SlideShare a Scribd company logo
From Patterns to 
Principles 
Statistical Physics of Ecological Networks 
@SamirSuweis
Outline 
•Statistical Physics & Ecology 
! 
•Architecture of the species interaction network 
! 
•Stability of ecological networks 
! 
•From patterns to principles: explaining nested 
architectures in mutualistic ecological community
Stochastic approaches 
for microbial mobility. 
Interacting particle models 
Neutral Theory & Ecological Patterns 
Population dynamics & metapopulation models 
Ecological Networks & Optimization 
Stability in Ecological Communities 
Statistical Inference (Biodiversity) Everything :-) 
Visiting 
Ph.D. Master 
student 
Ph.D. Post-Doc 
Post- 
Doc 
Master 
student 
Ph.D. 
Not mixing our expertise, but summing them up
Emergent Pattern in Ecology: RSA 
0 2 4 6 8 10 
15 
10 
5 
0 
Number of species 
Coral Reefs 
Abundance classes [log scale] 
Tropical Forests 
40 
Number of species 0 
30 
20 
10 
0 1 2 3 4 5 6 7 
Abundance classes [log scale]
Complex Patterns from Simple Rules 
All species are equivalent 
Single trophic level 
Basic (random) ecological processes 
Birth & death Master Equation 
dPn(t) 
dt 
= bn1Pn1(t) + dn+1Pn+1(t)  (bn + dn)Pn(t) 
Parameters: bn/dn and m = b0 
Functional form of bn 
• Density dependent effects 
Coral Reefs 
0 2 4 6 8 10 
15 
10 
5 
0 
Number of species 
Abundance classes [log scale] 
Tropical Forests 
40 
Number of species 0 
30 
20 
10 
0 1 2 3 4 5 6 7 
Abundance classes [log scale] 
Volkov et al., Nature 2007
Darwin’s entangled bank 
[…] and to reflect that these elaborately constructed forms, so different from each 
other in so complex a manner, have been all produced by laws acting around us. 
(Darwin, Origin of Species)
Our approach: 
“Make everything as simple as possible, 
A. Einstein 
but not simpler.” 
“You don’t really understand something unless 
you can explain it to your grandmother.”
The architecture of mutualistic 
species interactions network 
From patterns to principles
Ecological Networks 
10/14/2014 Web of Life: ecological networks database 
Networks All Data All Species 0  10000 Interactions 0  10000 Reset Results Download(89) Help
Find the pattern :-)
A closer look to the nested structure 
Plant Pollinator 
web in Chile 
Arroyo, et al. 
Random 
same S,C 
Random 
same S,C 
Avian fruit web 
in Puerto Rico 
Carlo, et al. 
1 
5 
10 
15 
20 
1 10 20 32 
1 
5 
10 
15 
20 
25 
1 10 20 30 36 
NODF=0.424 NODF=0.192 
1 
5 
10 
15 
20 
25 
1 10 20 30 36 
NODF=0.072 
1 10 20 32 
1 
5 
10 
15 
20 NODF=0.133 
Bascompte et al., PNAS 2003
Quantitative measures of nestedness :-( 
The number of common partners the i-th and 
the j-th plant have 
Overlap 
NODF measure Almeida et al., Oikos 2008
Network data vs Randomization 1 
Null model 1: we keep fixed S and C, 
and place at random the edges 
# Species [S] 
Nestedness [NODF] 
Data 
20 40 60 80 100 120 140 160 180 200 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
Random
Network data vs Randomization 2 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
NODF DATA 
NODF Null Model 
Null model 2: we keep fix p(k) 
while randomizing the edges
Why this recurrent topological structure? 
Does the nested structure give more 
stability to these ecological communities?
Ecological implications
Are nested networks more stable?
Many ways to quantify stability 
(13 definitions !) + no analytical results 
Persistence 
dPi 
dt 
= ↵Pi  IPiP2 
i + 
XNa 
j=1 
ijAjPi 
h1 
ij + 
P 
k,hji0 Ak 
dAi 
dt 
= ↵Ai  IAiA2i 
+ 
XNp 
j=1 
jiAiPj 
h1 
ji + 
P 
k,hji0 Pk 
. 
Model 
Individual survival 
Fig. 2. Numerical analysis of species persistence as a function of model 
parameterization. This figure shows the simulated dynamics of species 
abundance and the fraction of surviving species (positive abundance at the 
end of the simulation) using the mutualistic model of (6). Simulations are 
performed by using an empirical network located in Hickling, Norfolk, UK 
(table S1), a randomized version of this network using the probabilistic model 
Persistence 
Bastolla et al., Nature 2009 
Rohr et al., Science 2014 
of (32), and the network without mutualism (only competition). Each row 
corresponds to a different set of growth rate values. It is always possible to 
choose the intrinsic growth rates so that all species are persistent in each of 
the three scenarios, and at the same time, the community persistence 
defined as the fraction of surviving species is lower in the alternative 
scenarios. 
Persistence 
0 10 20 
1 
0.5 
0 
r2 = 0.60 
r2 = 0.35 
Partners 
Strong mutualism 
0 0.2 0.4 0.6 
1 
0.5 
0 
r2 = 0.87 
r2 = 0.77 
Connectance 
1 
0.5 
0 
r2 = 0.77 
102 104 
Network magnitude 
a 
b c 
SCIENCE sciencemag.org 25 JULY 2014 • VOL 345 ISSUE 6195 1253497-3 
James et al., Nature 2012
Eigenvalues of Random Matrix 
dx 
Random 
= x 
dt 
!ij ⇠ N(0, ) 
c = 
1 
pSC 
20 
10 
0 
-10 
-20 
-20 -10 0 10 20 
0.6 0.8 1.0 1.2 1.4 
1.0 
0.8 
0.6 
0.4 
0.2 
0 
Stability [Resilience] Max[σ SC 
Re()] 
P(stability) 
Reh 
Im h 
R. May Random Structure 
Real 
Imaginary 
A 
B 
−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 
0.5 
1.0 
−0.5 
0.5 
1.0 
−0.5 
Mutualistic 
 
Nested 
Structure 
LETTER doi:10.1038/nature10832 
Stability criteria for complex ecosystems 
Stefano Allesina1,2  Si Tang1
Nestedness reduces system resilience!
Beyond Resilience: Localization 
Localized Not Localized 
0 50 100 150 200 
0.8 
0.6 
0.4 
0.2 
0.0 
Component @SpeciesD 
»vi  
rIPR = 
* PS 
i=1 
## 
v1(i)|4 
PS 
i=1 |vran 
1 (i)|4 
+ 
!x(t) = 
XS 
↵=1 
⇠⇠⇠ · u↵ 
u↵ · v↵ 
e↵tv↵
ASSIGN INTERACTION 
max 
0 
0.5 
! 
!1 
STRENGTHS 
!ij = aij 
0 
k 
i 
Null Model ) aran
Ecological networks are localized! 
A B 
 
 
! 
 
 
 
 
 
 
! 
! 
! 
!! 
! 
!!! 
! 
 
 
# 
#### ! 
# 
!! 
! ! 
! ! 
! 
! 
 
## 
! 
!! 
! 
! !! 
! 
! 
! 
! 
## 
## ! 
# 
# ! 
! 
! 
! 
! 
! 
!!!! 
!! 
! 
!! 
!!! 
! 
! 
! 
 
 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
# 
# 
# 
# ## 
# 
## 
# 
# 
# # 
#### 
# 
# 
# 
# 
######## 
# # 
# 
## 
### 
# 
# 
0 200 400 600 800 
50 
20 
10 
5 
2 
1 
Size !S 
rIPR left 
# 
! 
# 
# 
# 
# 
# 
# 
!! 
! 
! 
! 
! 
# 
! 
! 
! 
# 
## 
# 
# 
! 
!! 
  
 
 
  
! ! 
 
 
 
! 
! 
! 
! 
! ! 
! 
!! 
! 
! 
! 
! 
! 
! 
# 
 
 
 
! 
! 
! 
! 
! 
! 
! 
! 
!! !! 
! 
! 
!! 
! 
!! 
!! 
! 
! 
! 
! 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
# 
# # 
#
# # 
# 
# 
# 
## 
# 
# 
# 
# 
# 
# 
# 
# 
# 
## 
# 
# # 
# 
# 
# 
# 
# 
## # 
# 
# 
# 
# 
# 
0 200 400 600 800 
15.0 
10.0 
7.0 
5.0 
3.0 
2.0 
1.5 
1.0 
Size !S 
rIPR right 
Localization attenuates perturbations 
A1 = |⇠0|( 
X 
j 
v1,j |)2 
Max|{v1}A1 = 1/pS 
Min|{v1}A1 = i,j⇤ 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     


 

 
	 
 
 
 
 
 
 [] 
 /  
Trade Off with May! 
Suweis et al., 2014
Localization occurs on the hubs 
lmax=-0.0813779 lH=0.145052 
»v1 
»u1 
»wH 
k 
kmax 
0 20 40 60 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
Species 
Suweis et al., 2014
Ï 
Localization 
Á 
Ê 
Ù 
Ê 
‡ 
Ú 
Ù 
NODF Á 
Á 
Á 
Á 
Á Á Á 
Ù Ù 
Ú Ú 
Ê 
Ê 
‡ 
Ù 
Á 
Á 
Ù Ú 
Ú 
Ù 
Á Á 
Ú Ú 
Ú 
Ú Ê 
Ú 
Ê 
Ê 
‡ 
Ï 
Ï 
Ï 
Ï 
Ï Ï Ï 
Ï 
Ï Ú 
Ï 
Ú Ú Ú 
Ú Ú Ê 
Ú Ú 
Ê 
‡ 
‡ 
Ù 
Ù 
Á 
Ú Ú 
Ú Ú 
Ú Ê 
Ú 
Ï 
Ê Ê 
Ï 
Ê 
‡ 
Ê 
Ê 
‡ 
Ê Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
‡ 
‡ 
Ê Ê 
Ê 
Ú 
Ê Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ú 
Ú 
Ú 
Ê Ê 
Ê 
Ê 
Ê Ê 
Ê Ê 
Ê 
Ê 
Ê 
Ê Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
Ê 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ ‡ 
‡ 
‡ ‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ ‡ 
‡ 
‡ ‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ ‡ 
‡ 
‡ 
‡ ‡ 
‡ ‡ 
‡ 
‡ 
‡ 
‡ ‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
‡ 
Ï 
Ï 
Ï 
Ï Ï 
Ï 
Ï Ï 
Ï 
Ï Ï 
Ï 
Ï Ï 
Ï 
Ï 
Ï 
Ï 
Ï 
Ï 
Ï 
Ï 
Ï Ï 
Ï 
Ï 
Ï 
ÏÏ 
Ï 
Ï 
Ï 
Ï 
Ï 
Ï 
Ï 
Ú 
Ú 
Ú 
Ú 
Ú Ú Ú Ú Ú Ú 
Ú 
ÚÚ Ú Ú 
Ú Ú Ú 
Ú ÚÚ Ú 
Ú 
Ú 
Ú 
Ú 
Ú 
Ú 
Ú Ú 
Ú 
Ù 
Ù 
Ù 
ÙÙ 
Ù 
Ù Ù 
Ù Ù 
Ù 
ÙÙ Ù Ù 
Ù Ù Ù 
ÙÙ 
Ù 
Ù Ù 
Ù 
Ù Ù 
Ù Ù Ù 
Ù 
Ù 
Ù 
Ù 
Ù Ù 
Ù Ù Ù ÙÙ 
Ù 
Ù Ù 
Ù 
Ù 
Ù 
Ù Ù 
Ù 
Á 
Á Á 
Á 
Á Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á Á 
Á Á 
Á 
Á Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á Á Á 
Á 
Á 
Á 
Á 
Á 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
5 
4 
3 
2 
1 
0 
Nestedness 6= Localization 
Suweis et al., 2014
Back to nested patterns… 
Simple mechanism driving mutualistic 
community to nested network architectures? 
Adaptive/foraging strategy?
My foraging strategy :-) 
Same idea!
Theoretical Framework 
• Abundances = {x1,x2,...,xS} 
! 
! 
! 
• σΩ , σΓ so that x* is stable 
• Community population dynamics
Implementation of the Optimization Principle 
Start with xi ~N(1,0.1) and random M (α, S, C fixed) 
T T+1 
i j 
l 
k j 
l 
swap 
bWil 
Foraging Strategy 
i 
Mil 
M ) M0 
if x0,⇤ i  x⇤i 
x⇤ = M−1 · ↵
Let’s play!
Why does it works ?? 
1) Relation between optimization of single 
species and community abundance 
2) Relation between species abundance 
and nestedness
Cooperation in mutualistic community! 
11.8 
11.6 
11.4 
11.2 
T=n 
T=n+1 swap 
: : 
Population 
11 
10.8 
10.6 
10.4 
10.2 
9.8 
STEPS [T] |γij|=0 
0 200 400 600 800 100012001400160018002000 
10 
T T+1 
0 200 400 600 800 100012001400160018002000 
11.8 
11.6 
11.4 
11.2 
11 
10.8 
10.6 
10.4 
10.2 
10 
9.8 
STEPS [T] 
Population 
Averaged over 100 realizations 
Mil 
22.5 
22 
21.5 
21 
20.5 
20 
19.5 
0 200 400 600 800 100012001400160018002000 
STEPS [T] 
Totoal Population 
mean 
1 realiz 
i j 
l 
k j 
l 
swap 
bWil 
x⇤ = M−1 · ↵ 
n+1 
i 
j 
i l 
j 
l 
|γij|=0.0017 
|γij|=0 
i 
j 
|γij|=0.0017 
i l 
0.803522 
1.08178 
1.05803 
1.05014 
0.977939 
1.01422 
0.958128 
1.13397 
1.04078 
1.0356 
0.9664 
1.02013 
1.00682 
0.67361 
1.10131 
1.07571 
1.10289 
0.959658 
0.996913 
0.918892 
1.15298 
1.03813 
1.0223 
1.01314 
0.958794 
1.00217 
x* = x* = x⇤ + !x⇤ = (M + !M)−1 · ↵
Overlap and community abundance are correlated! 
x⇤ = M−1 · ↵ 
M = M0 + V = 
 
I + ⌦ O 
O I+ ⌦ 
 
+ 
 
O  
T O 
 
xtot = K + Co ) o / C1xtot + constant 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 
66 
62 
58 
54 
50 
Nestedness [NODF] 
C 
Abundance [x]
Stability and Localization in Optimal Mutualistic Networks 
c 
0.05 
0.04 
0.03 
0.02 
0.01 
0 
−0.05 −0.04 −0.03 −0.02 −0.01 0 
Max[Re(λ)] 
rarest species [x] 
b 
R2=0.999 
4321 
0 5 10 15 20 25 
5 
4 
3 
2 
1 
0 
number of connections [k] 
species abundance ‹x› 
si=|Σjγij| 
a 
‹x› 
pdf 
Max[Re(λ)] 
0 1 2 
5 
0 
- 0.8 - 0.7 - 0.6 - 0.5 - 0.4 
25 
20 
15 
10 
5 
right 
left
Conclusions 
! 
Emergent ecological patterns may be described using 
simple models: learning processes from patterns 
! 
Trade-off between resilience/ecological complexity and 
localiziation: measuring stability from different perspectives 
! 
Emergent nested species interaction network: explaining 
patterns using simple principles
Thanks for your 
attention! 
Questions? 
Neutral Theory: PNAS 2011, JTB 2012 
Optimization: Nature 2013 
Stability: Oikos 2014 
Localization: soon in Arxiv 
@SamirSuweis 
impactstory.org/ 
SamirSuweis

More Related Content

Similar to Statistical Physics of Ecological Networks: from patterns to principles

Terminological cluster trees for Disjointness Axiom Discovery
Terminological cluster trees for Disjointness Axiom DiscoveryTerminological cluster trees for Disjointness Axiom Discovery
Terminological cluster trees for Disjointness Axiom Discovery
Giuseppe Rizzo
 
Infrastructures et recommandations pour les Humanités Numériques - Big Data e...
Infrastructures et recommandations pour les Humanités Numériques - Big Data e...Infrastructures et recommandations pour les Humanités Numériques - Big Data e...
Infrastructures et recommandations pour les Humanités Numériques - Big Data e...
Patrice Bellot - Aix-Marseille Université / CNRS (LIS, INS2I)
 
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Shu Tanaka
 
Formal Ontologies and Uncertainty - INPUT2014
Formal Ontologies and Uncertainty - INPUT2014Formal Ontologies and Uncertainty - INPUT2014
Formal Ontologies and Uncertainty - INPUT2014
Matteo Caglioni
 
Slides_SB3.ppt
Slides_SB3.pptSlides_SB3.ppt
Slides_SB3.ppt
ssuser957fe2
 
Slides_SB3.ppt
Slides_SB3.pptSlides_SB3.ppt
Slides_SB3.ppt
AnandKumar459862
 
Testing energetic theory with experimental deep-sea food falls
Testing energetic theory with experimental deep-sea food fallsTesting energetic theory with experimental deep-sea food falls
Testing energetic theory with experimental deep-sea food falls
Craig McClain
 
2015 osu-metagenome
2015 osu-metagenome2015 osu-metagenome
2015 osu-metagenome
c.titus.brown
 
Ds15 minitute-v2
Ds15 minitute-v2Ds15 minitute-v2
Ds15 minitute-v2
Mason Porter
 
Genetic architecture of developmental traits in populations of male gypsy moths
Genetic architecture of developmental traits in populations of male gypsy mothsGenetic architecture of developmental traits in populations of male gypsy moths
Genetic architecture of developmental traits in populations of male gypsy moths
cfriedline
 
Modeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAM
Modeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAMModeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAM
Modeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAM
Suneel Babu Chatla
 
Presentation lecture w3_2015_v2
Presentation lecture w3_2015_v2Presentation lecture w3_2015_v2
Presentation lecture w3_2015_v2
Robert Williamson
 
Phd Seminar talk
Phd Seminar talkPhd Seminar talk
Phd Seminar talk
Steven Hamblin
 
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
The Statistical and Applied Mathematical Sciences Institute
 
Thesis seminar
Thesis seminarThesis seminar
Thesis seminar
gvesom
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysis
David Gleich
 
2016 10-27 timbers
2016 10-27 timbers2016 10-27 timbers
2016 10-27 timbers
Tiffany Timbers
 
Using Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based LearningUsing Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based Learning
David Gleich
 
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Okamoto Laboratory, The University of Electro-Communications
 
Deterministic Stabilization of a Dynamical System using a Computational Approach
Deterministic Stabilization of a Dynamical System using a Computational ApproachDeterministic Stabilization of a Dynamical System using a Computational Approach
Deterministic Stabilization of a Dynamical System using a Computational Approach
IJAEMSJORNAL
 

Similar to Statistical Physics of Ecological Networks: from patterns to principles (20)

Terminological cluster trees for Disjointness Axiom Discovery
Terminological cluster trees for Disjointness Axiom DiscoveryTerminological cluster trees for Disjointness Axiom Discovery
Terminological cluster trees for Disjointness Axiom Discovery
 
Infrastructures et recommandations pour les Humanités Numériques - Big Data e...
Infrastructures et recommandations pour les Humanités Numériques - Big Data e...Infrastructures et recommandations pour les Humanités Numériques - Big Data e...
Infrastructures et recommandations pour les Humanités Numériques - Big Data e...
 
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
 
Formal Ontologies and Uncertainty - INPUT2014
Formal Ontologies and Uncertainty - INPUT2014Formal Ontologies and Uncertainty - INPUT2014
Formal Ontologies and Uncertainty - INPUT2014
 
Slides_SB3.ppt
Slides_SB3.pptSlides_SB3.ppt
Slides_SB3.ppt
 
Slides_SB3.ppt
Slides_SB3.pptSlides_SB3.ppt
Slides_SB3.ppt
 
Testing energetic theory with experimental deep-sea food falls
Testing energetic theory with experimental deep-sea food fallsTesting energetic theory with experimental deep-sea food falls
Testing energetic theory with experimental deep-sea food falls
 
2015 osu-metagenome
2015 osu-metagenome2015 osu-metagenome
2015 osu-metagenome
 
Ds15 minitute-v2
Ds15 minitute-v2Ds15 minitute-v2
Ds15 minitute-v2
 
Genetic architecture of developmental traits in populations of male gypsy moths
Genetic architecture of developmental traits in populations of male gypsy mothsGenetic architecture of developmental traits in populations of male gypsy moths
Genetic architecture of developmental traits in populations of male gypsy moths
 
Modeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAM
Modeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAMModeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAM
Modeling Big Count Data: An IRLS Framework for COM-Poisson Regression and GAM
 
Presentation lecture w3_2015_v2
Presentation lecture w3_2015_v2Presentation lecture w3_2015_v2
Presentation lecture w3_2015_v2
 
Phd Seminar talk
Phd Seminar talkPhd Seminar talk
Phd Seminar talk
 
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
CLIM Program: Remote Sensing Workshop, Multilayer Modeling and Analysis of Co...
 
Thesis seminar
Thesis seminarThesis seminar
Thesis seminar
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysis
 
2016 10-27 timbers
2016 10-27 timbers2016 10-27 timbers
2016 10-27 timbers
 
Using Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based LearningUsing Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based Learning
 
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
 
Deterministic Stabilization of a Dynamical System using a Computational Approach
Deterministic Stabilization of a Dynamical System using a Computational ApproachDeterministic Stabilization of a Dynamical System using a Computational Approach
Deterministic Stabilization of a Dynamical System using a Computational Approach
 

Recently uploaded

Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
RASHMI M G
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
AbdullaAlAsif1
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
SSR02
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
Hitesh Sikarwar
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
Daniel Tubbenhauer
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
İsa Badur
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Texas Alliance of Groundwater Districts
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
muralinath2
 

Recently uploaded (20)

Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
 
aziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobelaziz sancar nobel prize winner: from mardin to nobel
aziz sancar nobel prize winner: from mardin to nobel
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
 

Statistical Physics of Ecological Networks: from patterns to principles

  • 1. From Patterns to Principles Statistical Physics of Ecological Networks @SamirSuweis
  • 2. Outline •Statistical Physics & Ecology ! •Architecture of the species interaction network ! •Stability of ecological networks ! •From patterns to principles: explaining nested architectures in mutualistic ecological community
  • 3. Stochastic approaches for microbial mobility. Interacting particle models Neutral Theory & Ecological Patterns Population dynamics & metapopulation models Ecological Networks & Optimization Stability in Ecological Communities Statistical Inference (Biodiversity) Everything :-) Visiting Ph.D. Master student Ph.D. Post-Doc Post- Doc Master student Ph.D. Not mixing our expertise, but summing them up
  • 4. Emergent Pattern in Ecology: RSA 0 2 4 6 8 10 15 10 5 0 Number of species Coral Reefs Abundance classes [log scale] Tropical Forests 40 Number of species 0 30 20 10 0 1 2 3 4 5 6 7 Abundance classes [log scale]
  • 5. Complex Patterns from Simple Rules All species are equivalent Single trophic level Basic (random) ecological processes Birth & death Master Equation dPn(t) dt = bn1Pn1(t) + dn+1Pn+1(t) (bn + dn)Pn(t) Parameters: bn/dn and m = b0 Functional form of bn • Density dependent effects Coral Reefs 0 2 4 6 8 10 15 10 5 0 Number of species Abundance classes [log scale] Tropical Forests 40 Number of species 0 30 20 10 0 1 2 3 4 5 6 7 Abundance classes [log scale] Volkov et al., Nature 2007
  • 6. Darwin’s entangled bank […] and to reflect that these elaborately constructed forms, so different from each other in so complex a manner, have been all produced by laws acting around us. (Darwin, Origin of Species)
  • 7. Our approach: “Make everything as simple as possible, A. Einstein but not simpler.” “You don’t really understand something unless you can explain it to your grandmother.”
  • 8. The architecture of mutualistic species interactions network From patterns to principles
  • 9. Ecological Networks 10/14/2014 Web of Life: ecological networks database Networks All Data All Species 0 10000 Interactions 0 10000 Reset Results Download(89) Help
  • 11. A closer look to the nested structure Plant Pollinator web in Chile Arroyo, et al. Random same S,C Random same S,C Avian fruit web in Puerto Rico Carlo, et al. 1 5 10 15 20 1 10 20 32 1 5 10 15 20 25 1 10 20 30 36 NODF=0.424 NODF=0.192 1 5 10 15 20 25 1 10 20 30 36 NODF=0.072 1 10 20 32 1 5 10 15 20 NODF=0.133 Bascompte et al., PNAS 2003
  • 12. Quantitative measures of nestedness :-( The number of common partners the i-th and the j-th plant have Overlap NODF measure Almeida et al., Oikos 2008
  • 13. Network data vs Randomization 1 Null model 1: we keep fixed S and C, and place at random the edges # Species [S] Nestedness [NODF] Data 20 40 60 80 100 120 140 160 180 200 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Random
  • 14. Network data vs Randomization 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.6 0.5 0.4 0.3 0.2 0.1 NODF DATA NODF Null Model Null model 2: we keep fix p(k) while randomizing the edges
  • 15. Why this recurrent topological structure? Does the nested structure give more stability to these ecological communities?
  • 17. Are nested networks more stable?
  • 18. Many ways to quantify stability (13 definitions !) + no analytical results Persistence dPi dt = ↵Pi IPiP2 i + XNa j=1 ijAjPi h1 ij + P k,hji0 Ak dAi dt = ↵Ai IAiA2i + XNp j=1 jiAiPj h1 ji + P k,hji0 Pk . Model Individual survival Fig. 2. Numerical analysis of species persistence as a function of model parameterization. This figure shows the simulated dynamics of species abundance and the fraction of surviving species (positive abundance at the end of the simulation) using the mutualistic model of (6). Simulations are performed by using an empirical network located in Hickling, Norfolk, UK (table S1), a randomized version of this network using the probabilistic model Persistence Bastolla et al., Nature 2009 Rohr et al., Science 2014 of (32), and the network without mutualism (only competition). Each row corresponds to a different set of growth rate values. It is always possible to choose the intrinsic growth rates so that all species are persistent in each of the three scenarios, and at the same time, the community persistence defined as the fraction of surviving species is lower in the alternative scenarios. Persistence 0 10 20 1 0.5 0 r2 = 0.60 r2 = 0.35 Partners Strong mutualism 0 0.2 0.4 0.6 1 0.5 0 r2 = 0.87 r2 = 0.77 Connectance 1 0.5 0 r2 = 0.77 102 104 Network magnitude a b c SCIENCE sciencemag.org 25 JULY 2014 • VOL 345 ISSUE 6195 1253497-3 James et al., Nature 2012
  • 19. Eigenvalues of Random Matrix dx Random = x dt !ij ⇠ N(0, ) c = 1 pSC 20 10 0 -10 -20 -20 -10 0 10 20 0.6 0.8 1.0 1.2 1.4 1.0 0.8 0.6 0.4 0.2 0 Stability [Resilience] Max[σ SC Re()] P(stability) Reh Im h R. May Random Structure Real Imaginary A B −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 0.5 1.0 −0.5 0.5 1.0 −0.5 Mutualistic Nested Structure LETTER doi:10.1038/nature10832 Stability criteria for complex ecosystems Stefano Allesina1,2 Si Tang1
  • 21. Beyond Resilience: Localization Localized Not Localized 0 50 100 150 200 0.8 0.6 0.4 0.2 0.0 Component @SpeciesD »vi rIPR = * PS i=1 ## v1(i)|4 PS i=1 |vran 1 (i)|4 + !x(t) = XS ↵=1 ⇠⇠⇠ · u↵ u↵ · v↵ e↵tv↵
  • 22. ASSIGN INTERACTION max 0 0.5 ! !1 STRENGTHS !ij = aij 0 k i Null Model ) aran
  • 23. Ecological networks are localized! A B ! ! ! ! !! ! !!! ! # #### ! # !! ! ! ! ! ! ! ## ! !! ! ! !! ! ! ! ! ## ## ! # # ! ! ! ! ! ! !!!! !! ! !! !!! ! ! ! # # # # ## # ## # # # # #### # # # # ######## # # # ## ### # # 0 200 400 600 800 50 20 10 5 2 1 Size !S rIPR left # ! # # # # # # !! ! ! ! ! # ! ! ! # ## # # ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! # ! ! ! ! ! ! ! ! !! !! ! ! !! ! !! !! ! ! ! ! # # # # # # # # # ## # # # # # # # # # ## # # # # # # # # ## # # # # # # 0 200 400 600 800 15.0 10.0 7.0 5.0 3.0 2.0 1.5 1.0 Size !S rIPR right Localization attenuates perturbations A1 = |⇠0|( X j v1,j |)2 Max|{v1}A1 = 1/pS Min|{v1}A1 = i,j⇤ [] / Trade Off with May! Suweis et al., 2014
  • 24. Localization occurs on the hubs lmax=-0.0813779 lH=0.145052 »v1 »u1 »wH k kmax 0 20 40 60 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Species Suweis et al., 2014
  • 25. Ï Localization Á Ê Ù Ê ‡ Ú Ù NODF Á Á Á Á Á Á Á Ù Ù Ú Ú Ê Ê ‡ Ù Á Á Ù Ú Ú Ù Á Á Ú Ú Ú Ú Ê Ú Ê Ê ‡ Ï Ï Ï Ï Ï Ï Ï Ï Ï Ú Ï Ú Ú Ú Ú Ú Ê Ú Ú Ê ‡ ‡ Ù Ù Á Ú Ú Ú Ú Ú Ê Ú Ï Ê Ê Ï Ê ‡ Ê Ê ‡ Ê Ê Ê Ê Ê Ê Ê Ê Ê ‡ ‡ Ê Ê Ê Ú Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ú Ú Ú Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï ÏÏ Ï Ï Ï Ï Ï Ï Ï Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ù Ù Ù ÙÙ Ù Ù Ù Ù Ù Ù ÙÙ Ù Ù Ù Ù Ù ÙÙ Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù Ù ÙÙ Ù Ù Ù Ù Ù Ù Ù Ù Ù Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 5 4 3 2 1 0 Nestedness 6= Localization Suweis et al., 2014
  • 26. Back to nested patterns… Simple mechanism driving mutualistic community to nested network architectures? Adaptive/foraging strategy?
  • 27. My foraging strategy :-) Same idea!
  • 28. Theoretical Framework • Abundances = {x1,x2,...,xS} ! ! ! • σΩ , σΓ so that x* is stable • Community population dynamics
  • 29. Implementation of the Optimization Principle Start with xi ~N(1,0.1) and random M (α, S, C fixed) T T+1 i j l k j l swap bWil Foraging Strategy i Mil M ) M0 if x0,⇤ i x⇤i x⇤ = M−1 · ↵
  • 31. Why does it works ?? 1) Relation between optimization of single species and community abundance 2) Relation between species abundance and nestedness
  • 32. Cooperation in mutualistic community! 11.8 11.6 11.4 11.2 T=n T=n+1 swap : : Population 11 10.8 10.6 10.4 10.2 9.8 STEPS [T] |γij|=0 0 200 400 600 800 100012001400160018002000 10 T T+1 0 200 400 600 800 100012001400160018002000 11.8 11.6 11.4 11.2 11 10.8 10.6 10.4 10.2 10 9.8 STEPS [T] Population Averaged over 100 realizations Mil 22.5 22 21.5 21 20.5 20 19.5 0 200 400 600 800 100012001400160018002000 STEPS [T] Totoal Population mean 1 realiz i j l k j l swap bWil x⇤ = M−1 · ↵ n+1 i j i l j l |γij|=0.0017 |γij|=0 i j |γij|=0.0017 i l 0.803522 1.08178 1.05803 1.05014 0.977939 1.01422 0.958128 1.13397 1.04078 1.0356 0.9664 1.02013 1.00682 0.67361 1.10131 1.07571 1.10289 0.959658 0.996913 0.918892 1.15298 1.03813 1.0223 1.01314 0.958794 1.00217 x* = x* = x⇤ + !x⇤ = (M + !M)−1 · ↵
  • 33. Overlap and community abundance are correlated! x⇤ = M−1 · ↵ M = M0 + V =  I + ⌦ O O I+ ⌦ +  O T O xtot = K + Co ) o / C1xtot + constant 0.2 0.3 0.4 0.5 0.6 0.7 0.8 66 62 58 54 50 Nestedness [NODF] C Abundance [x]
  • 34. Stability and Localization in Optimal Mutualistic Networks c 0.05 0.04 0.03 0.02 0.01 0 −0.05 −0.04 −0.03 −0.02 −0.01 0 Max[Re(λ)] rarest species [x] b R2=0.999 4321 0 5 10 15 20 25 5 4 3 2 1 0 number of connections [k] species abundance ‹x› si=|Σjγij| a ‹x› pdf Max[Re(λ)] 0 1 2 5 0 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 25 20 15 10 5 right left
  • 35. Conclusions ! Emergent ecological patterns may be described using simple models: learning processes from patterns ! Trade-off between resilience/ecological complexity and localiziation: measuring stability from different perspectives ! Emergent nested species interaction network: explaining patterns using simple principles
  • 36. Thanks for your attention! Questions? Neutral Theory: PNAS 2011, JTB 2012 Optimization: Nature 2013 Stability: Oikos 2014 Localization: soon in Arxiv @SamirSuweis impactstory.org/ SamirSuweis