SlideShare a Scribd company logo
THE METHOD OF REGULARIZED STOKESLETS
Mingjie Zhu
14th, August, 2015
Beijing Computational Science Research Center
STOKES FLOW
In the common case of an incompressible Newtonian fluid, the Stokes equations
take the (vectorized) form:
πœ‡π›»2
βˆ’ 𝛻𝑝 + 𝐅 = 𝟎
𝛻 βˆ™ 𝒖 = 𝟎
GREEN'S FUNCTION SOLUTION: THE STOKESLET
We first consider the generic situation in which the force are spread over a small ball
centered at the points 𝒙0. The force is given by
𝑭 𝒙 = 𝒇0 𝛿(𝒙 βˆ’ 𝒙0)
Then we define a function G(π‘₯)called Green’s function
𝛻2G π‘₯ = 𝛿(π‘₯)
And another function
𝛻2
B π‘₯ = G π‘₯
GREEN'S FUNCTION SOLUTION: THE STOKESLET
Take the divergence of Stokes equations, we find that the pressure satisfies
𝛻2
𝑝 = 𝛻 βˆ™ 𝐅
Which gives the particular solution
𝑝 = 𝒇0 βˆ™ 𝛻G
Now we use this expression to rewrite the equation for 𝒖 as πœ‡π›»2
𝒖 = 𝒇0 βˆ™ 𝛻 𝛻G βˆ’ 𝒇0 𝛿,
whose particular solution is
πœ‡π’– π‘₯ = 𝒇0 βˆ™ 𝛻 𝛻B 𝒙 βˆ’ 𝒙0 βˆ’ 𝒇0G 𝒙 βˆ’ 𝒙0
GREEN'S FUNCTION SOLUTION: THE STOKESLET
REGULARIZED STOKESLETS
The method of regularized Stokeslets assumes the force is not a Dirac delta applied at a
single point but uses a shape function. We use πœ™ πœ–(𝒙) to denote this function, which is a
radially symmetric smooth function with the property that πœ™ πœ–(𝒙) d𝒙 = 1. The
parameter πœ– determines the spread of the function.
EXAMPLES OF THESE FUNCTIONS
In 𝐑2: πœ™ πœ– 𝒙 =
3πœ–3
2πœ‹( 𝒙 2+πœ–2)5/2
In 𝐑3
: πœ™ πœ– 𝒓 =
15πœ–4
8πœ‹(𝒓2+πœ–2)7/2
DERIVING G πœ– AND B πœ–
Since πœ™ πœ– is radially symmetric and 𝛻2
G πœ– = πœ™ πœ–, we have that
𝛻2
G πœ– =
1
π‘Ÿ
π‘ŸG πœ–
β€²
π‘Ÿ β€²
= πœ™ πœ–(π‘Ÿ)
And
G πœ–
β€²
π‘Ÿ =
1
π‘Ÿ 0
π‘Ÿ
𝑠 πœ™ πœ– 𝑠 d𝑠
After integrating once more, we obtain G πœ–(π‘Ÿ). Then, we can get B πœ–(π‘Ÿ) in the same way.
FINAL RESULTS
FINDING FORCES FROM VELOCITIES
We can write last equations into
𝑒 𝒙𝑖 =
𝑗=1
𝑁
𝑀𝑖𝑗(𝒙1, 𝒙2, … , 𝒙 𝑁) 𝒇 𝑗
Or, as a matrix equation:
𝑼 = 𝑴𝑭
Which is to solve F using U and F. However, it is
impossible to calculate the inverse of 𝑴
directly. We use GMRES with zero initial guess.
Radius=1, velocity=(0.4, 0)
ALGORITHM
1. Create all Stokeslets: define their coordinates and initial velocities;
2. Calculate each element in the matrix 𝑴;
3. Solve the matrix equation using GMRES to obtain forces in each Stokeslet; (Normally,
GMRES can iterate converging to the tolerance 1e-8)
4. Calculate velocity of other points in the Stokes flow field;
5. Plot the result in the screen or output these result.
RESULTS COMPARE: A 2D CIRCLE
Radius=0.25, velocity=(1, 0)
Up: the x component of velocity
Down: the y component of velocity
RESULTS COMPARE: A 3D SPHERE
Radius=1.2, velocity=(0.5, 0, 0)
When z=0.
Up: the x component of velocity
Down: the y component of velocity
RESULTS COMPARE: A 3D SPHERE
x y stokes_u stokes_v analytical_u analytical_v error_u error_v
1 1 0.346046 0.034137 0.351291 0.0356382 0.014931 0.042133
1 1.3 0.29273 0.04787 0.296579 0.0492919 0.012979 0.028851
1 1.6 0.245579 0.049912 0.248442 0.0510662 0.011525 0.022603
1 1.9 0.207925 0.046623 0.210136 0.0475185 0.010524 0.018845
1 2.2 0.178654 0.041589 0.180432 0.042281 0.009856 0.016366
1 2.5 0.155852 0.036406 0.157331 0.0369465 0.009398 0.014642
1 3.7 0.101882 0.021099 0.102764 0.0213386 0.008585 0.011207
1 4 0.093677 0.018602 0.0944791 0.018804 0.008491 0.010768
1.6 4 0.095528 0.026299 0.0963557 0.0265792 0.008586 0.010535
1.6 4.3 0.088386 0.023647 0.0891441 0.0238912 0.0085 0.010234
1.6 4.6 0.082207 0.021328 0.0829062 0.0215431 0.008432 0.009984
1.6 4.9 0.076817 0.0193 0.0774665 0.0194909 0.008378 0.009774
1.9 1 0.27197 0.046623 0.275412 0.0475185 0.012498 0.018845
1.9 2.2 0.173029 0.050128 0.174771 0.0508224 0.009968 0.013657
RESULTS COMPARE: A 3D SPHERE
APPLICATION: BACTERIA
IMPLEMENTATION USING C++
1. Run faster (Native code and OpenMP supported);
2. Better readability;
3. Expandable.

More Related Content

Similar to The Method of regularized Stokeslets

Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Demetrio Ccesa Rayme
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
Hassaan Saleem
Β 
Regression Analysis.pptx
Regression Analysis.pptxRegression Analysis.pptx
Regression Analysis.pptx
MdRokonMia1
Β 
Simple regression and correlation
Simple regression and correlationSimple regression and correlation
Simple regression and correlation
Mary Grace
Β 
EM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdfEM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdf
dharma raja`
Β 
Solution manual for introduction to nonlinear finite element analysis nam-h...
Solution manual for introduction to nonlinear finite element analysis   nam-h...Solution manual for introduction to nonlinear finite element analysis   nam-h...
Solution manual for introduction to nonlinear finite element analysis nam-h...
Salehkhanovic
Β 
A Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeA Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter Three
Chung Hua Universit
Β 
Chapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdfChapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdf
ManarKareem1
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
Hassaan Saleem
Β 
Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..
CarlisNuez
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Rai University
Β 
Unidad 2 paso 3
Unidad 2   paso 3Unidad 2   paso 3
Unidad 2 paso 3
AlgebratrigonometryG
Β 
Differentiation
DifferentiationDifferentiation
Differentiation
Anirudh Gaddamanugu
Β 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
AYMENGOODKid
Β 
Vectors in mechanics
Vectors in mechanicsVectors in mechanics
Vectors in mechanics
Maurice Verreck
Β 
Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985
Benjamin Seive
Β 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
IJERA Editor
Β 
lec19.ppt
lec19.pptlec19.ppt
Dyadics
DyadicsDyadics
Dyadics
Solo Hermelin
Β 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
Rai University
Β 

Similar to The Method of regularized Stokeslets (20)

Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
Β 
Regression Analysis.pptx
Regression Analysis.pptxRegression Analysis.pptx
Regression Analysis.pptx
Β 
Simple regression and correlation
Simple regression and correlationSimple regression and correlation
Simple regression and correlation
Β 
EM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdfEM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdf
Β 
Solution manual for introduction to nonlinear finite element analysis nam-h...
Solution manual for introduction to nonlinear finite element analysis   nam-h...Solution manual for introduction to nonlinear finite element analysis   nam-h...
Solution manual for introduction to nonlinear finite element analysis nam-h...
Β 
A Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeA Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter Three
Β 
Chapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdfChapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdf
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
Β 
Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Β 
Unidad 2 paso 3
Unidad 2   paso 3Unidad 2   paso 3
Unidad 2 paso 3
Β 
Differentiation
DifferentiationDifferentiation
Differentiation
Β 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
Β 
Vectors in mechanics
Vectors in mechanicsVectors in mechanics
Vectors in mechanics
Β 
Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985Comments_on_Paper_Shuey_1985
Comments_on_Paper_Shuey_1985
Β 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
Β 
lec19.ppt
lec19.pptlec19.ppt
lec19.ppt
Β 
Dyadics
DyadicsDyadics
Dyadics
Β 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
Β 

The Method of regularized Stokeslets

  • 1. THE METHOD OF REGULARIZED STOKESLETS Mingjie Zhu 14th, August, 2015 Beijing Computational Science Research Center
  • 2. STOKES FLOW In the common case of an incompressible Newtonian fluid, the Stokes equations take the (vectorized) form: πœ‡π›»2 βˆ’ 𝛻𝑝 + 𝐅 = 𝟎 𝛻 βˆ™ 𝒖 = 𝟎
  • 3. GREEN'S FUNCTION SOLUTION: THE STOKESLET We first consider the generic situation in which the force are spread over a small ball centered at the points 𝒙0. The force is given by 𝑭 𝒙 = 𝒇0 𝛿(𝒙 βˆ’ 𝒙0) Then we define a function G(π‘₯)called Green’s function 𝛻2G π‘₯ = 𝛿(π‘₯) And another function 𝛻2 B π‘₯ = G π‘₯
  • 4. GREEN'S FUNCTION SOLUTION: THE STOKESLET Take the divergence of Stokes equations, we find that the pressure satisfies 𝛻2 𝑝 = 𝛻 βˆ™ 𝐅 Which gives the particular solution 𝑝 = 𝒇0 βˆ™ 𝛻G Now we use this expression to rewrite the equation for 𝒖 as πœ‡π›»2 𝒖 = 𝒇0 βˆ™ 𝛻 𝛻G βˆ’ 𝒇0 𝛿, whose particular solution is πœ‡π’– π‘₯ = 𝒇0 βˆ™ 𝛻 𝛻B 𝒙 βˆ’ 𝒙0 βˆ’ 𝒇0G 𝒙 βˆ’ 𝒙0
  • 6. REGULARIZED STOKESLETS The method of regularized Stokeslets assumes the force is not a Dirac delta applied at a single point but uses a shape function. We use πœ™ πœ–(𝒙) to denote this function, which is a radially symmetric smooth function with the property that πœ™ πœ–(𝒙) d𝒙 = 1. The parameter πœ– determines the spread of the function.
  • 7. EXAMPLES OF THESE FUNCTIONS In 𝐑2: πœ™ πœ– 𝒙 = 3πœ–3 2πœ‹( 𝒙 2+πœ–2)5/2 In 𝐑3 : πœ™ πœ– 𝒓 = 15πœ–4 8πœ‹(𝒓2+πœ–2)7/2
  • 8. DERIVING G πœ– AND B πœ– Since πœ™ πœ– is radially symmetric and 𝛻2 G πœ– = πœ™ πœ–, we have that 𝛻2 G πœ– = 1 π‘Ÿ π‘ŸG πœ– β€² π‘Ÿ β€² = πœ™ πœ–(π‘Ÿ) And G πœ– β€² π‘Ÿ = 1 π‘Ÿ 0 π‘Ÿ 𝑠 πœ™ πœ– 𝑠 d𝑠 After integrating once more, we obtain G πœ–(π‘Ÿ). Then, we can get B πœ–(π‘Ÿ) in the same way.
  • 10. FINDING FORCES FROM VELOCITIES We can write last equations into 𝑒 𝒙𝑖 = 𝑗=1 𝑁 𝑀𝑖𝑗(𝒙1, 𝒙2, … , 𝒙 𝑁) 𝒇 𝑗 Or, as a matrix equation: 𝑼 = 𝑴𝑭 Which is to solve F using U and F. However, it is impossible to calculate the inverse of 𝑴 directly. We use GMRES with zero initial guess. Radius=1, velocity=(0.4, 0)
  • 11. ALGORITHM 1. Create all Stokeslets: define their coordinates and initial velocities; 2. Calculate each element in the matrix 𝑴; 3. Solve the matrix equation using GMRES to obtain forces in each Stokeslet; (Normally, GMRES can iterate converging to the tolerance 1e-8) 4. Calculate velocity of other points in the Stokes flow field; 5. Plot the result in the screen or output these result.
  • 12. RESULTS COMPARE: A 2D CIRCLE Radius=0.25, velocity=(1, 0) Up: the x component of velocity Down: the y component of velocity
  • 13. RESULTS COMPARE: A 3D SPHERE Radius=1.2, velocity=(0.5, 0, 0) When z=0. Up: the x component of velocity Down: the y component of velocity
  • 14. RESULTS COMPARE: A 3D SPHERE x y stokes_u stokes_v analytical_u analytical_v error_u error_v 1 1 0.346046 0.034137 0.351291 0.0356382 0.014931 0.042133 1 1.3 0.29273 0.04787 0.296579 0.0492919 0.012979 0.028851 1 1.6 0.245579 0.049912 0.248442 0.0510662 0.011525 0.022603 1 1.9 0.207925 0.046623 0.210136 0.0475185 0.010524 0.018845 1 2.2 0.178654 0.041589 0.180432 0.042281 0.009856 0.016366 1 2.5 0.155852 0.036406 0.157331 0.0369465 0.009398 0.014642 1 3.7 0.101882 0.021099 0.102764 0.0213386 0.008585 0.011207 1 4 0.093677 0.018602 0.0944791 0.018804 0.008491 0.010768 1.6 4 0.095528 0.026299 0.0963557 0.0265792 0.008586 0.010535 1.6 4.3 0.088386 0.023647 0.0891441 0.0238912 0.0085 0.010234 1.6 4.6 0.082207 0.021328 0.0829062 0.0215431 0.008432 0.009984 1.6 4.9 0.076817 0.0193 0.0774665 0.0194909 0.008378 0.009774 1.9 1 0.27197 0.046623 0.275412 0.0475185 0.012498 0.018845 1.9 2.2 0.173029 0.050128 0.174771 0.0508224 0.009968 0.013657
  • 15. RESULTS COMPARE: A 3D SPHERE
  • 17. IMPLEMENTATION USING C++ 1. Run faster (Native code and OpenMP supported); 2. Better readability; 3. Expandable.