SlideShare a Scribd company logo
1 of 31
Newton’s Laws
of Motion
“If I have ever made any valuable discoveries, it has
been owing more to patient attention, than to any
other talent.”
-Sir Isaac Newton
Background
Sir Isaac Newton (1643-1727) an English
scientist and mathematician famous for his
discovery of the law of gravity also
discovered the three laws of motion. He
published them in his book Philosophiae
Naturalis Principia Mathematica
(mathematic principles of natural
philosophy) in 1687. Today these laws are
known as Newton’s Laws of Motion and
describe the motion of all objects on the
scale we experience in our everyday lives.
Newton’s Laws of Motion
1. An object in motion tends to stay
in motion and an object at rest
tends to stay at rest unless acted
upon by an unbalanced force.
2. Force equals mass times acceleration
(F = ma).
3. For every action there is an equal and
opposite reaction.
Predict the results
 I will push a light and heavy object
with the same force. What do you think
is the difference?
Newton’s First Law/
Law of Inertia
An object at rest tends to stay at rest
and an object in motion tends to stay
in motion unless acted upon by an
unbalanced force.
What does this mean?
Basically, an object will “keep doing
what it was doing” unless acted on by
an unbalanced force.
If the object was sitting still, it will
remain stationary. If it was moving at
a constant velocity, it will keep
moving.
It takes force to change the motion of an
object.
What is meant by balanced
and unbalanced force?
If the forces on an object are equal and opposite, they are said
to be balanced, and the object experiences no change in
motion. If they are not equal and opposite, then the forces
are unbalanced and the motion of the object changes.
Balanced forces
Unbalanced forces
Newton’s First Law is also called
the Law of Inertia
Inertia: the tendency of an object to
resist changes in its state of motion
The First Law states that all objects
have inertia. The more mass an object
has, the more inertia it has (and the
harder it is to change its motion).
MASS is the measure of the
amount of matter in an
object.
It is measured in Kilograms
Some Examples from Real
Life
Two teams are playing tug of war. They are both
exerting equal force on the rope in opposite
directions. This balanced force results in no
change of motion.
A soccer ball is sitting at rest. It
takes an unbalanced force of a kick
to change its motion.
More Examples from Real
Life
A powerful locomotive begins to pull a
long line of boxcars that were sitting at
rest. Since the boxcars are so massive,
they have a great deal of inertia and it
takes a large force to change their
motion. Once they are moving, it takes
a large force to stop them.
On your way to school, a bug
flies into your windshield. Since
the bug is so small, it has very
little inertia and exerts a very
small force on your car (so small
that you don’t even feel it).
If objects in motion tend to stay in
motion, why don’t moving objects keep
moving forever?
Things don’t keep moving forever because
there’s almost always an unbalanced force
acting upon it.
A book sliding across a table slows
down and stops because of the force
of friction.
If you throw a ball upwards it will
eventually slow down and fall
because of the force of gravity.
In outer space, away from gravity and any
sources of friction, a rocket ship launched
with a certain speed and direction would
keep going in that same direction and at that
same speed forever.
 Why is wearing of seatbelts in cars
important?
Let’s try this:
Assessment:
 1. Explain how the first law of motion
relates to an object at rest and an object in
motion.
 2. Provide five examples from everyday life
that illustrates the first law of motion.
Assignment:
 Research and present examples of inertia
in space exploration, sports or amusement
park rides.
Newton’s Second Law
Force equals mass times acceleration.
F = ma
Acceleration: a measurement of how quickly an
object is changing speed.
What does F = ma mean?
Force is directly proportional to mass and acceleration.
Imagine a ball of a certain mass moving at a certain
acceleration. This ball has a certain force.
Now imagine we make the ball twice as big (double the
mass) but keep the acceleration constant. F = ma says
that this new ball has twice the force of the old ball.
Now imagine the original ball moving at twice the
original acceleration. F = ma says that the ball will
again have twice the force of the ball at the original
acceleration.
More about F = ma
If you double the mass, you double the force. If you
double the acceleration, you double the force.
What if you double the mass and the acceleration?
(2m)(2a) = 4F
Doubling the mass and the acceleration quadruples the
force.
So . . . what if you decrease the mass by half? How
much force would the object have now?
What does F = ma say?
F = ma basically means that the force of an object
comes from its mass and its acceleration.
Something very small (low mass) that’s
changing speed very quickly (high
acceleration), like a bullet, can still
have a great force. Something very
small changing speed very slowly will
have a very weak force.
Something very massive (high mass)
that’s changing speed very slowly (low
acceleration), like a glacier, can still
have great force.
Newton’s Third Law
For every action there is an equal and opposite reaction.
What does this mean?
For every force acting on an object, there is an equal
force acting in the opposite direction. Right now,
gravity is pulling you down in your seat, but
Newton’s Third Law says your seat is pushing up
against you with equal force. This is why you are
not moving. There is a balanced force acting on
you– gravity pulling down, your seat pushing up.
Think about it . . .
What happens if you are standing on a
skateboard or a slippery floor and push against
a wall? You slide in the opposite direction
(away from the wall), because you pushed on
the wall but the wall pushed back on you with
equal and opposite force.
Why does it hurt so much when you stub
your toe? When your toe exerts a force on a
rock, the rock exerts an equal force back on
your toe. The harder you hit your toe against
it, the more force the rock exerts back on your
toe (and the more your toe hurts).
Review
Newton’s First Law:
Objects in motion tend to stay in motion
and objects at rest tend to stay at rest
unless acted upon by an unbalanced force.
Newton’s Second Law:
Force equals mass times acceleration
(F = ma).
Newton’s Third Law:
For every action there is an equal and
opposite reaction.
Vocabulary
Inertia:
the tendency of an object to resist changes
in its state of motion
Acceleration:
•a change in velocity
•a measurement of how quickly an object is
changing speed, direction or both
Velocity:
The rate of change of a position along a
straight line with respect to time
Force:
strength or energy

More Related Content

Similar to The Law of Inertia (The 3 Laws of Motion).ppt

Similar to The Law of Inertia (The 3 Laws of Motion).ppt (20)

laws of motion
laws of motionlaws of motion
laws of motion
 
1 discoveringnewtonslaws
1 discoveringnewtonslaws1 discoveringnewtonslaws
1 discoveringnewtonslaws
 
ppt on newton laws
ppt on newton lawsppt on newton laws
ppt on newton laws
 
Discovering newtons laws and its basic uses in daily life.
Discovering newtons laws and its basic uses in daily life.Discovering newtons laws and its basic uses in daily life.
Discovering newtons laws and its basic uses in daily life.
 
Newton's Law of Motion
Newton's Law of MotionNewton's Law of Motion
Newton's Law of Motion
 
Newton's Law of Motion-converted.pptx
Newton's Law of Motion-converted.pptxNewton's Law of Motion-converted.pptx
Newton's Law of Motion-converted.pptx
 
Ppt
PptPpt
Ppt
 
Newton's 3 laws of Motion
Newton's 3 laws of MotionNewton's 3 laws of Motion
Newton's 3 laws of Motion
 
Newtons laws powerpoint new.ppt
Newtons laws powerpoint new.pptNewtons laws powerpoint new.ppt
Newtons laws powerpoint new.ppt
 
Law of Motion.pptx
Law of Motion.pptxLaw of Motion.pptx
Law of Motion.pptx
 
NEWTON.pptx
NEWTON.pptxNEWTON.pptx
NEWTON.pptx
 
Newtons law of motion
Newtons law of motionNewtons law of motion
Newtons law of motion
 
NEWTON.pptx
NEWTON.pptxNEWTON.pptx
NEWTON.pptx
 
Unit 21- Newtons Laws
Unit 21- Newtons LawsUnit 21- Newtons Laws
Unit 21- Newtons Laws
 
1 discoveringnewtonslaws
1 discoveringnewtonslaws1 discoveringnewtonslaws
1 discoveringnewtonslaws
 
Law of motion
Law of motionLaw of motion
Law of motion
 
three Laws of Motion By Isaac Newton.ppt
three Laws of Motion By Isaac Newton.pptthree Laws of Motion By Isaac Newton.ppt
three Laws of Motion By Isaac Newton.ppt
 
3 Laws of Motion12345678913333416454.ppt
3 Laws of Motion12345678913333416454.ppt3 Laws of Motion12345678913333416454.ppt
3 Laws of Motion12345678913333416454.ppt
 
laws of motion.
laws of motion.laws of motion.
laws of motion.
 
Law of motion
Law of motionLaw of motion
Law of motion
 

Recently uploaded

Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 

Recently uploaded (20)

Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 

The Law of Inertia (The 3 Laws of Motion).ppt

  • 2. “If I have ever made any valuable discoveries, it has been owing more to patient attention, than to any other talent.” -Sir Isaac Newton
  • 3. Background Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity also discovered the three laws of motion. He published them in his book Philosophiae Naturalis Principia Mathematica (mathematic principles of natural philosophy) in 1687. Today these laws are known as Newton’s Laws of Motion and describe the motion of all objects on the scale we experience in our everyday lives.
  • 4. Newton’s Laws of Motion 1. An object in motion tends to stay in motion and an object at rest tends to stay at rest unless acted upon by an unbalanced force. 2. Force equals mass times acceleration (F = ma). 3. For every action there is an equal and opposite reaction.
  • 5. Predict the results  I will push a light and heavy object with the same force. What do you think is the difference?
  • 6. Newton’s First Law/ Law of Inertia An object at rest tends to stay at rest and an object in motion tends to stay in motion unless acted upon by an unbalanced force.
  • 7. What does this mean? Basically, an object will “keep doing what it was doing” unless acted on by an unbalanced force. If the object was sitting still, it will remain stationary. If it was moving at a constant velocity, it will keep moving. It takes force to change the motion of an object.
  • 8. What is meant by balanced and unbalanced force? If the forces on an object are equal and opposite, they are said to be balanced, and the object experiences no change in motion. If they are not equal and opposite, then the forces are unbalanced and the motion of the object changes.
  • 11. Newton’s First Law is also called the Law of Inertia Inertia: the tendency of an object to resist changes in its state of motion The First Law states that all objects have inertia. The more mass an object has, the more inertia it has (and the harder it is to change its motion).
  • 12. MASS is the measure of the amount of matter in an object. It is measured in Kilograms
  • 13.
  • 14. Some Examples from Real Life Two teams are playing tug of war. They are both exerting equal force on the rope in opposite directions. This balanced force results in no change of motion. A soccer ball is sitting at rest. It takes an unbalanced force of a kick to change its motion.
  • 15. More Examples from Real Life A powerful locomotive begins to pull a long line of boxcars that were sitting at rest. Since the boxcars are so massive, they have a great deal of inertia and it takes a large force to change their motion. Once they are moving, it takes a large force to stop them. On your way to school, a bug flies into your windshield. Since the bug is so small, it has very little inertia and exerts a very small force on your car (so small that you don’t even feel it).
  • 16. If objects in motion tend to stay in motion, why don’t moving objects keep moving forever? Things don’t keep moving forever because there’s almost always an unbalanced force acting upon it. A book sliding across a table slows down and stops because of the force of friction. If you throw a ball upwards it will eventually slow down and fall because of the force of gravity.
  • 17. In outer space, away from gravity and any sources of friction, a rocket ship launched with a certain speed and direction would keep going in that same direction and at that same speed forever.
  • 18.  Why is wearing of seatbelts in cars important?
  • 20. Assessment:  1. Explain how the first law of motion relates to an object at rest and an object in motion.  2. Provide five examples from everyday life that illustrates the first law of motion.
  • 21. Assignment:  Research and present examples of inertia in space exploration, sports or amusement park rides.
  • 22.
  • 23. Newton’s Second Law Force equals mass times acceleration. F = ma Acceleration: a measurement of how quickly an object is changing speed.
  • 24. What does F = ma mean? Force is directly proportional to mass and acceleration. Imagine a ball of a certain mass moving at a certain acceleration. This ball has a certain force. Now imagine we make the ball twice as big (double the mass) but keep the acceleration constant. F = ma says that this new ball has twice the force of the old ball. Now imagine the original ball moving at twice the original acceleration. F = ma says that the ball will again have twice the force of the ball at the original acceleration.
  • 25. More about F = ma If you double the mass, you double the force. If you double the acceleration, you double the force. What if you double the mass and the acceleration? (2m)(2a) = 4F Doubling the mass and the acceleration quadruples the force. So . . . what if you decrease the mass by half? How much force would the object have now?
  • 26. What does F = ma say? F = ma basically means that the force of an object comes from its mass and its acceleration. Something very small (low mass) that’s changing speed very quickly (high acceleration), like a bullet, can still have a great force. Something very small changing speed very slowly will have a very weak force. Something very massive (high mass) that’s changing speed very slowly (low acceleration), like a glacier, can still have great force.
  • 27. Newton’s Third Law For every action there is an equal and opposite reaction.
  • 28. What does this mean? For every force acting on an object, there is an equal force acting in the opposite direction. Right now, gravity is pulling you down in your seat, but Newton’s Third Law says your seat is pushing up against you with equal force. This is why you are not moving. There is a balanced force acting on you– gravity pulling down, your seat pushing up.
  • 29. Think about it . . . What happens if you are standing on a skateboard or a slippery floor and push against a wall? You slide in the opposite direction (away from the wall), because you pushed on the wall but the wall pushed back on you with equal and opposite force. Why does it hurt so much when you stub your toe? When your toe exerts a force on a rock, the rock exerts an equal force back on your toe. The harder you hit your toe against it, the more force the rock exerts back on your toe (and the more your toe hurts).
  • 30. Review Newton’s First Law: Objects in motion tend to stay in motion and objects at rest tend to stay at rest unless acted upon by an unbalanced force. Newton’s Second Law: Force equals mass times acceleration (F = ma). Newton’s Third Law: For every action there is an equal and opposite reaction.
  • 31. Vocabulary Inertia: the tendency of an object to resist changes in its state of motion Acceleration: •a change in velocity •a measurement of how quickly an object is changing speed, direction or both Velocity: The rate of change of a position along a straight line with respect to time Force: strength or energy