SlideShare a Scribd company logo
Study of Ammonia Borane – Polyvinylpyrrolidone
Hydrogen Storage Composite Materials
Sahithya Pati and Ozge Gunaydin-Sen
Department of Chemistry and Biochemistry
Lamar University, Beaumont, TX 77710
Ammonia borane (NH3BH3), a potential hydrogen
storage system, reveals a structural phase transition
around ̃223 K. The transition mechanism was
studied by heat capacity measurements, clearly
indicating a first-order transition.
NH3BH3 (Ammonia Borane, AB) crystallizes in
the tetragonal, I4mm, space group at room
temperature and it becomes orthorhombic below the
phase transition temperature.
 Due to poor thermal kinetics practical application
of AB is still hindered to overcome this we are using
polymers to improve thermal properties and
suppress the byproducts formation.
Introduction
Experimental
 AmmoniaBorane (AB) and Polyvinylpyrrolidone
(PVP, 40,000) were purchased from Sigma
Aldrich.
 Composites of different ratios were prepared with
AB, PVP and were studied.
 AB-based composite of 1:1 mas ratio was obtained
mixing 0.10 g of AB and with an addition of 1 mL
of deionized water. Different mass ratios were
prepared as well.
Heat Capacity measurements were made with
Differential Scanning Calorimeter (TA Instrument
DSC Q20) covered the range of 300 K down to 180
K. Decomposition experiments were performed
between 298 K to 573 K.
Transmittance measurements were made with
Nicolet IS-10 FT-IR at room temperature.
Conclusions
Synthesis
Table 1. ΔH, ΔS and Tp values of AB,
PVP and AB-based composites.
References
Figure 2. Cp and Enthalpy of
AB:PVP(1:1) vs. Temperature
with ramp of 1 K/min (Heating).
Figure 5. FT-IR graph of AB, PVP and AB-
based polymer composites.
1-Gunaydin-Sen, O.; Achey, R.; Dalal, N. S.; Stowe, A. and
Autrey T. J. Phys. Chem. 2012, 112, 1544-1549.
2- Klooster, W. T.; Koetzle, T. F.; Sieghbahn, E. M.; Richardson,
T. B.; Crabtree, R. H. J. Am. Chem. Soc. 1999, 121, 6337-6343.
3- Tang, Z.; Li, S.; Yang,Z.; and Yu,X.; J. Mater. Chem., 2011, 21,
14616
Figure 4. Heat Capacity (Cp) vs
Temperature of AB, AB:PVP(1:1), (1:2)
with ramp of 1 K/min (Heating).
Cp and Enthalpy
Due to interaction between the PVP and ammonia
borane a decrease in ΔH and ΔS values is observed when the
composites are studied in DSC.
The interaction could possibly be disturbing the dihydrogen
bonding network.
Decomposition studies revealed that there is a decrease in
the melting and hydrogen release temperatures with the
increase of polymer proportion in the composite which is an
evidence for the kinetic enhancement.
Results and Discussion IR Analysis
 FT-IR spectra of pure AB, PVP
and the polymer composites
showed changes in their
functional groups
Future Studies
Various compositions of AB and PVP will be prepared
and subjected to DSC and TGA to compare with bulk AB.
VT-IR studies will be carried for change in chemical
interactions and effect of PVP on dihydrogen bond present
in AB.
Kinetic analysis will be done, activation energies will be
calculated.
 Electrospun fibers with AB:PVP will be investigated.
Acknowledgement
Lamar University and Welch Foundation
Cp/T and Entropy
Figure 3. CP/T and Entropy of
AB:PVP(1:1) vs. Temperature with
ramp of 1 K/min (Cooling).
Ramp
(1 K/min)
ΔH (J/g) ∆S(J/gK) Tp (K)
AB 31.81 0.1056 222.81 (±0.5)
AB:PVP(1:1)
9.01 0.06538 222.89(±0.5)
AB:PVP(1:2)
9.465 0.0339 222.76(±0.5)
Figure 7. The proposed thermolysis mechanism of AB
in polymeric system [3].
300 350 400 450 500 550
-8
-6
-4
-2
0
2
4
6
8
Heatflow(W/g)
Temperature (K)
AB
AB:PVP(1:1)
PVP
AB:PVP(1:2)
Figure 5. DSC decomposition graphs 298 K-573 K
Kinetic Studies
Figure 6. Kinetic studies of AB
Figure 1. a) Conformation of the closest N-H…H-B
contact from the neutron diffraction structure of
NH3BH3 [1, 2], b) polyvinylpyrrolidone.
a) b)
ΔH = 𝐶𝑝 𝑇
𝑑𝑇
𝑇
ΔS = 𝐶𝑝
𝑑𝑇
𝑇
Ozawa method Kissinger's method
ln β = -Ea /RTd+ C ln (β/Tp
2) = -Ea /RTd+ C
Where, β is the heating rate, Td is the peak
temperature of the thermal decomposition and R is
the Universal gas constant .
50 100 150 200 250
-30
-20
-10
0
10
20
30
HeatFlow
Temperature (
oC)
5
O
C/min
10
O
C/min
20
O
C/min
1900 1850 1800 1750 1700 1650 1600 1550 1500
30
40
50
60
70
80
90
100
Transmittance(%)
Wavenumber (cm
-1
)
Bulk AB
PVP
(1:1) AB:PVP
(1:2) AB:PVP
1650 cm
-1
1597 cm
-1
1600 cm
-1
1645 cm
-1
1647 cm
-1
C=O stretch
N-H deformation
200 220 240 260 280
1
2
3
4
5
6
7
8
Cp(J/gK)
Temperature (K)
AB:PVP (1:1)
AB:PVP (1:2)
AB
4000 3500 3000 2500 2000 1500 1000
Transmittance
Wavenumber (cm-1
)
2206 cm
-1
2273 cm
-1
2313 cm
-1
3186 cm
-1
3239 cm
-1
3305 cm
-1
1280 cm
-1
1417 cm
-11651 cm
-1
AB:PVP(1:2)
AB:PVP(1:1)
H-N Bond
B-H2
Bond
N-H bond
B-H and B-H2 strech
N-H,N-H2 and N-H3 strech
AB
PVP
725 cm
-1
180 200 220 240 260 280 300
2
4
6
8
10
Cp(J/gK)
Temperature (K)
0
40
80
120
160
200
Enthalpy(J/g)
180 200 220 240 260 280 300
0.01
0.02
0.03
0.04
0.05
0.06
Temperature (K)
Cp
/T(J/gK2)
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
Entropy(J/gK)

More Related Content

What's hot

2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure
Ingrid McKenzie
 
Bomb calorimeter experiment
Bomb calorimeter experimentBomb calorimeter experiment
Bomb calorimeter experiment
physics101
 
Sci 1010 chapter 5
Sci 1010 chapter 5Sci 1010 chapter 5
Sci 1010 chapter 5
stanbridge
 
Low_temperature_resistance
Low_temperature_resistanceLow_temperature_resistance
Low_temperature_resistance
Meirin Evans
 
Cmc chapter 17
Cmc chapter 17Cmc chapter 17
Cmc chapter 17
Jane Hamze
 
4 Calorimetry
4 Calorimetry4 Calorimetry
4 Calorimetry
janetra
 
Cmc chapter 15
Cmc chapter 15Cmc chapter 15
Cmc chapter 15
Jane Hamze
 

What's hot (20)

Chapter 8
Chapter 8Chapter 8
Chapter 8
 
Solution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert AlbertySolution Manual for Physical Chemistry – Robert Alberty
Solution Manual for Physical Chemistry – Robert Alberty
 
2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure2 pa32 bomb calorimeter procedure
2 pa32 bomb calorimeter procedure
 
Direct and Indirect Calorimetry, Carbon & Nitrogen Balance Studies
Direct and Indirect Calorimetry, Carbon & Nitrogen Balance StudiesDirect and Indirect Calorimetry, Carbon & Nitrogen Balance Studies
Direct and Indirect Calorimetry, Carbon & Nitrogen Balance Studies
 
Bomb calorimeter experiment
Bomb calorimeter experimentBomb calorimeter experiment
Bomb calorimeter experiment
 
Chemical Reactions: Thermochemistry
Chemical Reactions: ThermochemistryChemical Reactions: Thermochemistry
Chemical Reactions: Thermochemistry
 
2015 chemhandouts1
2015 chemhandouts12015 chemhandouts1
2015 chemhandouts1
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Magmalogy assignment
Magmalogy assignmentMagmalogy assignment
Magmalogy assignment
 
#21 Key
#21 Key#21 Key
#21 Key
 
Chapter 4 Thermochemistry
Chapter 4 ThermochemistryChapter 4 Thermochemistry
Chapter 4 Thermochemistry
 
Sci 1010 chapter 5
Sci 1010 chapter 5Sci 1010 chapter 5
Sci 1010 chapter 5
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
Low_temperature_resistance
Low_temperature_resistanceLow_temperature_resistance
Low_temperature_resistance
 
Cmc chapter 17
Cmc chapter 17Cmc chapter 17
Cmc chapter 17
 
Tang 01 heat capacity and calorimetry
Tang 01   heat capacity and calorimetryTang 01   heat capacity and calorimetry
Tang 01 heat capacity and calorimetry
 
4 Calorimetry
4 Calorimetry4 Calorimetry
4 Calorimetry
 
HEAT OF NEUTRALIZATION
HEAT OF NEUTRALIZATIONHEAT OF NEUTRALIZATION
HEAT OF NEUTRALIZATION
 
Calorimeter
CalorimeterCalorimeter
Calorimeter
 
Cmc chapter 15
Cmc chapter 15Cmc chapter 15
Cmc chapter 15
 

Viewers also liked

Viewers also liked (13)

Understanding hydrogen redistribution and designing a new hydrogen extraction...
Understanding hydrogen redistribution and designing a new hydrogen extraction...Understanding hydrogen redistribution and designing a new hydrogen extraction...
Understanding hydrogen redistribution and designing a new hydrogen extraction...
 
Investment of tata group
Investment of tata groupInvestment of tata group
Investment of tata group
 
Navigating Nonfiction
 Navigating Nonfiction Navigating Nonfiction
Navigating Nonfiction
 
Biodiversity
Biodiversity Biodiversity
Biodiversity
 
Patrimonio documental como recurso didáctico
Patrimonio documental como recurso didácticoPatrimonio documental como recurso didáctico
Patrimonio documental como recurso didáctico
 
EIT Health as catalyst: Integrating the Knowledge Triangle
EIT Health as catalyst: Integrating the Knowledge TriangleEIT Health as catalyst: Integrating the Knowledge Triangle
EIT Health as catalyst: Integrating the Knowledge Triangle
 
EIT Health Triangle example I Pillar Accelerator
EIT Health Triangle example I Pillar AcceleratorEIT Health Triangle example I Pillar Accelerator
EIT Health Triangle example I Pillar Accelerator
 
EIT Health Triangle example I Pillar Innovation
EIT Health Triangle example I Pillar InnovationEIT Health Triangle example I Pillar Innovation
EIT Health Triangle example I Pillar Innovation
 
Tips On Presentation
Tips On PresentationTips On Presentation
Tips On Presentation
 
30 jan 2015 mk
30 jan 2015 mk30 jan 2015 mk
30 jan 2015 mk
 
Lesiones deportivas en el deporte infanto juvenil
Lesiones deportivas en el deporte infanto juvenil Lesiones deportivas en el deporte infanto juvenil
Lesiones deportivas en el deporte infanto juvenil
 
Enfermedades Traumaticas
Enfermedades TraumaticasEnfermedades Traumaticas
Enfermedades Traumaticas
 
Information management
Information managementInformation management
Information management
 

Similar to Study of Ammonia Borane - Polyvinylpyrrolidone

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy
 
Published Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-final
Published Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-finalPublished Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-final
Published Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-final
Ibrahim Abdel-Rahman
 
ACS PAH Eutectic Poster FINAL
ACS PAH Eutectic Poster FINALACS PAH Eutectic Poster FINAL
ACS PAH Eutectic Poster FINAL
Longjiaxin Zhong
 
heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000
Tika Ningsih
 
EXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid VaporEXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid Vapor
Rashid Alsuwaidi
 
Chiral Oxygenations using Organocatalysis
Chiral Oxygenations using OrganocatalysisChiral Oxygenations using Organocatalysis
Chiral Oxygenations using Organocatalysis
Gayan A. Abeykoon
 
Michael Ludden L3Report2016
Michael Ludden L3Report2016Michael Ludden L3Report2016
Michael Ludden L3Report2016
Michael Ludden
 

Similar to Study of Ammonia Borane - Polyvinylpyrrolidone (20)

Msf.869.1007
Msf.869.1007Msf.869.1007
Msf.869.1007
 
Artigo Termodinamica
Artigo TermodinamicaArtigo Termodinamica
Artigo Termodinamica
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Thermal polysaccharide
Thermal polysaccharideThermal polysaccharide
Thermal polysaccharide
 
Thermal
ThermalThermal
Thermal
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
Published Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-final
Published Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-finalPublished Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-final
Published Paper-ATPB-BOE-SEP-DEC-2007-1-103-2007-final
 
Dsc peptide
Dsc peptideDsc peptide
Dsc peptide
 
ACS PAH Eutectic Poster FINAL
ACS PAH Eutectic Poster FINALACS PAH Eutectic Poster FINAL
ACS PAH Eutectic Poster FINAL
 
9783110654806_Solutions to Excercises Ind Sep Proc 2nd Ed.pdf
9783110654806_Solutions to Excercises Ind Sep Proc 2nd Ed.pdf9783110654806_Solutions to Excercises Ind Sep Proc 2nd Ed.pdf
9783110654806_Solutions to Excercises Ind Sep Proc 2nd Ed.pdf
 
N41038288
N41038288N41038288
N41038288
 
heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000heat capacity of sitric acid0c96051e8eb63eea58000000
heat capacity of sitric acid0c96051e8eb63eea58000000
 
Quantum mechanical study the kinetics, mechanisms and
Quantum mechanical study the kinetics, mechanisms andQuantum mechanical study the kinetics, mechanisms and
Quantum mechanical study the kinetics, mechanisms and
 
EXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid VaporEXP1 Dissociation of Propionic Acid Vapor
EXP1 Dissociation of Propionic Acid Vapor
 
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
 
Dynamic
DynamicDynamic
Dynamic
 
Dynamic
DynamicDynamic
Dynamic
 
Chiral Oxygenations using Organocatalysis
Chiral Oxygenations using OrganocatalysisChiral Oxygenations using Organocatalysis
Chiral Oxygenations using Organocatalysis
 
Thermochemistry, Hess law PPTxx 100L.pptx
Thermochemistry, Hess law PPTxx 100L.pptxThermochemistry, Hess law PPTxx 100L.pptx
Thermochemistry, Hess law PPTxx 100L.pptx
 
Michael Ludden L3Report2016
Michael Ludden L3Report2016Michael Ludden L3Report2016
Michael Ludden L3Report2016
 

Study of Ammonia Borane - Polyvinylpyrrolidone

  • 1. Study of Ammonia Borane – Polyvinylpyrrolidone Hydrogen Storage Composite Materials Sahithya Pati and Ozge Gunaydin-Sen Department of Chemistry and Biochemistry Lamar University, Beaumont, TX 77710 Ammonia borane (NH3BH3), a potential hydrogen storage system, reveals a structural phase transition around ̃223 K. The transition mechanism was studied by heat capacity measurements, clearly indicating a first-order transition. NH3BH3 (Ammonia Borane, AB) crystallizes in the tetragonal, I4mm, space group at room temperature and it becomes orthorhombic below the phase transition temperature.  Due to poor thermal kinetics practical application of AB is still hindered to overcome this we are using polymers to improve thermal properties and suppress the byproducts formation. Introduction Experimental  AmmoniaBorane (AB) and Polyvinylpyrrolidone (PVP, 40,000) were purchased from Sigma Aldrich.  Composites of different ratios were prepared with AB, PVP and were studied.  AB-based composite of 1:1 mas ratio was obtained mixing 0.10 g of AB and with an addition of 1 mL of deionized water. Different mass ratios were prepared as well. Heat Capacity measurements were made with Differential Scanning Calorimeter (TA Instrument DSC Q20) covered the range of 300 K down to 180 K. Decomposition experiments were performed between 298 K to 573 K. Transmittance measurements were made with Nicolet IS-10 FT-IR at room temperature. Conclusions Synthesis Table 1. ΔH, ΔS and Tp values of AB, PVP and AB-based composites. References Figure 2. Cp and Enthalpy of AB:PVP(1:1) vs. Temperature with ramp of 1 K/min (Heating). Figure 5. FT-IR graph of AB, PVP and AB- based polymer composites. 1-Gunaydin-Sen, O.; Achey, R.; Dalal, N. S.; Stowe, A. and Autrey T. J. Phys. Chem. 2012, 112, 1544-1549. 2- Klooster, W. T.; Koetzle, T. F.; Sieghbahn, E. M.; Richardson, T. B.; Crabtree, R. H. J. Am. Chem. Soc. 1999, 121, 6337-6343. 3- Tang, Z.; Li, S.; Yang,Z.; and Yu,X.; J. Mater. Chem., 2011, 21, 14616 Figure 4. Heat Capacity (Cp) vs Temperature of AB, AB:PVP(1:1), (1:2) with ramp of 1 K/min (Heating). Cp and Enthalpy Due to interaction between the PVP and ammonia borane a decrease in ΔH and ΔS values is observed when the composites are studied in DSC. The interaction could possibly be disturbing the dihydrogen bonding network. Decomposition studies revealed that there is a decrease in the melting and hydrogen release temperatures with the increase of polymer proportion in the composite which is an evidence for the kinetic enhancement. Results and Discussion IR Analysis  FT-IR spectra of pure AB, PVP and the polymer composites showed changes in their functional groups Future Studies Various compositions of AB and PVP will be prepared and subjected to DSC and TGA to compare with bulk AB. VT-IR studies will be carried for change in chemical interactions and effect of PVP on dihydrogen bond present in AB. Kinetic analysis will be done, activation energies will be calculated.  Electrospun fibers with AB:PVP will be investigated. Acknowledgement Lamar University and Welch Foundation Cp/T and Entropy Figure 3. CP/T and Entropy of AB:PVP(1:1) vs. Temperature with ramp of 1 K/min (Cooling). Ramp (1 K/min) ΔH (J/g) ∆S(J/gK) Tp (K) AB 31.81 0.1056 222.81 (±0.5) AB:PVP(1:1) 9.01 0.06538 222.89(±0.5) AB:PVP(1:2) 9.465 0.0339 222.76(±0.5) Figure 7. The proposed thermolysis mechanism of AB in polymeric system [3]. 300 350 400 450 500 550 -8 -6 -4 -2 0 2 4 6 8 Heatflow(W/g) Temperature (K) AB AB:PVP(1:1) PVP AB:PVP(1:2) Figure 5. DSC decomposition graphs 298 K-573 K Kinetic Studies Figure 6. Kinetic studies of AB Figure 1. a) Conformation of the closest N-H…H-B contact from the neutron diffraction structure of NH3BH3 [1, 2], b) polyvinylpyrrolidone. a) b) ΔH = 𝐶𝑝 𝑇 𝑑𝑇 𝑇 ΔS = 𝐶𝑝 𝑑𝑇 𝑇 Ozawa method Kissinger's method ln β = -Ea /RTd+ C ln (β/Tp 2) = -Ea /RTd+ C Where, β is the heating rate, Td is the peak temperature of the thermal decomposition and R is the Universal gas constant . 50 100 150 200 250 -30 -20 -10 0 10 20 30 HeatFlow Temperature ( oC) 5 O C/min 10 O C/min 20 O C/min 1900 1850 1800 1750 1700 1650 1600 1550 1500 30 40 50 60 70 80 90 100 Transmittance(%) Wavenumber (cm -1 ) Bulk AB PVP (1:1) AB:PVP (1:2) AB:PVP 1650 cm -1 1597 cm -1 1600 cm -1 1645 cm -1 1647 cm -1 C=O stretch N-H deformation 200 220 240 260 280 1 2 3 4 5 6 7 8 Cp(J/gK) Temperature (K) AB:PVP (1:1) AB:PVP (1:2) AB 4000 3500 3000 2500 2000 1500 1000 Transmittance Wavenumber (cm-1 ) 2206 cm -1 2273 cm -1 2313 cm -1 3186 cm -1 3239 cm -1 3305 cm -1 1280 cm -1 1417 cm -11651 cm -1 AB:PVP(1:2) AB:PVP(1:1) H-N Bond B-H2 Bond N-H bond B-H and B-H2 strech N-H,N-H2 and N-H3 strech AB PVP 725 cm -1 180 200 220 240 260 280 300 2 4 6 8 10 Cp(J/gK) Temperature (K) 0 40 80 120 160 200 Enthalpy(J/g) 180 200 220 240 260 280 300 0.01 0.02 0.03 0.04 0.05 0.06 Temperature (K) Cp /T(J/gK2) -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Entropy(J/gK)