SlideShare a Scribd company logo
Switching from the
                          Relational to the
                            Graph model
Luca Garulli –
Founder and CEO @NuvolaBase Ltd
Author of OrientDB                                               Cloud Conference
                                                                      Apr 18th 2013 in Turin, Italy
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License     Page 1
                                                                                                 www.orientechnologies.com
1979
                   First Relational DBMS available as product




                                                    2009
                                        NoSQL movement

(c) Luca Garulli       Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 2
1979
                   First Relational DBMS available as product



                                                                Hey, 30 years in the
                                                                IT field is so huge!


                                                    2009
                                        NoSQL movement

(c) Luca Garulli       Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 3
Before 2009 teams of developers
                 always fought to select:

                       Operative System
                    Programming Language
                   Middleware (App-Servers)

                   What about the Database?
(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 4
One of the main resistances of
RDBMS users to pass to a NoSQL product
          are related to the
      complexity of the model:

            Ok, NoSQL products are super for
                  BigData and BigScale
                         but...
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 5
...what about the model?



(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 6
What is the NoSQL answer
         about managing complex domains?


                      Key-Value stores ?
                        Column-Based ?
                     Document database ?
                       Graph database !
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 7
CAUTION!
               This presentation will not use a
                   social like domain with
                   the classic paradigm of
                       friend-of-friendN
                 where the graph databases
                 are already widely used...
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 8
...But rather we will explore how
   to think «graphically» with one of the
        most common domains in the
              enterprise world:

                   The old-classic CRM* domain

                    * today in 99% of the cases a RDBMS is used


(c) Luca Garulli      Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 9
Every developer knows
 the Relational Model,
  but who knows the
      Graph one?
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 10
Back to school:
       Graph Theory crash course




(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 11
Basic Graph

                                         Likes                                 Cloud
                                                                               Cloud
                   Luca
                   Luca
                                                                             Conference
                                                                             Conference




(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 12
Property Graph Model*
                                         Vertices are
                                          directed

               Luca
               Luca
                                           Likes                                 Cloud
                                                                                 Cloud
            name: Luca
             name: Luca
          surname: Garulli
           surname: Garulli                since: 2013                         Conference
                                                                               Conference
       company: NuvolaBase
        company: NuvolaBase
                                                                                  date: Oct 1° 2012
                                                                                   date: Oct 1° 2012



 Vertices and Edges
 can have properties

                               * https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
(c) Luca Garulli       Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License     Page 13
Property Graph Model
                                        Likes
                                                2   013
                                         since:
                                                                               Cloud
                                                                               Cloud
                   Luca
                   Luca
                                      Speak                                  Conference
                                                                             Conference
                                            s
                                ti
                          abstra tle: «Switch
                                ct: «Th       in
                                       is talk g...»
                                              presen
                                                     ts...»
       An Edge connects 2
  vertices: use multiple edges
   to represents 1-N and N-M
          relationships
(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 14
Property Graph Model
                                  Studies                                              Turin
                                                                                       Turin
 Luca
 Luca
                      Likes                                                                         located

            FriendOf
                                                                                                Cloud
                                                                                                Cloud
                                                                                              Conference
                                                                                              Conference
             Walter
             Walter                   Organizes

(c) Luca Garulli      Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License    Page 15
Compliments, this is your diploma in
        «Graph Theory»




(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 16
Now go back
       to our domain:
          the CRM
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 17
Domain: the super minimal CRM

                     Customer
                     Customer                             Address
                                                          Address




Registry system
Order system


                      Order
                      Order                                      Stock
                                                                 Stock



  (c) Luca Garulli            Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 18
Domain: the super minimal CRM

                     Customer
                     Customer                             Address
                                                          Address




                                                                                   How does
                                                                                Relational DBMS
Registry system
                                                                              manage relationships?
Order system


                      Order
                      Order                                      Stock
                                                                 Stock



  (c) Luca Garulli            Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 19
Relational World: 1-1 Relationships
Primary key                                                         Primary key
                     Customer                                                               Address
         Id         Name          Address                                   Id                  Location
                                                   Foreign key
         10 Luca                34                                          34     Rome
         11 Jill                44                                          44     London
         34 John                54                                          54     Moscow
         56 Mark                66                                          66     New Mexico
         88 Steve               68                                          68     Palo Alto


                   JOIN Customer.Address -> Address.Id


(c) Luca Garulli        Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License        Page 20
Relational World: 1-N Relationships
                   Customer                                                                  Address
         Id           Name                                              Id      Customer                    Location
         10 Luca                                                       24             10          Rome
         11 Jill                                                       33             10          London
         34 John                                                       44             34          Moscow
         56 Mark                                                       66             56          Cologne
         88 Steve                                                      68             88          Palo Alto


    Inverse JOIN Address.Customer -> Customer.Id


(c) Luca Garulli              Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License        Page 21
Relational World: N-M Relationships
             Customer                              CustomerAddress                                        Address
          Id         Name                           Id           Address                            Id      Location
          10       Luca                             10      24                                      24     Rome
          11       Jill                             10      33                                      33     London
          34       John                             34      44                                      44     Moscow
          56       Mark                                                                             66     Cologne
          88       Steve                                                                            68     Palo Alto


                                 Additional table with 2 JOINs
                          (1) CustomerAddress.Id -> Customer.Id and
                          (2) CustomerAddress.Address -> Address.Id
(c) Luca Garulli            Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License       Page 22
What’s wrong with the
                     Relational Model?


(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 23
The JOIN is the evil!
             Customer                              CustomerAddress                                        Address
          Id         Name                           Id           Address                            Id      Location
          10       Luca                             10      24                                      24     Rome
          11       Jill                             10      33                                      33     London
          34       John                             34      24                                      44     Moscow
          56       Mark                                                                             66     Cologne
          88       Steve                                                                            68     Palo Alto


                           These are all JOINs executed
                             everytime you traverse a
                                   relationship!
                                    relationship
(c) Luca Garulli            Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License       Page 24
A JOIN means searching for a key in
                  another table

   The first rule to improve performance
           is indexing all the keys

Index speeds up searches, but slows down
       insert, updates and deletes
 (c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 25
So in the best case a JOIN is a lookup
                into an index

                   This is done per single join!

If you traverse hundreds of relationships
    you’re executing hundreds of JOINs

(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 26
Index Lookup
            is it really that fast?

(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 27
Index Lookup: how does it works?
                                                        A-Z

                                                  A-L         M-Z




                Think to an
               Address Book
           where we have to find
             the Luca’s phone
                  number


(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 28
Index Lookup: how does it works?
                                                        A-Z

                                                  A-L         M-Z


                              A-L                                              M-Z

                        A-D         E-L                                  M-R         S-Z



                                                          Index algorithms are all
                                                           similar and based on
                                                              balanced trees



(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 29
Index Lookup: how does it works?
                                                                           A-Z

                                                                     A-L         M-Z


                                           A-L                                               M-Z

                                     A-D         E-L                                   M-R         S-Z


                         A-D                                 E-L

                   A-B         C-D                     E-G         H-L




(c) Luca Garulli               Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 30
Index Lookup: how does it works?
                                                                           A-Z

                                                                     A-L         M-Z


                                           A-L                                                   M-Z

                                     A-D         E-L                                       M-R         S-Z


                         A-D                                 E-L

                   A-B         C-D                     E-G         H-L


                                           E-G                                 H-L

                                     E-F         G                       H-J         K-L




(c) Luca Garulli               Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 31
Index Lookup: how does it works?
                                                                           A-Z

                                                                     A-L         M-Z


                                           A-L                                               M-Z
                                                                                                    Found!
                                     A-D         E-L                                       M-R  S-Z
                                                                                              This lookup took 5
                         A-D                                 E-L                               steps and grows
                   A-B         C-D                     E-G         H-L
                                                                                               up with the index
                                           E-G                                 H-L                   size!
                                     E-F         G                       H-J         K-L


                                                                                  Luca


(c) Luca Garulli               Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 32
An index lookup is executed
                          for each JOIN

  Querying more tables can easily
produce millions of JOINs/Lookups!

      Here the rule: more entries
   = more lookup steps = slower JOIN
(c) Luca Garulli      Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 33
Oh! This is why
 performance of my database
       drops down when
      it becomes bigger,
          and bigger,
          and bigger!
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 34
Is there a better way to
               manage relationships?


(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 35
“A graph database is any
                            storage system
                              that provides
                     index-free adjacency”
                                                                      - Marko Rodriguez
                                                                           (author of TinkerPop Blueprints)


(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 36
How does GraphDB manage
      index-free relationships?


(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 37
an Open Source (Apache licensed)
            document-graph NoSQL dbms
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 38
Ø config
          download, unzip, run!
       cut & paste the db directory
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 39
150,000        records per second
                   (flat records, no index, on commodity hw)



(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 40
Schema-less
 schema is not mandatory, relaxed model,
collect heterogeneous documents all together


(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 41
Schema-full
schema with        constraints on fields and validation rules

                    Customer.age > 17
                 Customer.address not null
             Customer.surname is mandatory
  Customer.email matches 'b[A-Z0-9._%+-]+@[A-Z0-9.-]+.[A-Z]{2,4}b'


(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 42
Schema-mixed
schema with mandatory and optional fields + constraints
    the best of schema-less and schema-full modes



(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 43
ACID Transactions
           db.begin();
           try{
             // your code
             ...
             db.commit();

           } catch( Exception e ) {
             db.rollback();
           }


(c) Luca Garulli      Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 44
Complex types
native support for            collections, maps (key/value)
                         and embedded documents
                    no more additional tables to handle them


 (c) Luca Garulli        Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 45
SQL
select * from employee where name like '%Jay%' and status=0



(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 46
runs
                    Java
                   everywhere is available JRE1.6+
                                                                                       ®
                        robust engine
(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 47
Language bindings
                              Java as native

               JRuby, PHP, C, C++, Scala, .NET,
                    Ruby, Clojure, Node.js,
                 Python, Javascript and more!

(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 48
JPA (partial)
                      public class Customer {
                        @Id
                        private Object id;

                             private String name;
                             private String surname;
                      }

                      db.save( new Customer() );
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 49
Born for the Internet
     Supports natively HTTP/RESTful protocol
        Documents are transferred in JSON



(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 50
MVRB-Tree                                                             index

         the best of B+Tree and RB-Tree
       fast on browsing, low insertion cost
               it's a new algorithm!

(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 51
Security
    users and roles, encrypted passwords
             fine grain privileges
       (similar to what RDBMSs offer)

(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 52
Cache
                   You can avoid using 3°party caches
                            like Memcached

                            2 Levels of cache:
                   Level1: Database level, 1 per thread
                     Level2: Storage level, 1 per JVM
(c) Luca Garulli       Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 53
Inheritance
                   OGraphVertex (V)




                   Person             Vehicle
              Address : Address      brand : BRANDS




  Customer               Provider
   totSold : float      totBuyed : float



(c) Luca Garulli            Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 54
Polymorphic SQL Query
                   OGraphVertex (V)




                   Person             Vehicle
              Address : Address      brand : BRANDS
                                                             select * from Person
                                                              where city.name = 'Rome‘

                                                                      Queries are polymorphics
  Customer               Provider                                  and subclasses of Person can be
   totSold : float      totBuyed : float                                  part of result set

(c) Luca Garulli            Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 55
Let’s go back
                   to the Graph Stuff

             How does OrientDB
            manage relationships?
(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 56
OrientDB: traverse a relationship
                                             The Record ID (RID)
                                           is the physical position



                   RID = #13:35
                   RID = #13:35                                                               RID = #13:100
                                                                                              RID = #13:100




                     Luca
                     Luca                                                                       Rome
                                                                                                Rome

           label : :‘Customer’
            label ‘Customer’                                                               label = ‘Address’
                                                                                            label = ‘Address’
           name : :‘Luca’
            name ‘Luca’                                                                    name = ‘Rome’
                                                                                            name = ‘Rome’



(c) Luca Garulli           Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License     Page 57
OrientDB: traverse a relationship
                                          The Edge’s RID is saved
                                          inside both vertices, as
                                               «out» and «in»

                   RID = #13:35
                   RID = #13:35                                                               RID = #13:100
                                                                                              RID = #13:100
                                                    RID = #14:54
                                                    RID = #14:54


                                                       Lives
                     Luca
                     Luca                                                                       Rome
                                                                                                Rome
                                                out: [#13:35]
                                                 out: [#13:35]
                                                in: [#13:100]
                                                 in: [#13:100]
           out ::[#14:54]                       Label : :‘Lives’
                                                 Label ‘Lives’                             in: [#14:54]
            out [#14:54]                                                                    in: [#14:54]
           label : :‘Customer’
            label ‘Customer’                                                               label = ‘Address’
                                                                                            label = ‘Address’
           name : :‘Luca’
            name ‘Luca’                                                                    name = ‘Rome’
                                                                                            name = ‘Rome’


(c) Luca Garulli           Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License     Page 58
OrientDB: traverse a relationship



                   RID = #13:35
                   RID = #13:35                                                               RID = #13:100
                                                                                              RID = #13:100
                                                    RID = #14:54
                                                    RID = #14:54


                                                       Lives
                     Luca
                     Luca                                                                       Rome
                                                                                                Rome
                                                out: [#13:35]
                                                 out: [#13:35]
                                                in: [#13:100]
                                                 in: [#13:100]
           out ::[#14:54]                       Label : :‘Lives’
                                                 Label ‘Lives’                             in: [#14:54]
            out [#14:54]                                                                    in: [#14:54]
           label : :‘Customer’
            label ‘Customer’                                                               label = ‘Address’
                                                                                            label = ‘Address’
           name : :‘Luca’
            name ‘Luca’                                                                    name = ‘Rome’
                                                                                            name = ‘Rome’


(c) Luca Garulli           Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License     Page 59
OrientDB: traverse a relationship



                   RID = #13:35
                   RID = #13:35                                                               RID = #13:100
                                                                                              RID = #13:100
                                                    RID = #14:54
                                                    RID = #14:54


                                                       Lives
                     Luca
                     Luca                                                                       Rome
                                                                                                Rome
                                                out: [#13:35]
                                                 out: [#13:35]
                                                in: [#13:100]
                                                 in: [#13:100]
           out ::[#14:54]                       Label : :‘Lives’
                                                 Label ‘Lives’                             in: [#14:54]
            out [#14:54]                                                                    in: [#14:54]
           label : :‘Customer’
            label ‘Customer’                                                               label = ‘Address’
                                                                                            label = ‘Address’
           name : :‘Luca’
            name ‘Luca’                                                                    name = ‘Rome’
                                                                                            name = ‘Rome’


(c) Luca Garulli           Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License     Page 60
GraphDB handles relationships as a
                       physical LINK to the record
                   assigned when the edge is created

                                     on the other side

                   RDBMS computes the
      relationship every time you query a database

                             Is not that crazy?!
(c) Luca Garulli      Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 61
This means jumping from a
                   O(log N) algorithm to a near O(1)

              traversing cost is not more affected
                       by database size!

                    This is huge in the BigData age

(c) Luca Garulli       Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 62
OrientDB in the Blueprints micro-benchmark,
           on common hw, with a hot cache,
                       traverses 29,6 Millions
             of records in less than 5 seconds

   about 6 Millions of nodes traversed per sec!
                   Do not try this at home
                       with a RDBMS*!


                                          *unless you live in the Google’s server farm
(c) Luca Garulli       Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 63
Create the graph in SQL
$luca> cd bin
$luca> ./console.sh
OrientDB console v.1.3.0-SNAPSHOT (www.orientdb.org)
Type 'help' to display all the commands supported.

orientdb> create vertex Customer set name = ‘Luca’
Created vertex #13:35 in 0.03 secs

orientdb> create vertex Address set name = ‘Rome’
Created vertex #13:100 in 0.02 secs

orientdb> create edge Lives from #13:35 to #13:100
Created edge #14:54 in 0.02 secs
(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 64
Create the graph in Java
Graph graph = new OrientGraph("local:/tmp/db/graph”);

Vertex luca = graph.addVertex( “class:Customer” );
luca.setProperty( “name", “Luca” );

Vertex rome = graph.addVertex ( “class:Address” );
rome.setProperty( “name", “Rome” );

Edge edge = luca.addEdge( “Lives”, rome );

graph.shutdown();



(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 65
Query the graph in SQL

orientdb> select in_lives.out from Address where name = ‘Rome’
---+------+---------|--------------------+--------------------+--------+
  #| RID  |@class   |label               |out_lives           |in      |
---+------+---------+--------------------+--------------------+--------+
  0| 13:35|Customer |Luca                |[#14:54]            |        |
---+------+---------+--------------------+--------------------+--------+
1 item(s) found. Query executed in 0.007 sec(s).




                                                                                Incoming vertices


(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 66
More on query power
orientdb> select sum( out_Order.in.total ) from Customer
              where name = ‘Luca’

orientdb> traverse out_Friend.in, in_Friend.out
             from Customer while $depth <= 7

orientdb> select from (
             traverse out_Friend.in, in_Friend.out
                from Customer while $depth <= 7
           ) where @class=‘Customer’ and city.name = ‘Turin’




(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 67
Query vs traversal

Once you’ve a well connected database
 in the form of a Super Graph you can
 cross records instead of query them!

           All you need is some root vertices
                where to start traversing
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 68
Query vs traversal
    Special
     Special
                                                  Customers
                                                  Customers                                         Stocks
                                                                                                    Stocks
   Customers
   Customers




                                          Mar
                                          Mar
                   Luca
                   Luca                                               Jill
                                                                      Jill
                                           k
                                           k
                                                                                                   White
                                                                                                   White
  This is a                                                                                        Soap
                                                                                                   Soap
root vertex                                          Order
                                                     Order                     Order
                                                                               Order
                                                     2332
                                                     2332                      8834
                                                                               8834

(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 69
Temporal based graph
                                   Year
                                    Year
        Calendar
        Calendar                   2013
                                    2013
                                                      Month
                                                       Month
                                                     April 2013
                                                     April 2013
                                                                                 Day
                                                                                 Day
                                                                              9/4/2013
                                                                               9/4/2013

                                                             Hour
                                                              Hour                                  Hour
                                                                                                     Hour
                                                           9/4/2013
                                                            9/4/2013                              9/4/2013
                                                                                                   9/4/2013
                                                             09:00
                                                              09:00                                 10:00
                                                                                                     10:00



                                                            Order
                                                            Order                    Order
                                                                                     Order                 Order
                                                                                                           Order
                                                            2332
                                                             2332                    2333
                                                                                      2333                 2334
                                                                                                            2334

(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License        Page 70
Location based graph
                                 Country
                                 Country
        Location
         Location                 Italy
                                   Italy
                                                        Region
                                                        Region
                                                         Lazio
                                                          Lazio
                                                                                 State
                                                                                 State
                                                                                  RM
                                                                                  RM

                                                              City
                                                               City                                 City
                                                                                                    City
                                                           Fiumicino
                                                            Fiumicino                              Rome
                                                                                                   Rome




                                                             Order
                                                             Order                    Order
                                                                                      Order                Order
                                                                                                           Order
                                                             2332
                                                              2332                    2333
                                                                                       2333                2334
                                                                                                            2334

(c) Luca Garulli     Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License     Page 71
Mix & Merge graphs
                                               Region
                                                Region                                State
                                                                                       State
                                                Lazio
                                                 Lazio                                 RM
                                                                                        RM


                   Country
                    Country                                  City                                     City
                                                                                                       City
                                                              City
                     Italy
                       Italy                              Fiumicino                                  Rome
                                                                                                      Rome
                                                           Fiumicino
   Location
    Location




                                                         Order
                                                         Order                        Order
                                                                                      Order                    Order
                                                                                                               Order
                                                         2332
                                                          2332                        2333
                                                                                       2333                    2334
                                                                                                                2334
    Calendar
     Calendar


                                                                           Hour
                                                                            Hour                   Hour
                                                                                                    Hour
                                                                         9/4/2013
                                                                          9/4/2013               9/4/2013
                                                                                                  9/4/2013
                            Year
                             Year                                          09:00
                                                                            09:00                  10:00
                                                                                                    10:00
                            2013
                             2013                  Month
                                                    Month
                                                  April 2013
                                                   April 2013
                                                                                       Day
                                                                                         Day
                                                                                     9/4/2013
                                                                                      9/4/2013


(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License       Page 72
This is your database




(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 73
Get last customer bought ‘Barolo’
 select last(out_Order.in.out_Customer.in]) from Stock
    where name = ‘Barolo’




                                                      #34:22




(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 74
Get his’s country



                                                    select out_City.in from #34:22
                   Turin, Italy
                                     #55:12




(c) Luca Garulli      Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 75
Get orders from that country




    select in_Customer.out from #55:12



(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 76
NuvolaBase.com

                                                                                  HTTP/REST
                   HTTP/REST




   The first Graph Database as a Service
                on the Cloud
(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 77
Do we have enough time for live demo?




(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 78
(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 79
Questions & (maybe) Answers
                                    Luca Garulli
                                                                          CEO at

           Document-Graph NoSQL
             Open Source project
                                                                                      Ltd, London UK

                   www.twitter.com/lgarulli
                                                              Conclusions at the end ->
(c) Luca Garulli    Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 80
Summary
           1)JOIN is heavy, specially on large databases

  2)GraphDB uses LINK as direct pointers to records:
          times from O(log)N to near O(1)
              = ready for the BigData

      3) GraphDB has a query language specialized to
                  traverse relationships

(c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 81
Let’s move like a
     Spider
   on the web




 (c) Luca Garulli   Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License   Page 82

More Related Content

Viewers also liked

Która firma robi solidne docieplenia?
Która firma robi solidne docieplenia?Która firma robi solidne docieplenia?
Która firma robi solidne docieplenia?
Wolny Ptak
 
Sylast /Profinish
Sylast /ProfinishSylast /Profinish
Sylast /Profinish
Ketan Gandhi
 
Trabajo pag 32
Trabajo pag 32Trabajo pag 32
Trabajo pag 32
hugodiaz07
 
money_managers_corporate_presentation_sep2014
money_managers_corporate_presentation_sep2014money_managers_corporate_presentation_sep2014
money_managers_corporate_presentation_sep2014
Binoli Dodhiwala
 
Izgradnja tima
Izgradnja timaIzgradnja tima
Izgradnja tima
Olivera Djurović
 
Freizeit und hobbys
Freizeit und hobbysFreizeit und hobbys
Freizeit und hobbys
Adriana Maris
 
Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...
Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...
Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...
Branding 2.0
 
Presentacion Final Proyecto Facebook Dimension Materialidad Vuelta de Tuerca...
Presentacion Final Proyecto Facebook  Dimension Materialidad Vuelta de Tuerca...Presentacion Final Proyecto Facebook  Dimension Materialidad Vuelta de Tuerca...
Presentacion Final Proyecto Facebook Dimension Materialidad Vuelta de Tuerca...
Estela Dominguez Halpern
 
Potash ridge investor presentation may 30 2016 cmpr
Potash ridge investor presentation may 30 2016 cmprPotash ridge investor presentation may 30 2016 cmpr
Potash ridge investor presentation may 30 2016 cmpr
PotashRidge
 
Konferencija 9 12 - Biljana Simic
Konferencija 9 12 - Biljana SimicKonferencija 9 12 - Biljana Simic
Konferencija 9 12 - Biljana Simic
Dejan Jeremic
 
Upravljanje konfliktima u organizacijama
Upravljanje konfliktima u organizacijamaUpravljanje konfliktima u organizacijama
Upravljanje konfliktima u organizacijama
Dejan Jeremic
 
Komunikacija u organizaciji
Komunikacija u organizacijiKomunikacija u organizaciji
Komunikacija u organizaciji
Vlade Satarić
 
Osnove PR komunikacije
Osnove PR komunikacije Osnove PR komunikacije
Osnove PR komunikacije
Pro PR
 
Psihologie experimentală
Psihologie experimentalăPsihologie experimentală
Psihologie experimentală
Raluca Butnaru
 
Upravljanje konfliktima trening konflikt menadzment obuka kurs
Upravljanje konfliktima trening konflikt menadzment obuka kursUpravljanje konfliktima trening konflikt menadzment obuka kurs
Upravljanje konfliktima trening konflikt menadzment obuka kurs
Miodrag Kostic, CMC
 
Manual anatomie
Manual anatomie Manual anatomie
Manual anatomie
Eugen Tabac
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
Arthur Charpentier
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
DataminingTools Inc
 
Informed and Uninformed search Strategies
Informed and Uninformed search StrategiesInformed and Uninformed search Strategies
Informed and Uninformed search Strategies
Amey Kerkar
 
Sport
SportSport

Viewers also liked (20)

Która firma robi solidne docieplenia?
Która firma robi solidne docieplenia?Która firma robi solidne docieplenia?
Która firma robi solidne docieplenia?
 
Sylast /Profinish
Sylast /ProfinishSylast /Profinish
Sylast /Profinish
 
Trabajo pag 32
Trabajo pag 32Trabajo pag 32
Trabajo pag 32
 
money_managers_corporate_presentation_sep2014
money_managers_corporate_presentation_sep2014money_managers_corporate_presentation_sep2014
money_managers_corporate_presentation_sep2014
 
Izgradnja tima
Izgradnja timaIzgradnja tima
Izgradnja tima
 
Freizeit und hobbys
Freizeit und hobbysFreizeit und hobbys
Freizeit und hobbys
 
Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...
Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...
Dall'F-Factor alla gestione dei touchpoints: esperienze di consumo e nuove pr...
 
Presentacion Final Proyecto Facebook Dimension Materialidad Vuelta de Tuerca...
Presentacion Final Proyecto Facebook  Dimension Materialidad Vuelta de Tuerca...Presentacion Final Proyecto Facebook  Dimension Materialidad Vuelta de Tuerca...
Presentacion Final Proyecto Facebook Dimension Materialidad Vuelta de Tuerca...
 
Potash ridge investor presentation may 30 2016 cmpr
Potash ridge investor presentation may 30 2016 cmprPotash ridge investor presentation may 30 2016 cmpr
Potash ridge investor presentation may 30 2016 cmpr
 
Konferencija 9 12 - Biljana Simic
Konferencija 9 12 - Biljana SimicKonferencija 9 12 - Biljana Simic
Konferencija 9 12 - Biljana Simic
 
Upravljanje konfliktima u organizacijama
Upravljanje konfliktima u organizacijamaUpravljanje konfliktima u organizacijama
Upravljanje konfliktima u organizacijama
 
Komunikacija u organizaciji
Komunikacija u organizacijiKomunikacija u organizaciji
Komunikacija u organizaciji
 
Osnove PR komunikacije
Osnove PR komunikacije Osnove PR komunikacije
Osnove PR komunikacije
 
Psihologie experimentală
Psihologie experimentalăPsihologie experimentală
Psihologie experimentală
 
Upravljanje konfliktima trening konflikt menadzment obuka kurs
Upravljanje konfliktima trening konflikt menadzment obuka kursUpravljanje konfliktima trening konflikt menadzment obuka kurs
Upravljanje konfliktima trening konflikt menadzment obuka kurs
 
Manual anatomie
Manual anatomie Manual anatomie
Manual anatomie
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
 
Informed and Uninformed search Strategies
Informed and Uninformed search StrategiesInformed and Uninformed search Strategies
Informed and Uninformed search Strategies
 
Sport
SportSport
Sport
 

Similar to Switching from Relational 2 Graph - CloudConf.it

Design your application using Persistent Graphs and OrientDB
Design your application using Persistent Graphs and OrientDBDesign your application using Persistent Graphs and OrientDB
Design your application using Persistent Graphs and OrientDB
Luca Garulli
 
Austin Data Geeks - Why relationships are cool but join sucks
Austin Data Geeks - Why relationships are cool but join sucksAustin Data Geeks - Why relationships are cool but join sucks
Austin Data Geeks - Why relationships are cool but join sucks
Orient Technologies
 
Discovering The Unknown Aspects Of Nuke
Discovering The Unknown Aspects Of NukeDiscovering The Unknown Aspects Of Nuke
Discovering The Unknown Aspects Of Nuke
Animation Kolkata
 
10 kickass-technologies-modern-developers-love
10 kickass-technologies-modern-developers-love10 kickass-technologies-modern-developers-love
10 kickass-technologies-modern-developers-love
Hamed Hatami
 
BCS Kingston & Croydon - Oxfam Case Study - Feb 2013
BCS Kingston & Croydon - Oxfam Case Study - Feb 2013BCS Kingston & Croydon - Oxfam Case Study - Feb 2013
BCS Kingston & Croydon - Oxfam Case Study - Feb 2013
Upside Energy Ltd
 
PuppetConf track overview: Modern Infrastructure
PuppetConf track overview: Modern InfrastructurePuppetConf track overview: Modern Infrastructure
PuppetConf track overview: Modern Infrastructure
Puppet
 
Community Clouds from Scratch
Community Clouds from ScratchCommunity Clouds from Scratch
Community Clouds from Scratch
NETWAYS
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
GeorgeBaggott
 
Vom Laptop zum Großrechner: Neues in GRASS GIS 7
Vom Laptop zum Großrechner: Neues in GRASS GIS 7Vom Laptop zum Großrechner: Neues in GRASS GIS 7
Vom Laptop zum Großrechner: Neues in GRASS GIS 7
Markus Neteler
 
6 weeks Cloud Computing Summer Training in Noida
6 weeks Cloud Computing Summer Training in Noida6 weeks Cloud Computing Summer Training in Noida
6 weeks Cloud Computing Summer Training in Noida
Raj Sharma
 
Interaction on Clouds
Interaction on CloudsInteraction on Clouds
Interaction on Clouds
João Paulo Preti
 
A Complete Guide to the Google Cloud Platform
A Complete Guide to the Google Cloud PlatformA Complete Guide to the Google Cloud Platform
A Complete Guide to the Google Cloud Platform
BitMin Infosystems Pvt. Ltd
 
Deutsche telekom
Deutsche telekomDeutsche telekom
Deutsche telekom
laurabeckcahoon
 
Cloud Foundry Overview for GITPRO 2013
Cloud Foundry Overview for GITPRO 2013Cloud Foundry Overview for GITPRO 2013
Cloud Foundry Overview for GITPRO 2013
Adam FitzGerald
 
Community clouds from scratch
Community clouds from scratchCommunity clouds from scratch
Community clouds from scratch
Jordi Guijarro
 
Seagate Press Conference - Sourcing from the Cloud
Seagate Press Conference - Sourcing from the CloudSeagate Press Conference - Sourcing from the Cloud
Seagate Press Conference - Sourcing from the Cloud
Andre Kiehne
 
Openstack deployment-with ubuntu
Openstack deployment-with ubuntuOpenstack deployment-with ubuntu
Openstack deployment-with ubuntu
Francisco Gonçalves
 
Own-It London Event: iCrossing presentation on building brands online
Own-It London Event: iCrossing presentation on building brands onlineOwn-It London Event: iCrossing presentation on building brands online
Own-It London Event: iCrossing presentation on building brands online
Antony Mayfield
 
Interoperability in forge - fossa2010
Interoperability in forge - fossa2010Interoperability in forge - fossa2010
Interoperability in forge - fossa2010
fOSSa - Free Open Source Software Academia Conference
 
Interop in forge - fossa2010
Interop in forge - fossa2010Interop in forge - fossa2010

Similar to Switching from Relational 2 Graph - CloudConf.it (20)

Design your application using Persistent Graphs and OrientDB
Design your application using Persistent Graphs and OrientDBDesign your application using Persistent Graphs and OrientDB
Design your application using Persistent Graphs and OrientDB
 
Austin Data Geeks - Why relationships are cool but join sucks
Austin Data Geeks - Why relationships are cool but join sucksAustin Data Geeks - Why relationships are cool but join sucks
Austin Data Geeks - Why relationships are cool but join sucks
 
Discovering The Unknown Aspects Of Nuke
Discovering The Unknown Aspects Of NukeDiscovering The Unknown Aspects Of Nuke
Discovering The Unknown Aspects Of Nuke
 
10 kickass-technologies-modern-developers-love
10 kickass-technologies-modern-developers-love10 kickass-technologies-modern-developers-love
10 kickass-technologies-modern-developers-love
 
BCS Kingston & Croydon - Oxfam Case Study - Feb 2013
BCS Kingston & Croydon - Oxfam Case Study - Feb 2013BCS Kingston & Croydon - Oxfam Case Study - Feb 2013
BCS Kingston & Croydon - Oxfam Case Study - Feb 2013
 
PuppetConf track overview: Modern Infrastructure
PuppetConf track overview: Modern InfrastructurePuppetConf track overview: Modern Infrastructure
PuppetConf track overview: Modern Infrastructure
 
Community Clouds from Scratch
Community Clouds from ScratchCommunity Clouds from Scratch
Community Clouds from Scratch
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
 
Vom Laptop zum Großrechner: Neues in GRASS GIS 7
Vom Laptop zum Großrechner: Neues in GRASS GIS 7Vom Laptop zum Großrechner: Neues in GRASS GIS 7
Vom Laptop zum Großrechner: Neues in GRASS GIS 7
 
6 weeks Cloud Computing Summer Training in Noida
6 weeks Cloud Computing Summer Training in Noida6 weeks Cloud Computing Summer Training in Noida
6 weeks Cloud Computing Summer Training in Noida
 
Interaction on Clouds
Interaction on CloudsInteraction on Clouds
Interaction on Clouds
 
A Complete Guide to the Google Cloud Platform
A Complete Guide to the Google Cloud PlatformA Complete Guide to the Google Cloud Platform
A Complete Guide to the Google Cloud Platform
 
Deutsche telekom
Deutsche telekomDeutsche telekom
Deutsche telekom
 
Cloud Foundry Overview for GITPRO 2013
Cloud Foundry Overview for GITPRO 2013Cloud Foundry Overview for GITPRO 2013
Cloud Foundry Overview for GITPRO 2013
 
Community clouds from scratch
Community clouds from scratchCommunity clouds from scratch
Community clouds from scratch
 
Seagate Press Conference - Sourcing from the Cloud
Seagate Press Conference - Sourcing from the CloudSeagate Press Conference - Sourcing from the Cloud
Seagate Press Conference - Sourcing from the Cloud
 
Openstack deployment-with ubuntu
Openstack deployment-with ubuntuOpenstack deployment-with ubuntu
Openstack deployment-with ubuntu
 
Own-It London Event: iCrossing presentation on building brands online
Own-It London Event: iCrossing presentation on building brands onlineOwn-It London Event: iCrossing presentation on building brands online
Own-It London Event: iCrossing presentation on building brands online
 
Interoperability in forge - fossa2010
Interoperability in forge - fossa2010Interoperability in forge - fossa2010
Interoperability in forge - fossa2010
 
Interop in forge - fossa2010
Interop in forge - fossa2010Interop in forge - fossa2010
Interop in forge - fossa2010
 

More from Luca Garulli

Scale Out Your Graph Across Servers and Clouds with OrientDB
Scale Out Your Graph Across Servers and Clouds  with OrientDBScale Out Your Graph Across Servers and Clouds  with OrientDB
Scale Out Your Graph Across Servers and Clouds with OrientDB
Luca Garulli
 
Polyglot Persistence vs Multi-Model Databases
Polyglot Persistence vs Multi-Model DatabasesPolyglot Persistence vs Multi-Model Databases
Polyglot Persistence vs Multi-Model Databases
Luca Garulli
 
How Graph Databases started the Multi Model revolution
How Graph Databases started the Multi Model revolutionHow Graph Databases started the Multi Model revolution
How Graph Databases started the Multi Model revolution
Luca Garulli
 
OrientDB and Hazelcast
OrientDB and HazelcastOrientDB and Hazelcast
OrientDB and Hazelcast
Luca Garulli
 
OrientDB document or graph? Select the right model (old presentation)
OrientDB document or graph? Select the right model (old presentation)OrientDB document or graph? Select the right model (old presentation)
OrientDB document or graph? Select the right model (old presentation)
Luca Garulli
 
OrientDB distributed architecture 1.1
OrientDB distributed architecture 1.1OrientDB distributed architecture 1.1
OrientDB distributed architecture 1.1
Luca Garulli
 
OrientDB for real & Web App development
OrientDB for real & Web App developmentOrientDB for real & Web App development
OrientDB for real & Web App development
Luca Garulli
 
OrientDB the database for the web 1.1
OrientDB the database for the web 1.1OrientDB the database for the web 1.1
OrientDB the database for the web 1.1
Luca Garulli
 
Roma introduction and concepts
Roma introduction and conceptsRoma introduction and concepts
Roma introduction and concepts
Luca Garulli
 
OrientDB introduction - NoSQL
OrientDB introduction - NoSQLOrientDB introduction - NoSQL
OrientDB introduction - NoSQL
Luca Garulli
 
RomaFramework Tutorial Basics
RomaFramework Tutorial BasicsRomaFramework Tutorial Basics
RomaFramework Tutorial Basics
Luca Garulli
 
Roma Meta Framework Concepts @JavaDay Rome 2007
Roma Meta Framework Concepts @JavaDay Rome 2007Roma Meta Framework Concepts @JavaDay Rome 2007
Roma Meta Framework Concepts @JavaDay Rome 2007
Luca Garulli
 

More from Luca Garulli (12)

Scale Out Your Graph Across Servers and Clouds with OrientDB
Scale Out Your Graph Across Servers and Clouds  with OrientDBScale Out Your Graph Across Servers and Clouds  with OrientDB
Scale Out Your Graph Across Servers and Clouds with OrientDB
 
Polyglot Persistence vs Multi-Model Databases
Polyglot Persistence vs Multi-Model DatabasesPolyglot Persistence vs Multi-Model Databases
Polyglot Persistence vs Multi-Model Databases
 
How Graph Databases started the Multi Model revolution
How Graph Databases started the Multi Model revolutionHow Graph Databases started the Multi Model revolution
How Graph Databases started the Multi Model revolution
 
OrientDB and Hazelcast
OrientDB and HazelcastOrientDB and Hazelcast
OrientDB and Hazelcast
 
OrientDB document or graph? Select the right model (old presentation)
OrientDB document or graph? Select the right model (old presentation)OrientDB document or graph? Select the right model (old presentation)
OrientDB document or graph? Select the right model (old presentation)
 
OrientDB distributed architecture 1.1
OrientDB distributed architecture 1.1OrientDB distributed architecture 1.1
OrientDB distributed architecture 1.1
 
OrientDB for real & Web App development
OrientDB for real & Web App developmentOrientDB for real & Web App development
OrientDB for real & Web App development
 
OrientDB the database for the web 1.1
OrientDB the database for the web 1.1OrientDB the database for the web 1.1
OrientDB the database for the web 1.1
 
Roma introduction and concepts
Roma introduction and conceptsRoma introduction and concepts
Roma introduction and concepts
 
OrientDB introduction - NoSQL
OrientDB introduction - NoSQLOrientDB introduction - NoSQL
OrientDB introduction - NoSQL
 
RomaFramework Tutorial Basics
RomaFramework Tutorial BasicsRomaFramework Tutorial Basics
RomaFramework Tutorial Basics
 
Roma Meta Framework Concepts @JavaDay Rome 2007
Roma Meta Framework Concepts @JavaDay Rome 2007Roma Meta Framework Concepts @JavaDay Rome 2007
Roma Meta Framework Concepts @JavaDay Rome 2007
 

Recently uploaded

WhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring AppsWhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring Apps
HackersList
 
The importance of Quality Assurance for ICT Standardization
The importance of Quality Assurance for ICT StandardizationThe importance of Quality Assurance for ICT Standardization
The importance of Quality Assurance for ICT Standardization
Axel Rennoch
 
IPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite SolutionIPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite Solution
IPLOOK Networks
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
Brian Pichman
 
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and OllamaTirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Zilliz
 
Figma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdfFigma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdf
Management Institute of Skills Development
 
Data Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining DataData Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining Data
Safe Software
 
Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024
aakash malhotra
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
Jimmy Lai
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
bhumivarma35300
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
Priyanka Aash
 
Types of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technologyTypes of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technology
ldtexsolbl
 
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
aslasdfmkhan4750
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
sunilverma7884
 
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSECHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
kumarjarun2010
 
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyyActive Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
RaminGhanbari2
 
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-InTrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc
 
Salesforce AI & Einstein Copilot Workshop
Salesforce AI & Einstein Copilot WorkshopSalesforce AI & Einstein Copilot Workshop
Salesforce AI & Einstein Copilot Workshop
CEPTES Software Inc
 
July Patch Tuesday
July Patch TuesdayJuly Patch Tuesday
July Patch Tuesday
Ivanti
 

Recently uploaded (20)

WhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring AppsWhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring Apps
 
The importance of Quality Assurance for ICT Standardization
The importance of Quality Assurance for ICT StandardizationThe importance of Quality Assurance for ICT Standardization
The importance of Quality Assurance for ICT Standardization
 
IPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite SolutionIPLOOK Remote-Sensing Satellite Solution
IPLOOK Remote-Sensing Satellite Solution
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
 
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and OllamaTirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
 
Figma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdfFigma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdf
 
Data Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining DataData Integration Basics: Merging & Joining Data
Data Integration Basics: Merging & Joining Data
 
Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
 
Types of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technologyTypes of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technology
 
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
 
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSECHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
 
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyyActive Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
 
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-InTrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
TrustArc Webinar - 2024 Data Privacy Trends: A Mid-Year Check-In
 
Salesforce AI & Einstein Copilot Workshop
Salesforce AI & Einstein Copilot WorkshopSalesforce AI & Einstein Copilot Workshop
Salesforce AI & Einstein Copilot Workshop
 
July Patch Tuesday
July Patch TuesdayJuly Patch Tuesday
July Patch Tuesday
 

Switching from Relational 2 Graph - CloudConf.it

  • 1. Switching from the Relational to the Graph model Luca Garulli – Founder and CEO @NuvolaBase Ltd Author of OrientDB Cloud Conference Apr 18th 2013 in Turin, Italy (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 1 www.orientechnologies.com
  • 2. 1979 First Relational DBMS available as product 2009 NoSQL movement (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 2
  • 3. 1979 First Relational DBMS available as product Hey, 30 years in the IT field is so huge! 2009 NoSQL movement (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 3
  • 4. Before 2009 teams of developers always fought to select: Operative System Programming Language Middleware (App-Servers) What about the Database? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 4
  • 5. One of the main resistances of RDBMS users to pass to a NoSQL product are related to the complexity of the model: Ok, NoSQL products are super for BigData and BigScale but... (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 5
  • 6. ...what about the model? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 6
  • 7. What is the NoSQL answer about managing complex domains? Key-Value stores ? Column-Based ? Document database ? Graph database ! (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 7
  • 8. CAUTION! This presentation will not use a social like domain with the classic paradigm of friend-of-friendN where the graph databases are already widely used... (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 8
  • 9. ...But rather we will explore how to think «graphically» with one of the most common domains in the enterprise world: The old-classic CRM* domain * today in 99% of the cases a RDBMS is used (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 9
  • 10. Every developer knows the Relational Model, but who knows the Graph one? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 10
  • 11. Back to school: Graph Theory crash course (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 11
  • 12. Basic Graph Likes Cloud Cloud Luca Luca Conference Conference (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 12
  • 13. Property Graph Model* Vertices are directed Luca Luca Likes Cloud Cloud name: Luca name: Luca surname: Garulli surname: Garulli since: 2013 Conference Conference company: NuvolaBase company: NuvolaBase date: Oct 1° 2012 date: Oct 1° 2012 Vertices and Edges can have properties * https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 13
  • 14. Property Graph Model Likes 2 013 since: Cloud Cloud Luca Luca Speak Conference Conference s ti abstra tle: «Switch ct: «Th in is talk g...» presen ts...» An Edge connects 2 vertices: use multiple edges to represents 1-N and N-M relationships (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 14
  • 15. Property Graph Model Studies Turin Turin Luca Luca Likes located FriendOf Cloud Cloud Conference Conference Walter Walter Organizes (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 15
  • 16. Compliments, this is your diploma in «Graph Theory» (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 16
  • 17. Now go back to our domain: the CRM (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 17
  • 18. Domain: the super minimal CRM Customer Customer Address Address Registry system Order system Order Order Stock Stock (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 18
  • 19. Domain: the super minimal CRM Customer Customer Address Address How does Relational DBMS Registry system manage relationships? Order system Order Order Stock Stock (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 19
  • 20. Relational World: 1-1 Relationships Primary key Primary key Customer Address Id Name Address Id Location Foreign key 10 Luca 34 34 Rome 11 Jill 44 44 London 34 John 54 54 Moscow 56 Mark 66 66 New Mexico 88 Steve 68 68 Palo Alto JOIN Customer.Address -> Address.Id (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 20
  • 21. Relational World: 1-N Relationships Customer Address Id Name Id Customer Location 10 Luca 24 10 Rome 11 Jill 33 10 London 34 John 44 34 Moscow 56 Mark 66 56 Cologne 88 Steve 68 88 Palo Alto Inverse JOIN Address.Customer -> Customer.Id (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 21
  • 22. Relational World: N-M Relationships Customer CustomerAddress Address Id Name Id Address Id Location 10 Luca 10 24 24 Rome 11 Jill 10 33 33 London 34 John 34 44 44 Moscow 56 Mark 66 Cologne 88 Steve 68 Palo Alto Additional table with 2 JOINs (1) CustomerAddress.Id -> Customer.Id and (2) CustomerAddress.Address -> Address.Id (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 22
  • 23. What’s wrong with the Relational Model? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 23
  • 24. The JOIN is the evil! Customer CustomerAddress Address Id Name Id Address Id Location 10 Luca 10 24 24 Rome 11 Jill 10 33 33 London 34 John 34 24 44 Moscow 56 Mark 66 Cologne 88 Steve 68 Palo Alto These are all JOINs executed everytime you traverse a relationship! relationship (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 24
  • 25. A JOIN means searching for a key in another table The first rule to improve performance is indexing all the keys Index speeds up searches, but slows down insert, updates and deletes (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 25
  • 26. So in the best case a JOIN is a lookup into an index This is done per single join! If you traverse hundreds of relationships you’re executing hundreds of JOINs (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 26
  • 27. Index Lookup is it really that fast? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 27
  • 28. Index Lookup: how does it works? A-Z A-L M-Z Think to an Address Book where we have to find the Luca’s phone number (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 28
  • 29. Index Lookup: how does it works? A-Z A-L M-Z A-L M-Z A-D E-L M-R S-Z Index algorithms are all similar and based on balanced trees (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 29
  • 30. Index Lookup: how does it works? A-Z A-L M-Z A-L M-Z A-D E-L M-R S-Z A-D E-L A-B C-D E-G H-L (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 30
  • 31. Index Lookup: how does it works? A-Z A-L M-Z A-L M-Z A-D E-L M-R S-Z A-D E-L A-B C-D E-G H-L E-G H-L E-F G H-J K-L (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 31
  • 32. Index Lookup: how does it works? A-Z A-L M-Z A-L M-Z Found! A-D E-L M-R S-Z This lookup took 5 A-D E-L steps and grows A-B C-D E-G H-L up with the index E-G H-L size! E-F G H-J K-L Luca (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 32
  • 33. An index lookup is executed for each JOIN Querying more tables can easily produce millions of JOINs/Lookups! Here the rule: more entries = more lookup steps = slower JOIN (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 33
  • 34. Oh! This is why performance of my database drops down when it becomes bigger, and bigger, and bigger! (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 34
  • 35. Is there a better way to manage relationships? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 35
  • 36. “A graph database is any storage system that provides index-free adjacency” - Marko Rodriguez (author of TinkerPop Blueprints) (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 36
  • 37. How does GraphDB manage index-free relationships? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 37
  • 38. an Open Source (Apache licensed) document-graph NoSQL dbms (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 38
  • 39. Ø config download, unzip, run! cut & paste the db directory (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 39
  • 40. 150,000 records per second (flat records, no index, on commodity hw) (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 40
  • 41. Schema-less schema is not mandatory, relaxed model, collect heterogeneous documents all together (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 41
  • 42. Schema-full schema with constraints on fields and validation rules Customer.age > 17 Customer.address not null Customer.surname is mandatory Customer.email matches 'b[A-Z0-9._%+-]+@[A-Z0-9.-]+.[A-Z]{2,4}b' (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 42
  • 43. Schema-mixed schema with mandatory and optional fields + constraints the best of schema-less and schema-full modes (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 43
  • 44. ACID Transactions db.begin(); try{ // your code ... db.commit(); } catch( Exception e ) { db.rollback(); } (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 44
  • 45. Complex types native support for collections, maps (key/value) and embedded documents no more additional tables to handle them (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 45
  • 46. SQL select * from employee where name like '%Jay%' and status=0 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 46
  • 47. runs Java everywhere is available JRE1.6+ ® robust engine (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 47
  • 48. Language bindings Java as native JRuby, PHP, C, C++, Scala, .NET, Ruby, Clojure, Node.js, Python, Javascript and more! (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 48
  • 49. JPA (partial) public class Customer { @Id private Object id; private String name; private String surname; } db.save( new Customer() ); (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 49
  • 50. Born for the Internet Supports natively HTTP/RESTful protocol Documents are transferred in JSON (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 50
  • 51. MVRB-Tree index the best of B+Tree and RB-Tree fast on browsing, low insertion cost it's a new algorithm! (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 51
  • 52. Security users and roles, encrypted passwords fine grain privileges (similar to what RDBMSs offer) (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 52
  • 53. Cache You can avoid using 3°party caches like Memcached 2 Levels of cache: Level1: Database level, 1 per thread Level2: Storage level, 1 per JVM (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 53
  • 54. Inheritance OGraphVertex (V) Person Vehicle Address : Address brand : BRANDS Customer Provider totSold : float totBuyed : float (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 54
  • 55. Polymorphic SQL Query OGraphVertex (V) Person Vehicle Address : Address brand : BRANDS select * from Person where city.name = 'Rome‘ Queries are polymorphics Customer Provider and subclasses of Person can be totSold : float totBuyed : float part of result set (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 55
  • 56. Let’s go back to the Graph Stuff How does OrientDB manage relationships? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 56
  • 57. OrientDB: traverse a relationship The Record ID (RID) is the physical position RID = #13:35 RID = #13:35 RID = #13:100 RID = #13:100 Luca Luca Rome Rome label : :‘Customer’ label ‘Customer’ label = ‘Address’ label = ‘Address’ name : :‘Luca’ name ‘Luca’ name = ‘Rome’ name = ‘Rome’ (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 57
  • 58. OrientDB: traverse a relationship The Edge’s RID is saved inside both vertices, as «out» and «in» RID = #13:35 RID = #13:35 RID = #13:100 RID = #13:100 RID = #14:54 RID = #14:54 Lives Luca Luca Rome Rome out: [#13:35] out: [#13:35] in: [#13:100] in: [#13:100] out ::[#14:54] Label : :‘Lives’ Label ‘Lives’ in: [#14:54] out [#14:54] in: [#14:54] label : :‘Customer’ label ‘Customer’ label = ‘Address’ label = ‘Address’ name : :‘Luca’ name ‘Luca’ name = ‘Rome’ name = ‘Rome’ (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 58
  • 59. OrientDB: traverse a relationship RID = #13:35 RID = #13:35 RID = #13:100 RID = #13:100 RID = #14:54 RID = #14:54 Lives Luca Luca Rome Rome out: [#13:35] out: [#13:35] in: [#13:100] in: [#13:100] out ::[#14:54] Label : :‘Lives’ Label ‘Lives’ in: [#14:54] out [#14:54] in: [#14:54] label : :‘Customer’ label ‘Customer’ label = ‘Address’ label = ‘Address’ name : :‘Luca’ name ‘Luca’ name = ‘Rome’ name = ‘Rome’ (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 59
  • 60. OrientDB: traverse a relationship RID = #13:35 RID = #13:35 RID = #13:100 RID = #13:100 RID = #14:54 RID = #14:54 Lives Luca Luca Rome Rome out: [#13:35] out: [#13:35] in: [#13:100] in: [#13:100] out ::[#14:54] Label : :‘Lives’ Label ‘Lives’ in: [#14:54] out [#14:54] in: [#14:54] label : :‘Customer’ label ‘Customer’ label = ‘Address’ label = ‘Address’ name : :‘Luca’ name ‘Luca’ name = ‘Rome’ name = ‘Rome’ (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 60
  • 61. GraphDB handles relationships as a physical LINK to the record assigned when the edge is created on the other side RDBMS computes the relationship every time you query a database Is not that crazy?! (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 61
  • 62. This means jumping from a O(log N) algorithm to a near O(1) traversing cost is not more affected by database size! This is huge in the BigData age (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 62
  • 63. OrientDB in the Blueprints micro-benchmark, on common hw, with a hot cache, traverses 29,6 Millions of records in less than 5 seconds about 6 Millions of nodes traversed per sec! Do not try this at home with a RDBMS*! *unless you live in the Google’s server farm (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 63
  • 64. Create the graph in SQL $luca> cd bin $luca> ./console.sh OrientDB console v.1.3.0-SNAPSHOT (www.orientdb.org) Type 'help' to display all the commands supported. orientdb> create vertex Customer set name = ‘Luca’ Created vertex #13:35 in 0.03 secs orientdb> create vertex Address set name = ‘Rome’ Created vertex #13:100 in 0.02 secs orientdb> create edge Lives from #13:35 to #13:100 Created edge #14:54 in 0.02 secs (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 64
  • 65. Create the graph in Java Graph graph = new OrientGraph("local:/tmp/db/graph”); Vertex luca = graph.addVertex( “class:Customer” ); luca.setProperty( “name", “Luca” ); Vertex rome = graph.addVertex ( “class:Address” ); rome.setProperty( “name", “Rome” ); Edge edge = luca.addEdge( “Lives”, rome ); graph.shutdown(); (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 65
  • 66. Query the graph in SQL orientdb> select in_lives.out from Address where name = ‘Rome’ ---+------+---------|--------------------+--------------------+--------+   #| RID  |@class   |label               |out_lives           |in      | ---+------+---------+--------------------+--------------------+--------+   0| 13:35|Customer |Luca                |[#14:54]            |        | ---+------+---------+--------------------+--------------------+--------+ 1 item(s) found. Query executed in 0.007 sec(s). Incoming vertices (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 66
  • 67. More on query power orientdb> select sum( out_Order.in.total ) from Customer where name = ‘Luca’ orientdb> traverse out_Friend.in, in_Friend.out from Customer while $depth <= 7 orientdb> select from ( traverse out_Friend.in, in_Friend.out from Customer while $depth <= 7 ) where @class=‘Customer’ and city.name = ‘Turin’ (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 67
  • 68. Query vs traversal Once you’ve a well connected database in the form of a Super Graph you can cross records instead of query them! All you need is some root vertices where to start traversing (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 68
  • 69. Query vs traversal Special Special Customers Customers Stocks Stocks Customers Customers Mar Mar Luca Luca Jill Jill k k White White This is a Soap Soap root vertex Order Order Order Order 2332 2332 8834 8834 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 69
  • 70. Temporal based graph Year Year Calendar Calendar 2013 2013 Month Month April 2013 April 2013 Day Day 9/4/2013 9/4/2013 Hour Hour Hour Hour 9/4/2013 9/4/2013 9/4/2013 9/4/2013 09:00 09:00 10:00 10:00 Order Order Order Order Order Order 2332 2332 2333 2333 2334 2334 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 70
  • 71. Location based graph Country Country Location Location Italy Italy Region Region Lazio Lazio State State RM RM City City City City Fiumicino Fiumicino Rome Rome Order Order Order Order Order Order 2332 2332 2333 2333 2334 2334 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 71
  • 72. Mix & Merge graphs Region Region State State Lazio Lazio RM RM Country Country City City City City Italy Italy Fiumicino Rome Rome Fiumicino Location Location Order Order Order Order Order Order 2332 2332 2333 2333 2334 2334 Calendar Calendar Hour Hour Hour Hour 9/4/2013 9/4/2013 9/4/2013 9/4/2013 Year Year 09:00 09:00 10:00 10:00 2013 2013 Month Month April 2013 April 2013 Day Day 9/4/2013 9/4/2013 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 72
  • 73. This is your database (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 73
  • 74. Get last customer bought ‘Barolo’ select last(out_Order.in.out_Customer.in]) from Stock where name = ‘Barolo’ #34:22 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 74
  • 75. Get his’s country select out_City.in from #34:22 Turin, Italy #55:12 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 75
  • 76. Get orders from that country select in_Customer.out from #55:12 (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 76
  • 77. NuvolaBase.com HTTP/REST HTTP/REST The first Graph Database as a Service on the Cloud (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 77
  • 78. Do we have enough time for live demo? (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 78
  • 79. (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 79
  • 80. Questions & (maybe) Answers Luca Garulli CEO at Document-Graph NoSQL Open Source project Ltd, London UK www.twitter.com/lgarulli Conclusions at the end -> (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 80
  • 81. Summary 1)JOIN is heavy, specially on large databases 2)GraphDB uses LINK as direct pointers to records: times from O(log)N to near O(1) = ready for the BigData 3) GraphDB has a query language specialized to traverse relationships (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 81
  • 82. Let’s move like a Spider on the web (c) Luca Garulli Licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License Page 82

Editor's Notes

  1. Good afternoon! Today I’d like to show you a new way to design a database. In 1970 Relational DBMS