has	
  become	
  a	
  benchmark	
  for	
  volatility	
  in	
  equity	
  markets.	
  	
  Volatility	
  is	
  calculated	
  as	
  s	
  
standard	
  deviation	
  of	
  returns.	
  However,	
  if	
  we	
  want	
  to	
  talk	
  about	
  the	
  implied	
  or	
  realized	
  
volatility	
  of	
  VIX,	
  we	
  actually	
  talk	
  about	
  the	
  volatility	
  of	
  volatility.	
  	
  Volatility	
  of	
  volatility	
  
calculated	
  as	
  the	
  standard	
  deviation	
  of	
  the	
  percentage	
  change	
  in	
  VIX	
  volatility	
  and	
  it	
  tells	
  
us	
  how	
  fast	
  volatility	
  changes.	
  
Prior	
  and	
  during	
  the	
  financial	
  crisis,	
  the	
  standard	
  risk	
  measures,	
  such	
  as	
  VaR,	
  
were	
   based	
   on	
   short-­‐‑term	
   risk	
   measurements	
   –	
   1	
   to	
   10	
   day	
   horizons.	
   However,	
  
investors	
   normally	
   hold	
   their	
   positions	
   for	
   a	
   longer	
   period	
   of	
   time	
   than	
   10	
   days.	
   As	
  
short-­‐‑term	
  risk	
  measures	
  during	
  the	
  low	
  risk	
  environment	
  did	
  not	
  alert	
  to	
  any	
  possible	
  
increase	
   in	
   risk,	
   everyone	
   was	
   confidents	
   that	
   their	
   long-­‐‑term	
   positions	
   are	
   safe	
   by	
  
accepting	
  short-­‐‑term	
  risk	
  assessment.	
  However,	
  none	
  actually	
  considered	
  the	
  possibility	
  
(and	
  velocity)	
  of	
  change	
  in	
  risk	
  and	
  volatility	
  of	
  markets.	
  	
  
During	
   the	
   low	
   risk,	
   low	
   volatility	
   and	
   low	
   interest	
   period,	
   everyone	
   tried	
   to	
  
increase	
   their	
   leverage	
   on	
   the	
   back	
   of	
   cheap	
   assets,	
   attractive	
   structured	
   products	
  
offered	
  and	
  a	
  variety	
  of	
  insurance	
  instruments	
  available	
  to	
  insure	
  against	
  any	
  possible	
  
risk	
  event.	
  	
  
The	
   problem	
   arose	
   when	
   market	
   volatility	
   started	
   increasing,	
   investors	
   were	
  
holding	
  now	
  highly	
  risky	
  positions	
  that	
  they	
  were	
  able	
  to	
  sell	
  only	
  at	
  deep	
  discounts,	
  
insurers	
  were	
  not	
  capitalized	
  enough	
  to	
  provide	
  payouts.	
  Thus,	
  the	
  major	
  problem	
  was	
  
that	
  future	
  volatility	
  (which	
  was	
  observed	
  through	
  the	
  VoV	
  chart)	
  was	
  not	
  incorporated	
  
at	
  all	
  in	
  risk	
  assessment	
  models	
  and	
  none	
  was	
  prepared	
  for	
  what	
  came	
  forward.	
  
	
   Short-­‐‑term	
  risk	
  assessment	
  models	
  produce	
  short-­‐‑term	
  results	
  and	
  observations.	
  
If	
  one	
  compares	
  10-­‐‑day,	
  30-­‐‑day,	
  60-­‐‑day	
  or	
  1-­‐‑year	
  volatility	
  index	
  (VIX)	
  and	
  its	
  implied	
  
volatility,	
   short-­‐‑term	
   volatilities	
   will	
   be	
   lower	
   than	
   long-­‐‑term	
   volatilities.	
   The	
   reason	
  
behind	
  this	
  is	
  that	
  long-­‐‑term	
  volatility	
  depends	
  on	
  macroeconomic	
  policies	
  (monetary,	
  
fiscal,	
  balance	
  of	
  payments)	
  and	
  success	
  of	
  their	
  implementation.	
  If	
  investors	
  are	
  aware	
  
that	
  long-­‐‑term	
  volatility	
  is	
  higher	
  than	
  the	
  short-­‐‑term,	
  they	
  can	
  decide	
  to	
  either	
  engage	
  
in	
   short-­‐‑term	
   investments	
   that	
   are	
   less	
   volatile	
   and	
   accept	
   lower	
   returns,	
   or	
   try	
   to	
  
incorporate	
   higher	
   long-­‐‑term	
   volatility	
   in	
   their	
   expected	
   returns.	
   Alternatively,	
   long-­‐‑
term	
  investments	
  with	
  higher	
  volatility	
  can	
  be	
  also	
  hedged	
  with	
  proper	
  instruments	
  that	
  
would	
   sufficiently	
   account	
   for	
   higher	
   volatility	
   in	
   the	
   future.	
   Long-­‐‑term	
   investments	
  
represent	
   higher	
   volatility	
   because	
   at	
   the	
   time	
   of	
   investment	
   decision	
   it	
   is	
   not	
   clear	
  
whether	
   policymakers	
   will	
   be	
   successful	
   at	
   mitigating	
   future	
   risks	
   (for	
   example,	
   a	
  
probability	
  of	
  Greek	
  default,	
  global	
  economic	
  slowdown,	
  Iran’s	
  nuclear	
  policy	
  impact	
  on	
  
oil	
   supply,	
   etc..).	
   Furthermore,	
   new	
   macroeconomic	
   risks	
   will	
   arise	
   during	
   the	
  
investment	
  period	
  and	
  more	
  uncertainties	
  will	
  have	
  to	
  be	
  taken	
  into	
  consideration.	
  
	
  
3.	
  Correlation	
  is	
  a	
  measure	
  of	
  relation	
  between	
  two	
  variables	
  or	
  series.	
  If	
  variables	
  are	
  
moving	
  in	
  the	
  same	
  direction,	
  correlation	
  is	
  positive	
  (up	
  to	
  +1,	
  which	
  indicates	
  perfect	
  
positive	
   correlation).	
   When	
   variables	
  are	
   moving	
  in	
   opposite	
  direction,	
   correlation	
   is	
  
negative	
  (up	
  to	
  -­‐‑1,	
  which	
  means	
  perfect	
  negative	
  correlation).	
  
	
  
Engel	
  (2000)	
  defines	
  unconditional	
  correlation	
  between	
  two	
  variables	
  r1	
  and	
  r2,	
  each	
  
with	
  mean	
  zero	
  as	
  	
  
,	
   	
   	
   	
   (1)	
  
	
  
Where	
  is	
   	
  covariance	
  between	
  variables	
  r1	
  and	
  r2,	
  and	
   	
  and	
   	
  is	
  variance	
  
of	
  r1	
  and	
  r2,	
  respectively.	
  This	
  formula	
  does	
  not	
  include	
  time	
  component	
  and	
  therefore	
  it	
  
is	
  assumed	
  that	
  correlation	
  is	
  not	
  based	
  on	
  information	
  known	
  from	
  previous	
  periods.	
  	
  
	
  
However,	
  we	
  know	
  that	
  correlations	
  are	
  sensitive	
  to	
  time.	
  This	
  time	
  sensitivity	
  is	
  taken	
  
into	
  consideration	
  in	
  conditional	
  correlation,	
  where	
  both	
  covariances	
  and	
  variances	
  are	
  
based	
  on	
  information	
  known	
  the	
  previous	
  period:	
  
	
  
	
   	
   	
   (2)	
  
In	
  his	
  work,	
  Engle	
  (2000)	
  also	
  shows	
  that	
  conditional	
  correlation	
  can	
  be	
  interpreted	
  as	
  
conditional	
  covariance	
  between	
  standardized	
  disturbances.	
  For	
  that	
  reason,	
  he	
  writes	
  
the	
   returns	
   ( )	
   as	
   the	
   conditional	
   standard	
   deviation	
   times	
   the	
   standardized	
  
disturbance	
  ( ),	
  with	
  mean	
  zero	
  and	
  variance	
  1:	
  
	
  
and	
   	
   	
   (3)	
  
	
  
If	
  we	
  substitute	
  (3)	
  into	
  (2),	
  we	
  get	
  
	
  
	
   	
   (4)	
  
	
  
There	
  are	
  many	
  ways	
  to	
  estimate	
  conditional	
  correlations	
  and	
  I	
  will	
  describe	
  two	
  based	
  
on	
  multivariate	
  GARCH	
  models.	
  GARCH	
  models	
  assume	
  that	
  volatilities	
  are	
  correlations	
  
are	
  functions	
  of	
  lagged	
  returns.	
  Bollerslev	
  (1990)	
  specified	
  the	
  constant	
   conditional	
  
)()(
)(
2
2
2
1
21
2,1
rErE
rrE
=r
)( 21rrE )( 2
1rE )( 2
2rE
)()(
)(
2
,2
2
,11
,2,11
,2,1
ttt
ttt
t
rErE
rrE
-
-
=r
tih ,
ti,e
)( 2
,1, titti rEh -= 2,1,,,, == ihr tititi e
)(
)()(
)(
,3,11
2
,2
2
,11
,2,11
,2,1 ttt
ttt
ttt
t E
EE
E
ee
ee
ee
r -
-
-
==
correlation	
  (CCC)	
  multivariate	
  GARCH	
  specification,	
  where	
  conditional	
  covariances	
  
and	
  variances	
  are	
  time-­‐‑varying,	
  but	
  conditional	
   correlations	
  are	
   constant.	
   Conditional	
  
variances	
  are	
  modelled	
  by	
  univariate	
  GARCH	
  models	
  and	
  correlation	
  matrix	
  is	
  estimated	
  
by	
   MLE.	
   The	
   assumption	
   of	
   constant	
   correlations	
   allows	
   for	
   comparison	
   between	
  
periods.	
   The	
   model	
   is	
   described	
   as	
   follows.	
   The	
   multivariate	
   GARCH	
   assumes	
   that	
  
distribution	
  of	
  returns	
  (rt)	
  from	
  n	
  assets	
  has	
  mean	
  zero	
  and	
  covariance	
  matrix	
  Ht	
  (Engle,	
  
Sheppard,	
  2001):	
  
	
  
,	
  	
   	
   	
   	
   	
   (5)	
  
	
  
where	
  	
  
,	
  
	
  
and	
  	
  
	
  
	
  
Conditional	
  covariance	
  matrix	
  Ht	
  is	
  then	
  decomposed	
  into	
  nxn	
  Rt	
  matrix	
  m	
  where	
  	
  
	
  
	
  	
   	
   	
   	
   (6)	
  
	
  
and	
   D	
   is	
   conditional	
   correlation	
   matrix	
   with	
   constant	
   correlations,	
   = ;	
   ,	
  
where	
   ,	
  i=1,	
  …N.	
  Thus,	
  the	
  time	
  variation	
  in	
  covariance	
  matrix	
  Ht	
  is	
  then	
  explained	
  
only	
  by	
  time-­‐‑varying	
  conditional	
  variances	
  for	
  all	
  rt.	
  	
  	
  
	
  
The	
  off-­‐‑diagonal	
  elements	
  of	
  the	
  conditional	
  covariance	
  matrix	
  can	
  be	
  then	
  written	
  as	
  
(Silvennoinen,	
  Terasvirta,	
  2008)	
  
	
  
,	
   	
  and	
   	
   (7)	
  
	
  
While	
  the	
  advantage	
  of	
  this	
  model	
  is	
  that	
  is	
  easy	
  to	
  estimate	
  (we	
  only	
  need	
  non	
  linear	
  n	
  
estimates	
  of	
  univariate	
  GARCH	
  models),	
  the	
  problem	
  is	
  that	
  correlations	
  are	
  not	
  always	
  
constant.	
   Engle	
   (2000,	
   2001)	
   therefore	
   suggested	
   an	
   alternative	
   estimation	
   of	
  
conditional	
   correlations	
   with	
   dynamic	
   conditional	
   correlation	
   (DCC)	
   multivariate	
  
GARCH	
   specification,	
   which	
   is	
   derived	
   from	
   Bollerslev’s	
   CCC	
   model,	
   but	
   allows	
   for	
  
conditional	
  correlations	
  to	
  be	
  time-­‐‑varying.	
  	
  The	
  conditional	
  covariance	
  matrix	
  is	
  then	
  
written	
  as	
  	
  
	
  
	
   	
   	
   	
   	
   (8)	
  
	
  
	
  
Conditional	
  correlations	
  are	
  then	
  estimated	
  on	
  the	
  basis	
  of	
  exponential	
  smoothing:	
  
	
  
,	
   (9)	
  
	
  
where	
  smoothing	
  is	
  introduced	
  through	
  
	
  
),0( tt HNr »
ttt DRRH =
[ ]ijtt hH =
{ }tit hdiagR ,=
ijtr ijr [ ]ijD r=
1=iir
[ ] ijjtitijt hhH r= ji ¹ Nji ££ ,1
tttt RDRH =
[ ] jit
stj
s
s
sti
s
s
s
stjsti
s
tji R ,
2
,
1
2
,
1
1
,,
,, =
÷
÷
ø
ö
ç
ç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
=
-
¥
=
-
¥
=
¥
=
--
åå
å
elel
eel
r
 
	
   	
   (10)	
  
	
  
and	
  the	
  conditional	
  correlation	
  estimator	
  is	
  then	
  	
  
	
  
	
   	
   	
   	
   (11)	
  
	
  
	
  
	
  
This	
  process	
  can	
  be	
  estimated	
  by	
  using	
  GARCH	
  (1,	
  1)	
  model:	
  
	
  
	
   (12)	
  
	
  
	
  
The	
  unconditional	
  expectation	
  for	
  the	
  cross	
  product	
  is	
   	
  and	
  for	
  variances, .	
  The	
  
conditional	
  correlation	
  estimator	
  is	
  written	
  as	
  in	
  (11).	
  The	
  model	
  is	
  mean-­‐‑reverting	
  as	
  
long	
  as ,	
  however,	
  when	
  the	
  sum	
  equals	
  to	
  1,	
  the	
  model	
  is	
  as	
  explained	
  in	
  (10)	
  and	
  
(11).	
  	
  
	
  
	
  
Reference:	
  
	
  
Asai	
  Manabu	
  and	
  Michael	
  McAleer,	
  2005,	
  “Dynamic	
  Correlations	
  in	
  Symmetric	
  Multivariate	
  SV	
  
Models”,	
   in:	
   MODSIM	
   2005	
   International	
   Congress	
   on	
   Modelling	
   and	
   Simulation.	
   Modelling	
   and	
  
Simulation	
  Society	
  of	
  Australia	
  and	
  New	
  Zealand,	
  Zerger	
  A.	
  and	
  Argent	
  R.,	
  eds.	
  
	
  
Bollerslev,	
   Tim,	
   1990,	
   “Modelling	
   the	
   Coherence	
   in	
   Short-­‐‑Run	
   Nominal	
   Exchange	
   Rates:	
   A	
  
Multivariate	
   Generalized	
   ARCH	
   Model,”	
   The	
   Review	
   of	
   Economics	
   and	
   Statistics	
  
Vol.	
  72,	
  No.	
  3	
  (Aug.,	
  1990),	
  pp.	
  498-­‐‑505.	
  	
  
	
  	
  
Engle,	
  Robert	
  F	
  ,	
  2000,	
  “Dynamic	
  Conditional	
  Correlation	
  –A	
  Simple	
  Class	
  Of	
  Multivariate	
  Garch	
  
Models,”	
  July	
  1999	
  (revised	
  May	
  2000),	
  a	
  research	
  supported	
  by	
  NSF	
  grant	
  SBR-­‐‑9730062	
  and	
  
NBER,	
  27	
  pp.	
  
	
  
Engle,	
  Robert,	
  2001,	
  “GARCH	
  101:	
  The	
  Use	
  of	
  ARCH/GARCH	
  Models	
  in	
  Applied	
  Econometrics,”	
  
Journal	
  of	
  Economic	
  Perspectives,	
  Vol.	
  15,	
  No.	
  4	
  (Fall	
  2001),	
  pp.	
  157–168.	
  
	
  
Engle,	
  Robert	
  F.	
  and	
  Kevin	
  Sheppard,	
  2001,	
  “Theoretical	
  and	
  Empirical	
  properties	
  of	
  Dynamic	
  
Conditional	
  Correlation	
  Multivariate	
  GARCH”,	
  2001,	
  46	
  pp.	
  
	
  
Hafner,	
   Christian	
   M.	
   and	
   	
   Philip	
   Hans	
   Franses,	
   2009,	
   “A	
   Generalized	
   Dynamic	
   Conditional	
  
Correlation	
   Model:	
   Simulation	
   And	
   Application	
   To	
   Many	
   Assets”,	
   Institute	
   de	
   Statistique,	
  
Universite	
  Catholique	
  de	
  Louvain,	
  Workin	
  Paper	
  0904,	
  	
  January	
  14,	
  2009,	
  25	
  pp.	
  
	
  
Silvennoinen,	
  Annasvinna,	
  and	
  Timo	
  Terasvirta,	
  2008,	
  “Multivariate	
  GARCH	
  Models,	
  ”	
  SSE/EFI	
  
Working	
  Paper	
  Series	
  in	
  Economic	
  and	
  Finance,	
  January	
  2008,	
  No.	
  669,	
  25	
  pp.	
  
( )( ) ( )1,,1,1,,, 1 --- +-= tjitjtitji qq leel
tjjtii
tji
tji
qq
q
,,
,,
,, =r
( ) stjsti
s
s
jijitjijitijitji qq --
¥
=
-- å+÷÷
ø
ö
çç
è
æ
-
--
=-+-+= ,,
1
,,1,,,1,,,,
1
1
() eeba
b
ba
rrbrear
r 1, =jir
1á+ ba

More Related Content

Similar to Topics Volatility

Stochastic Vol Forecasting
Stochastic Vol ForecastingStochastic Vol Forecasting
Stochastic Vol Forecasting
Swati Mital
 
HW2_Joanne&Yeqi&Danlin
HW2_Joanne&Yeqi&DanlinHW2_Joanne&Yeqi&Danlin
HW2_Joanne&Yeqi&Danlin
Juan Du
 
Crude Oil Levy
Crude Oil LevyCrude Oil Levy
Crude Oil Levy
Murat Gencer
 
Holtwinters terakhir lengkap
Holtwinters terakhir lengkapHoltwinters terakhir lengkap
Holtwinters terakhir lengkap
Zulyy Astutik
 
Test of Random Walk Hypothesis: Before & After the 2007-09 Crisis
Test of Random Walk Hypothesis: Before & After the 2007-09 CrisisTest of Random Walk Hypothesis: Before & After the 2007-09 Crisis
Test of Random Walk Hypothesis: Before & After the 2007-09 Crisis
Gabriel Koh
 
LFM Pedersen Calibration - Cappelli
LFM Pedersen Calibration - CappelliLFM Pedersen Calibration - Cappelli
LFM Pedersen Calibration - Cappelli
Joel Cappelli
 
Garch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REITGarch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REIT
IJERDJOURNAL
 
Financial econometrics xiii garch
Financial econometrics   xiii garchFinancial econometrics   xiii garch
Financial econometrics xiii garch
Mohamed Imtiyaz
 
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In..."Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
Quantopian
 
Vasicek Model Project
Vasicek Model ProjectVasicek Model Project
Vasicek Model Project
Cedric Melhy
 
Loss Forecastiing_A sequential approach
Loss Forecastiing_A sequential approachLoss Forecastiing_A sequential approach
Loss Forecastiing_A sequential approach
Alexander Levine
 
20120140503019
2012014050301920120140503019
20120140503019
IAEME Publication
 
Bitcoin volatility
Bitcoin volatilityBitcoin volatility
Bitcoin volatility
Lydia Njeri
 
Volatility trading
Volatility tradingVolatility trading
Volatility trading
Chong Choi
 
Fiscal rules and the Sovereign default premium
Fiscal rules and the Sovereign default premiumFiscal rules and the Sovereign default premium
Fiscal rules and the Sovereign default premium
ADEMU_Project
 
Publication Risk Journal
Publication Risk JournalPublication Risk Journal
Publication Risk Journal
Ali Sadeghi
 
Arch & Garch Processes
Arch & Garch ProcessesArch & Garch Processes
Arch & Garch Processes
Francescō Bianchi
 
VaR_My_Presentation
VaR_My_PresentationVaR_My_Presentation
VaR_My_Presentation
Abukar Ali, CQF
 
Environment&EconomicGrowth
Environment&EconomicGrowthEnvironment&EconomicGrowth
Environment&EconomicGrowth
Anaisa Cerda
 
Affine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of RiskAffine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of Risk
Swati Mital
 

Similar to Topics Volatility (20)

Stochastic Vol Forecasting
Stochastic Vol ForecastingStochastic Vol Forecasting
Stochastic Vol Forecasting
 
HW2_Joanne&Yeqi&Danlin
HW2_Joanne&Yeqi&DanlinHW2_Joanne&Yeqi&Danlin
HW2_Joanne&Yeqi&Danlin
 
Crude Oil Levy
Crude Oil LevyCrude Oil Levy
Crude Oil Levy
 
Holtwinters terakhir lengkap
Holtwinters terakhir lengkapHoltwinters terakhir lengkap
Holtwinters terakhir lengkap
 
Test of Random Walk Hypothesis: Before & After the 2007-09 Crisis
Test of Random Walk Hypothesis: Before & After the 2007-09 CrisisTest of Random Walk Hypothesis: Before & After the 2007-09 Crisis
Test of Random Walk Hypothesis: Before & After the 2007-09 Crisis
 
LFM Pedersen Calibration - Cappelli
LFM Pedersen Calibration - CappelliLFM Pedersen Calibration - Cappelli
LFM Pedersen Calibration - Cappelli
 
Garch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REITGarch Models in Value-At-Risk Estimation for REIT
Garch Models in Value-At-Risk Estimation for REIT
 
Financial econometrics xiii garch
Financial econometrics   xiii garchFinancial econometrics   xiii garch
Financial econometrics xiii garch
 
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In..."Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
"Correlated Volatility Shocks" by Dr. Xiao Qiao, Researcher at SummerHaven In...
 
Vasicek Model Project
Vasicek Model ProjectVasicek Model Project
Vasicek Model Project
 
Loss Forecastiing_A sequential approach
Loss Forecastiing_A sequential approachLoss Forecastiing_A sequential approach
Loss Forecastiing_A sequential approach
 
20120140503019
2012014050301920120140503019
20120140503019
 
Bitcoin volatility
Bitcoin volatilityBitcoin volatility
Bitcoin volatility
 
Volatility trading
Volatility tradingVolatility trading
Volatility trading
 
Fiscal rules and the Sovereign default premium
Fiscal rules and the Sovereign default premiumFiscal rules and the Sovereign default premium
Fiscal rules and the Sovereign default premium
 
Publication Risk Journal
Publication Risk JournalPublication Risk Journal
Publication Risk Journal
 
Arch & Garch Processes
Arch & Garch ProcessesArch & Garch Processes
Arch & Garch Processes
 
VaR_My_Presentation
VaR_My_PresentationVaR_My_Presentation
VaR_My_Presentation
 
Environment&EconomicGrowth
Environment&EconomicGrowthEnvironment&EconomicGrowth
Environment&EconomicGrowth
 
Affine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of RiskAffine Term Structure Model with Stochastic Market Price of Risk
Affine Term Structure Model with Stochastic Market Price of Risk
 

More from HELIOSPADILLAMAYER

Seminar Macroeconomic Policy Analysis
Seminar Macroeconomic Policy AnalysisSeminar Macroeconomic Policy Analysis
Seminar Macroeconomic Policy Analysis
HELIOSPADILLAMAYER
 
Energy Economics Seminar
Energy Economics SeminarEnergy Economics Seminar
Energy Economics Seminar
HELIOSPADILLAMAYER
 
Managing Organizational Behavior
Managing Organizational BehaviorManaging Organizational Behavior
Managing Organizational Behavior
HELIOSPADILLAMAYER
 
Iceland: Country Risk Profile
Iceland: Country Risk ProfileIceland: Country Risk Profile
Iceland: Country Risk Profile
HELIOSPADILLAMAYER
 
Behavioral Finance Application to Risk
Behavioral Finance Application to RiskBehavioral Finance Application to Risk
Behavioral Finance Application to Risk
HELIOSPADILLAMAYER
 
Operational Risk
Operational RiskOperational Risk
Operational Risk
HELIOSPADILLAMAYER
 
The Relationship between Wage and Inflation
The Relationship between Wage and InflationThe Relationship between Wage and Inflation
The Relationship between Wage and Inflation
HELIOSPADILLAMAYER
 
Financial Development and Economic Growth
Financial Development and Economic GrowthFinancial Development and Economic Growth
Financial Development and Economic Growth
HELIOSPADILLAMAYER
 
Market Risk Management
Market Risk ManagementMarket Risk Management
Market Risk Management
HELIOSPADILLAMAYER
 
Bank Leu Prima Cat Bond Fund
Bank Leu Prima Cat Bond FundBank Leu Prima Cat Bond Fund
Bank Leu Prima Cat Bond Fund
HELIOSPADILLAMAYER
 
Economies in Transition
Economies in TransitionEconomies in Transition
Economies in Transition
HELIOSPADILLAMAYER
 
Systemic Risk Safeguards for Central Clearing Counterparties
Systemic Risk Safeguards for Central Clearing CounterpartiesSystemic Risk Safeguards for Central Clearing Counterparties
Systemic Risk Safeguards for Central Clearing Counterparties
HELIOSPADILLAMAYER
 
Financial Programming and Oil Dynamics
Financial Programming and  Oil DynamicsFinancial Programming and  Oil Dynamics
Financial Programming and Oil Dynamics
HELIOSPADILLAMAYER
 

More from HELIOSPADILLAMAYER (13)

Seminar Macroeconomic Policy Analysis
Seminar Macroeconomic Policy AnalysisSeminar Macroeconomic Policy Analysis
Seminar Macroeconomic Policy Analysis
 
Energy Economics Seminar
Energy Economics SeminarEnergy Economics Seminar
Energy Economics Seminar
 
Managing Organizational Behavior
Managing Organizational BehaviorManaging Organizational Behavior
Managing Organizational Behavior
 
Iceland: Country Risk Profile
Iceland: Country Risk ProfileIceland: Country Risk Profile
Iceland: Country Risk Profile
 
Behavioral Finance Application to Risk
Behavioral Finance Application to RiskBehavioral Finance Application to Risk
Behavioral Finance Application to Risk
 
Operational Risk
Operational RiskOperational Risk
Operational Risk
 
The Relationship between Wage and Inflation
The Relationship between Wage and InflationThe Relationship between Wage and Inflation
The Relationship between Wage and Inflation
 
Financial Development and Economic Growth
Financial Development and Economic GrowthFinancial Development and Economic Growth
Financial Development and Economic Growth
 
Market Risk Management
Market Risk ManagementMarket Risk Management
Market Risk Management
 
Bank Leu Prima Cat Bond Fund
Bank Leu Prima Cat Bond FundBank Leu Prima Cat Bond Fund
Bank Leu Prima Cat Bond Fund
 
Economies in Transition
Economies in TransitionEconomies in Transition
Economies in Transition
 
Systemic Risk Safeguards for Central Clearing Counterparties
Systemic Risk Safeguards for Central Clearing CounterpartiesSystemic Risk Safeguards for Central Clearing Counterparties
Systemic Risk Safeguards for Central Clearing Counterparties
 
Financial Programming and Oil Dynamics
Financial Programming and  Oil DynamicsFinancial Programming and  Oil Dynamics
Financial Programming and Oil Dynamics
 

Recently uploaded

Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFiTdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
nimaruinazawa258
 
Optimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdf
Optimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdfOptimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdf
Optimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdf
shruti1menon2
 
Discover the Future of Dogecoin with Our Comprehensive Guidance
Discover the Future of Dogecoin with Our Comprehensive GuidanceDiscover the Future of Dogecoin with Our Comprehensive Guidance
Discover the Future of Dogecoin with Our Comprehensive Guidance
36 Crypto
 
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
nimaruinazawa258
 
Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...
Labour Market Information Council | Conseil de l’information sur le marché du travail
 
2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf
Neal Brewster
 
Eco-Innovations and Firm Heterogeneity. Evidence from Italian Family and Nonf...
Eco-Innovations and Firm Heterogeneity.Evidence from Italian Family and Nonf...Eco-Innovations and Firm Heterogeneity.Evidence from Italian Family and Nonf...
Eco-Innovations and Firm Heterogeneity. Evidence from Italian Family and Nonf...
University of Calabria
 
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptxUnlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
cosmo-soil
 
Ending stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across ScotlandEnding stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across Scotland
ResolutionFoundation
 
Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)
AntoniaOwensDetwiler
 
The Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan ApprovalsThe Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan Approvals
Vighnesh Shashtri
 
An Overview of the Prosocial dHEDGE Vault works
An Overview of the Prosocial dHEDGE Vault worksAn Overview of the Prosocial dHEDGE Vault works
An Overview of the Prosocial dHEDGE Vault works
Colin R. Turner
 
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
5spllj1l
 
Using Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trendsUsing Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trends
Labour Market Information Council | Conseil de l’information sur le marché du travail
 
Fabular Frames and the Four Ratio Problem
Fabular Frames and the Four Ratio ProblemFabular Frames and the Four Ratio Problem
Fabular Frames and the Four Ratio Problem
Majid Iqbal
 
Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...
Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...
Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...
AntoniaOwensDetwiler
 
Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...
Labour Market Information Council | Conseil de l’information sur le marché du travail
 
University of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma TranscriptUniversity of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma Transcript
tscdzuip
 
一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理
一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理
一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理
k4ncd0z
 
What's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightnessWhat's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightness
Labour Market Information Council | Conseil de l’information sur le marché du travail
 

Recently uploaded (20)

Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFiTdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
 
Optimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdf
Optimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdfOptimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdf
Optimizing Net Interest Margin (NIM) in the Financial Sector (With Examples).pdf
 
Discover the Future of Dogecoin with Our Comprehensive Guidance
Discover the Future of Dogecoin with Our Comprehensive GuidanceDiscover the Future of Dogecoin with Our Comprehensive Guidance
Discover the Future of Dogecoin with Our Comprehensive Guidance
 
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
 
Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...
 
2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf
 
Eco-Innovations and Firm Heterogeneity. Evidence from Italian Family and Nonf...
Eco-Innovations and Firm Heterogeneity.Evidence from Italian Family and Nonf...Eco-Innovations and Firm Heterogeneity.Evidence from Italian Family and Nonf...
Eco-Innovations and Firm Heterogeneity. Evidence from Italian Family and Nonf...
 
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptxUnlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
 
Ending stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across ScotlandEnding stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across Scotland
 
Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)
 
The Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan ApprovalsThe Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan Approvals
 
An Overview of the Prosocial dHEDGE Vault works
An Overview of the Prosocial dHEDGE Vault worksAn Overview of the Prosocial dHEDGE Vault works
An Overview of the Prosocial dHEDGE Vault works
 
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
 
Using Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trendsUsing Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trends
 
Fabular Frames and the Four Ratio Problem
Fabular Frames and the Four Ratio ProblemFabular Frames and the Four Ratio Problem
Fabular Frames and the Four Ratio Problem
 
Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...
Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...
Independent Study - College of Wooster Research (2023-2024) FDI, Culture, Glo...
 
Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...
 
University of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma TranscriptUniversity of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma Transcript
 
一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理
一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理
一比一原版(RMIT毕业证)皇家墨尔本理工大学毕业证如何办理
 
What's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightnessWhat's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightness
 

Topics Volatility

  • 1. Topics  “Volatility”   Helios  Padilla  Mayer   February  22,  2012       1.  (a)    The  term  asymmetric  volatility  arises  from  observation  that  we  observe  higher   volatilities  (higher  risk)  during  the  market  downturn  than  in  the  market  upturns.  The   most   common   mentioned   factor   that   contributes   to   such   risk   behavior   is   increased   market  leverage  that  was  produced  by  a  negative  shock;  however,  there  are  also  other   factors,  such  as  perceived  risk/reward  balance  in  different  stages  of  market  behavior.  As   explained  in  V-­‐‑Lab  documentation,  the  plain  GARCH  model1  cannot  take  into  account  the   stronger  impact  of  negative  shocks  in  time  t-­‐‑1  on  the  variance  in  time  t  than  in  case  of   positive  shocks  –  an  asymmetry  impact  of  negative  shock.  For  that  reason,  the  GARCH   model  has  been  augmented  into  models  such  as  the  Threshold  GARCH  (TGARCH),  the   Asymmetric   GARCH   (AGARCH)   and   the   Exponential   GARCH   (EGARCH).   The   V-­‐‑Lab   documentation  and  the  task  in  this  exam  indicate  that  GJR  GARCH  should  be  used  to   introduce  an  asymmetry  into  the  variance  analysis.  Thus,  my  answers  will  be  based  on   the  use  of  the  GJR  GARCH  model.  2  I  also  assume  that  p=1,  q=1,  so  I  will  be  talking  about   GJR  GARCH  (1,  1)  and  GARCH  (1,  1).     We  assume  that  the  return  time  series  can  take  the  following  form:     ,  where   is  expected  return  and   is  the  white  noise,  zero-­‐‑mean  error  term.     The   assumption   is   that   is   serially   uncorrelated,   but   not   necessarily   serially   independent   –   it   can   present   a   conditional   heteroskedasticity,   which   is   taken   into   consideration  by  GJR  GARCH  model.  Error  term  is  then  split  into  a  stochastic  component   ( )  and  time-­‐‑dependent  standard  deviation  ( ):     ,   where   is   assumed   to   be   drawn   from   Gaussian   distribution   and   i.i.d.   (mean=0,  variance  =  1).  The  variance  is  then  formulated  as:     ,           (1)     where           So,  GJR  GARCH  models  asymmetry  in  the  ARCH  model  and  as  the  basic  ARCH  includes   (a)  the  error  term,    (b)  a  conditional  variance  (which  brings  ARCH  model  to  GARCH),   plus   (c)   innovation   term,   which   for   asymmetry:   negative   shocks   in   time   t-­‐‑1   have   stronger  impact  on  variance  than  positive  shocks.  Therefore  the  term    takes  value  of   1 GARCH stands for general autoregressive (meaning that past observations are incorporated into the present situation) conditional (variance is conditioned on time) heteroskedascticity (a time-varying variance). 2 I am also using a formulation of GJR GARCH consistent with VLAB in order to be able to interpret results correctly. ttr eµ += µ te te tz ts ttt zse = tz 2 1 2 11 2 )( --- +++= tttt I bsegaws þ ý ü î í ì á ³ =- µ µ 1-­‐t 1-­‐t rif           rif         1 0 1tI 1-tI
  • 2. 1,  when  returns  in  time  t-­‐‑1  are  lower  than  expected  return  and  value  0  when  returns  in   time  t-­‐‑1  are  higher  than  expected  return.    As  explained  in  VLAB,  the  effective  coefficient   associated  with  a  negative  shock  is  α+γ.  In  financial  time  series,  we  generally  find  that  γ   is  statistically  significant.     The   estimate   of   the   coefficients   is   performed   through   V-­‐‑Lab   simultaneously   by   maximizing  the  log  likelihood  (MLE).  GJR  GARCH  also  captures  the  volatility  clustering:   if  volatility  was  high  at  time  t-­‐‑1,  it  will  also  be  high  at  time  t.  Alternatively,  the  shock  at   time   t-­‐‑1   will   also   impact   variance   at   time   t.   There   are   the   following   constraints   on   coefficients:   ,   , , .   If  also    is  true,  the  volatility  is  mean  reverting  and  fluctuates  around .  If  this   is  true,  then  we  can  write  down  the  unconditional  variance  as         (2)    In  our  case,  we  observe  a  Carnival  Corp  volatility  data  range  from  02/21/2010  to   02/21/2012.  The  annual  GJR-­‐‑GARCH  volatility  is  plotted  below,  along  with  the  volatility   summary  table  and  estimated  parameters.   1-­‐‑year  volatility  prediction  with  the  GJR-­‐‑GARCH  model         Volatility  summary  table       Price   30.74   Return   -­‐‑0.75   1  Week  Pred:   42.9   Avg  Week  Vol:   43.84   Avg  Month  Vol:   49.89   1  Month  Pred:   43.5   Min  Vol:   16.32   Max  Vol:   189.91   6  Months  Pred:   47.2   Avg  Vol:   39.57   Vol  of  Vol:   45.17   1  Year  Pred:   50.8     0³w 0³a 0³b 0³+ga 1 2 á++ b g a s )var( 2 1 2 tr= --- = b g a w s
  • 3.   Parameter  Estimates     Parameter   t-­‐‑stat     0.03981   8.693     0.01802   6.273     0.94189   393.603     0.07686   19.875     t-­‐‑stat  for  estimated  parameters  shows  that  all  estimates  are  statistically  significant  at   1%;  thus,  all  restrictions  on  coefficients  are  fulfilled  and  the  process  does  follow  GJR-­‐‑   GARCH  model.  The  Corp  Carnival  GJR-­‐‑GARCH  model  can  be  then  written  as:         (3)     A  constant  in  the  model  shows  that  if  the  error  term  and  variance  in  time  t-­‐‑1  were  0  and   returns  in  time  t-­‐‑1  are  higher  than  expected  return,  the  variance  for  Corp  Carnival  would   be  0.03981.  Secondly,  a  1%  change  in  variance  in  time  t-­‐‑1  would  increase  variance  in   time  t  by  0.94189%.  Third,  a  1%  negative  shock  on  returns  in  time  t-­‐‑1  would  impact   variance  in  time  t  by  (0.01802+0.07686=)  0.09488  %.     As ,   volatility   is   mean   reverting   and   unconditional   variance,   =23.98193.      (b)  Below  I  plot  volatilities  over  the  last  3  months  for  GARCH  and  GJR-­‐‑GARCH  models.   Given   the   definition   of   GJR-­‐‑GARCH   model,   asymmetric   impact   of   negative   shock   is   captured  (unlike  in  GARCH  model)  and  therefore  the  volatility  prediction  on  the  basis  of   GJR-­‐‑GARCH  model  is  bigger  than  volatility  prediction  on  the  basis  of  on  GARCH  model.   This  is  specifically  noticed   in   the   case  of  the  biggest  negative   shock  in   returns  on  14   January,  2012.  The  immediate  spike  in  volatility  after  this  date  is  significantly  higher  for   GJR-­‐‑GARCH  than  for  GARCH  model.       3-­‐‑month  volatility  prediction  with  the  GARCH  model       w a b g 2 1 2 11 2 94189.0)07686.001802.0(03981.0 --- +++= tttt I ses 199834.0 2 á=++ b g a )var( tr
  • 4.   Volatility  summary  table       Price   30.74   Return   -­‐‑0.75   1  Week  Pred:   40.19   Avg  Week  Vol:   40.66   Avg  Month  Vol:   43.23   1  Month  Pred:   40.38   Min  Vol:   17.33   Max  Vol:   107.53   6  Months  Pred:   41.68   Avg  Vol:   38.77   Vol  of  Vol:   36.61   1  Year  Pred:   43.04     Parameter  Estimates     Parameter   t-­‐‑stat     0.01141   6.306     0.02821   18.816     0.97128   906.887       3-­‐‑month  volatility  prediction  with  the  GJR-­‐‑GARCH  Model       Volatility  summary  table       Price   30.74   Return   -­‐‑0.75   1  Week  Pred:   42.9   Avg  Week  Vol:   43.84   Avg  Month  Vol:   49.89   1  Month  Pred:   43.5   Min  Vol:   16.32   Max  Vol:   189.91   6  Months  Pred:   47.2   Avg  Vol:   39.57   Vol  of  Vol:   45.17   1  Year  Pred:   50.8     Parameter  Estimates     Parameter   t-­‐‑stat     0.03981   8.693     0.01802   6.273     0.94189   393.603     0.07686   19.875         (c)  In  both  cases,  when  volatility  is  estimated  with  GARCH  of  with  GJR-­‐‑GARCH  models,   volatility   predications   are   higher   over   the   long-­‐‑term   horizon   (1   year)   than   over   the   w a b w a b g
  • 5. short-­‐‑term   horizon   (1   week)   –   see   plots   from   V-­‐‑Lab   below.     When   we   take   into   consideration  longer  horizons,  we  implicitly  “tag  along”  t-­‐‑k  period  impacts  for  a  larger   number  of  k.  For  example,  if  we  observe  1  week  data,  we  would  be  considering  5  lagged   period   effects.   When   we   observe   1   year   data,   we   would   be   considering   250   lagged   period   effects.   The   volatility   impact   is   therefore   multiplying   through   periods   and   therefore  longer-­‐‑term  forecasts  result  in  higher  volatilities  than  short-­‐‑term  forecasts.               Annualized  Volatility  Predictions  with  the  GARCH  Model         Annualized  Volatility  Predictions  with  the  GJR-­‐‑GARCH  Model       2.  The  VIX  index  measures  the  short-­‐‑term  implied  volatility  of  the  S&P  500  index  and   has  become  a  benchmark  for  volatility  in  equity  markets.    Volatility  is  calculated  as  s   standard  deviation  of  returns.  However,  if  we  want  to  talk  about  the  implied  or  realized   volatility  of  VIX,  we  actually  talk  about  the  volatility  of  volatility.    Volatility  of  volatility   calculated  as  the  standard  deviation  of  the  percentage  change  in  VIX  volatility  and  it  tells   us  how  fast  volatility  changes.   Prior  and  during  the  financial  crisis,  the  standard  risk  measures,  such  as  VaR,   were   based   on   short-­‐‑term   risk   measurements   –   1   to   10   day   horizons.   However,   investors   normally   hold   their   positions   for   a   longer   period   of   time   than   10   days.   As   short-­‐‑term  risk  measures  during  the  low  risk  environment  did  not  alert  to  any  possible   increase   in   risk,   everyone   was   confidents   that   their   long-­‐‑term   positions   are   safe   by   accepting  short-­‐‑term  risk  assessment.  However,  none  actually  considered  the  possibility   (and  velocity)  of  change  in  risk  and  volatility  of  markets.     During   the   low   risk,   low   volatility   and   low   interest   period,   everyone   tried   to   increase   their   leverage   on   the   back   of   cheap   assets,   attractive   structured   products   offered  and  a  variety  of  insurance  instruments  available  to  insure  against  any  possible   risk  event.     The   problem   arose   when   market   volatility   started   increasing,   investors   were   holding  now  highly  risky  positions  that  they  were  able  to  sell  only  at  deep  discounts,   insurers  were  not  capitalized  enough  to  provide  payouts.  Thus,  the  major  problem  was   that  future  volatility  (which  was  observed  through  the  VoV  chart)  was  not  incorporated   at  all  in  risk  assessment  models  and  none  was  prepared  for  what  came  forward.     Short-­‐‑term  risk  assessment  models  produce  short-­‐‑term  results  and  observations.   If  one  compares  10-­‐‑day,  30-­‐‑day,  60-­‐‑day  or  1-­‐‑year  volatility  index  (VIX)  and  its  implied  
  • 6. volatility,   short-­‐‑term   volatilities   will   be   lower   than   long-­‐‑term   volatilities.   The   reason   behind  this  is  that  long-­‐‑term  volatility  depends  on  macroeconomic  policies  (monetary,   fiscal,  balance  of  payments)  and  success  of  their  implementation.  If  investors  are  aware   that  long-­‐‑term  volatility  is  higher  than  the  short-­‐‑term,  they  can  decide  to  either  engage   in   short-­‐‑term   investments   that   are   less   volatile   and   accept   lower   returns,   or   try   to   incorporate   higher   long-­‐‑term   volatility   in   their   expected   returns.   Alternatively,   long-­‐‑ term  investments  with  higher  volatility  can  be  also  hedged  with  proper  instruments  that   would   sufficiently   account   for   higher   volatility   in   the   future.   Long-­‐‑term   investments   represent   higher   volatility   because   at   the   time   of   investment   decision   it   is   not   clear   whether   policymakers   will   be   successful   at   mitigating   future   risks   (for   example,   a   probability  of  Greek  default,  global  economic  slowdown,  Iran’s  nuclear  policy  impact  on   oil   supply,   etc..).   Furthermore,   new   macroeconomic   risks   will   arise   during   the   investment  period  and  more  uncertainties  will  have  to  be  taken  into  consideration.     3.  Correlation  is  a  measure  of  relation  between  two  variables  or  series.  If  variables  are   moving  in  the  same  direction,  correlation  is  positive  (up  to  +1,  which  indicates  perfect   positive   correlation).   When   variables  are   moving  in   opposite  direction,   correlation   is   negative  (up  to  -­‐‑1,  which  means  perfect  negative  correlation).     Engel  (2000)  defines  unconditional  correlation  between  two  variables  r1  and  r2,  each   with  mean  zero  as     ,         (1)     Where  is    covariance  between  variables  r1  and  r2,  and    and    is  variance   of  r1  and  r2,  respectively.  This  formula  does  not  include  time  component  and  therefore  it   is  assumed  that  correlation  is  not  based  on  information  known  from  previous  periods.       However,  we  know  that  correlations  are  sensitive  to  time.  This  time  sensitivity  is  taken   into  consideration  in  conditional  correlation,  where  both  covariances  and  variances  are   based  on  information  known  the  previous  period:           (2)   In  his  work,  Engle  (2000)  also  shows  that  conditional  correlation  can  be  interpreted  as   conditional  covariance  between  standardized  disturbances.  For  that  reason,  he  writes   the   returns   ( )   as   the   conditional   standard   deviation   times   the   standardized   disturbance  ( ),  with  mean  zero  and  variance  1:     and       (3)     If  we  substitute  (3)  into  (2),  we  get         (4)     There  are  many  ways  to  estimate  conditional  correlations  and  I  will  describe  two  based   on  multivariate  GARCH  models.  GARCH  models  assume  that  volatilities  are  correlations   are  functions  of  lagged  returns.  Bollerslev  (1990)  specified  the  constant   conditional   )()( )( 2 2 2 1 21 2,1 rErE rrE =r )( 21rrE )( 2 1rE )( 2 2rE )()( )( 2 ,2 2 ,11 ,2,11 ,2,1 ttt ttt t rErE rrE - - =r tih , ti,e )( 2 ,1, titti rEh -= 2,1,,,, == ihr tititi e )( )()( )( ,3,11 2 ,2 2 ,11 ,2,11 ,2,1 ttt ttt ttt t E EE E ee ee ee r - - - ==
  • 7. correlation  (CCC)  multivariate  GARCH  specification,  where  conditional  covariances   and  variances  are  time-­‐‑varying,  but  conditional   correlations  are   constant.   Conditional   variances  are  modelled  by  univariate  GARCH  models  and  correlation  matrix  is  estimated   by   MLE.   The   assumption   of   constant   correlations   allows   for   comparison   between   periods.   The   model   is   described   as   follows.   The   multivariate   GARCH   assumes   that   distribution  of  returns  (rt)  from  n  assets  has  mean  zero  and  covariance  matrix  Ht  (Engle,   Sheppard,  2001):     ,             (5)     where     ,     and         Conditional  covariance  matrix  Ht  is  then  decomposed  into  nxn  Rt  matrix  m  where                 (6)     and   D   is   conditional   correlation   matrix   with   constant   correlations,   = ;   ,   where   ,  i=1,  …N.  Thus,  the  time  variation  in  covariance  matrix  Ht  is  then  explained   only  by  time-­‐‑varying  conditional  variances  for  all  rt.         The  off-­‐‑diagonal  elements  of  the  conditional  covariance  matrix  can  be  then  written  as   (Silvennoinen,  Terasvirta,  2008)     ,    and     (7)     While  the  advantage  of  this  model  is  that  is  easy  to  estimate  (we  only  need  non  linear  n   estimates  of  univariate  GARCH  models),  the  problem  is  that  correlations  are  not  always   constant.   Engle   (2000,   2001)   therefore   suggested   an   alternative   estimation   of   conditional   correlations   with   dynamic   conditional   correlation   (DCC)   multivariate   GARCH   specification,   which   is   derived   from   Bollerslev’s   CCC   model,   but   allows   for   conditional  correlations  to  be  time-­‐‑varying.    The  conditional  covariance  matrix  is  then   written  as                 (8)       Conditional  correlations  are  then  estimated  on  the  basis  of  exponential  smoothing:     ,   (9)     where  smoothing  is  introduced  through     ),0( tt HNr » ttt DRRH = [ ]ijtt hH = { }tit hdiagR ,= ijtr ijr [ ]ijD r= 1=iir [ ] ijjtitijt hhH r= ji ¹ Nji ££ ,1 tttt RDRH = [ ] jit stj s s sti s s s stjsti s tji R , 2 , 1 2 , 1 1 ,, ,, = ÷ ÷ ø ö ç ç è æ ÷ ÷ ø ö ç ç è æ = - ¥ = - ¥ = ¥ = -- åå å elel eel r
  • 8.       (10)     and  the  conditional  correlation  estimator  is  then               (11)         This  process  can  be  estimated  by  using  GARCH  (1,  1)  model:       (12)       The  unconditional  expectation  for  the  cross  product  is    and  for  variances, .  The   conditional  correlation  estimator  is  written  as  in  (11).  The  model  is  mean-­‐‑reverting  as   long  as ,  however,  when  the  sum  equals  to  1,  the  model  is  as  explained  in  (10)  and   (11).         Reference:     Asai  Manabu  and  Michael  McAleer,  2005,  “Dynamic  Correlations  in  Symmetric  Multivariate  SV   Models”,   in:   MODSIM   2005   International   Congress   on   Modelling   and   Simulation.   Modelling   and   Simulation  Society  of  Australia  and  New  Zealand,  Zerger  A.  and  Argent  R.,  eds.     Bollerslev,   Tim,   1990,   “Modelling   the   Coherence   in   Short-­‐‑Run   Nominal   Exchange   Rates:   A   Multivariate   Generalized   ARCH   Model,”   The   Review   of   Economics   and   Statistics   Vol.  72,  No.  3  (Aug.,  1990),  pp.  498-­‐‑505.         Engle,  Robert  F  ,  2000,  “Dynamic  Conditional  Correlation  –A  Simple  Class  Of  Multivariate  Garch   Models,”  July  1999  (revised  May  2000),  a  research  supported  by  NSF  grant  SBR-­‐‑9730062  and   NBER,  27  pp.     Engle,  Robert,  2001,  “GARCH  101:  The  Use  of  ARCH/GARCH  Models  in  Applied  Econometrics,”   Journal  of  Economic  Perspectives,  Vol.  15,  No.  4  (Fall  2001),  pp.  157–168.     Engle,  Robert  F.  and  Kevin  Sheppard,  2001,  “Theoretical  and  Empirical  properties  of  Dynamic   Conditional  Correlation  Multivariate  GARCH”,  2001,  46  pp.     Hafner,   Christian   M.   and     Philip   Hans   Franses,   2009,   “A   Generalized   Dynamic   Conditional   Correlation   Model:   Simulation   And   Application   To   Many   Assets”,   Institute   de   Statistique,   Universite  Catholique  de  Louvain,  Workin  Paper  0904,    January  14,  2009,  25  pp.     Silvennoinen,  Annasvinna,  and  Timo  Terasvirta,  2008,  “Multivariate  GARCH  Models,  ”  SSE/EFI   Working  Paper  Series  in  Economic  and  Finance,  January  2008,  No.  669,  25  pp.   ( )( ) ( )1,,1,1,,, 1 --- +-= tjitjtitji qq leel tjjtii tji tji qq q ,, ,, ,, =r ( ) stjsti s s jijitjijitijitji qq -- ¥ = -- å+÷÷ ø ö çç è æ - -- =-+-+= ,, 1 ,,1,,,1,,,, 1 1 () eeba b ba rrbrear r 1, =jir 1á+ ba