SlideShare a Scribd company logo
1 of 44
機械学習基礎
分類とクラスタリング
クラスタリング編
本シリーズの目的
とりあえずデータを持ってきた
機械学習を使って何かやろう
 目的を決めて問題を設定する
 問題に対して適切な手法を決定する
万能感!
↑ができるようになる
今回の範囲
クラスタリング
 凝集型クラスタリング
 k-meansクラスタリング
 混合正規分布によるクラスタリング
 (補足) EMアルゴリズム
分類
 規則ベース手法
 ナイーブベイズ手法
 SVM
 対数線形モデル
今回はクラスタリングについて!
クラスタリングと
分類
クラスタリングと分類の違い
データをいくつかのグループにまとめるのがクラスタリング
あらかじめ決まったグループに分けることを分類
クラスタリングはいくつのグループができて、どんな意味を
もっているのかは予め明確でない
クラスタリングと分類の違い
例)ある製品に関する“お客様の声”が大量に集まったのでこれ
を分析したい。が、これを1つ1つ全て読むのには時間がか
かってしまう
クラスタリング or 分類して解決してみる
グループ1
グループ2
グループ3 グループ4
類似する文書でまとめる
クラスタリング
類似した不満・要望をまとめて
そのグループ少数のみを読む
各グループ少量読む
修理希望 良かった点
各カテゴリに分ける
バグ報告 要望
分類
読む人を複数人用意して
カテゴリ分けしてすべて読む
クラスタリング
クラスタリングの種類
凝集型クラスタリング
k-meansクラスタリング
混合正規分布によるクラスタリング
特に凝集型とk-meansは大したことやってない
凝集型クラスタリング
単純に似ているもの同士をくっつけて適当なグループにまと
まったら終わる
最初に全ての事例に全て異なるクラスタを与え、事例同士の
類似度を定義して、一番高い値のクラスタを結合していく
適当なクラスタ数になったので終了。
繋ぎ方
単連結法
完全連結法
重心法
完全連結法はクラスタが長く伸びた鎖のようになるのを
嫌い、単連結法はそれをお構いなしに融合する
重心法はその中間
類似度関数
(2点間の距離とか角度とか)
k-means
k-平均法(means)
とりあえず適当にk個に分けて、もう少しうまく分けられるよ
うなら調整していく
クラスタ数kは自分で設定する
適当に代表ベクトルを決める(k=2)
近い事例をそのクラスタへ
クラスタ内の事例の平均を代表ベクトルとする
近い事例をそのクラスタへ
クラスタ内の事例の平均を代表ベクトルとする
近い事例をそのクラスタへ
クラスタ内の事例の平均を代表ベクトルとする
全事例が属するクラスタに変更がなかったため終了
混合正規分布によるクラスタリング
k-meansだと、2つのクラスタの中間付近であってもきっち
りどちらかに配属されてしまう
近い事例をそのクラスタへ
これ→
混合正規分布によるクラスタリング
k-meansだと、2つのクラスタの中間付近であってもきっち
りどちらかに配属されてしまう
→ 代表ベクトルを再計算するときに、各事例は確率で寄与す
ることにする
A B
a b c
AグループにP(CA|c)だけ寄与
BグループにP(CB|c)だけ寄与
a b c
Bグループのみに全て寄与
BグループAグループ
k-means
混合正規分布
混合正規分布によるクラスタリング
つまり、『各事例は、各クラスタにおいて正規分布している』
という仮定においてクラスタリングする
複数の正規分布が現れ
ているので、
混合正規分布という
混合正規分布によるクラスタリング
k-meansで代表ベクトルmcを再計算するとき、
これを正規分布ではこうする
↑クラスタcの事後確率
(xi がクラスタcに属する確率)
↑P(c) :クラスタcの事前確率
(クラスタcの出現する確率)
混合正規分布によるクラスタリング
各クラスタ内で正規分布しているので、各事例の事後確率は、
と表される
ここで標準偏差σは既知であり、かつクラスタ内で変わらない
ものとする
mcはクラスタcにおける平均ベクトルである
混合正規分布によるクラスタリング
このとき、クラスタcの事後確率は、
なので、
混合正規分布によるクラスタリング
このとき、クラスタcの事後確率は、
なので、
混合正規分布によるクラスタリング
Q. P(c)ってどうするのよ?
A. 適当に決める
P(c)はクラスタの事前分布
つまり、あるクラスタcが出現する確率はどうすればいいのか?
全てのクラスタが等しい確率で出現するとすると、
P(c)=1/k(kはクラスタ数)
混合正規分布によるクラスタリング
収束条件は?
k-meansは各事例が属するクラスタが変わらなければ収束する
が、混合正規分布によるクラスタリングでは、P(c|x i)の値が微
小に変化し続ける
なので収束条件としてパラメータの変化の値が非常に小さく
なったら収束とみなす
例えば、 が小さくなったら収束
補足
EMアルゴリズム
EMアルゴリズム
実はさっきの混合正規分布によるクラスタリングはEMアルゴ
リズムというより一般的な枠組みに基いている
普通に最尤推定できないパラメータを2つのステップにわけ
て逐次的に求めていくだけ
そんなに難しいことはやってない
EMアルゴリズム
観測値をxi、ciとする
あるパラメータθがわからないから最尤推定するよ!
観測値ciが欠損してる、または未知である場合
→推定できない!(解析的に求まらない)
EMアルゴリズム
じゃあciの期待値を考える
これならいけそうだけど重み(確率)wcが分からん
→逐次的に計算させて前回のθを使って、その時cである確率
wcを求める
cの同時確率が分からないから
cの取りうる値全部について計算する
EMアルゴリズム
つまり、
と、置き換えることができて、
となるθを逐次的に求めていき、収束したθが最適解!
↓Q関数:Q(θ;θ’)
EMアルゴリズム
EMアルゴリズム
EMアルゴリズム
まとめると、
EMアルゴリズムは不完全データに対して尤度が大きくなるよ
うにパラメータを決定するアルゴリズム
多変数確率分布において、観測されたデータに欠損した変数
が含まれている場合、または未知な変数が隠れていると仮定
した場合に有効である
混合正規分布は欠損変数ciがクラスタで、θが平均ベクトルの
場合にEMアルゴリズムを適用したもの
参考
自然言語処理シリーズ 1
言語処理のための機械学習入門
奥村学 東工大教授 工博 監修
高村大也 東工大准教授 博士(工学)著

More Related Content

What's hot

[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...Deep Learning JP
 
確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング正志 坪坂
 
わかパタ 1章
わかパタ 1章わかパタ 1章
わかパタ 1章weda654
 
Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介Chihiro Kusunoki
 
20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについて20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについてPreferred Networks
 
K shapes zemiyomi
K shapes zemiyomiK shapes zemiyomi
K shapes zemiyomikenyanonaka
 
PRML輪読#7
PRML輪読#7PRML輪読#7
PRML輪読#7matsuolab
 
Hidden technical debt in machine learning systems(日本語資料)
Hidden technical debt in machine learning systems(日本語資料)Hidden technical debt in machine learning systems(日本語資料)
Hidden technical debt in machine learning systems(日本語資料)Ogushi Masaya
 
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについてMasahiro Suzuki
 
Active Learning と Bayesian Neural Network
Active Learning と Bayesian Neural NetworkActive Learning と Bayesian Neural Network
Active Learning と Bayesian Neural NetworkNaoki Matsunaga
 
NIPS2015読み会: Ladder Networks
NIPS2015読み会: Ladder NetworksNIPS2015読み会: Ladder Networks
NIPS2015読み会: Ladder NetworksEiichi Matsumoto
 
分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用y-uti
 
深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについてryosuke-kojima
 
敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度Masa Kato
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」Keisuke Sugawara
 
劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章Hakky St
 
無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)Shuyo Nakatani
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章Shuyo Nakatani
 
データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎Hirotaka Hachiya
 

What's hot (20)

[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
 
確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング確率モデルを使ったグラフクラスタリング
確率モデルを使ったグラフクラスタリング
 
ゼロから作るDeepLearning 4章 輪読
ゼロから作るDeepLearning 4章 輪読ゼロから作るDeepLearning 4章 輪読
ゼロから作るDeepLearning 4章 輪読
 
わかパタ 1章
わかパタ 1章わかパタ 1章
わかパタ 1章
 
Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介
 
20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについて20171128分散深層学習とChainerMNについて
20171128分散深層学習とChainerMNについて
 
K shapes zemiyomi
K shapes zemiyomiK shapes zemiyomi
K shapes zemiyomi
 
PRML輪読#7
PRML輪読#7PRML輪読#7
PRML輪読#7
 
Hidden technical debt in machine learning systems(日本語資料)
Hidden technical debt in machine learning systems(日本語資料)Hidden technical debt in machine learning systems(日本語資料)
Hidden technical debt in machine learning systems(日本語資料)
 
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて深層生成モデルと世界モデル,深層生成モデルライブラリPixyzについて
深層生成モデルと世界モデル, 深層生成モデルライブラリPixyzについて
 
Active Learning と Bayesian Neural Network
Active Learning と Bayesian Neural NetworkActive Learning と Bayesian Neural Network
Active Learning と Bayesian Neural Network
 
NIPS2015読み会: Ladder Networks
NIPS2015読み会: Ladder NetworksNIPS2015読み会: Ladder Networks
NIPS2015読み会: Ladder Networks
 
分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用
 
深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて
 
敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度敵対的学習に対するラデマッハ複雑度
敵対的学習に対するラデマッハ複雑度
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
 
劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章
 
無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章
 
データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎データ解析7 主成分分析の基礎
データ解析7 主成分分析の基礎
 

Viewers also liked

機械学習基礎(1)(基礎知識編-最適化問題)
機械学習基礎(1)(基礎知識編-最適化問題)機械学習基礎(1)(基礎知識編-最適化問題)
機械学習基礎(1)(基礎知識編-最適化問題)mikan ehime
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定Akira Masuda
 
はじパタ 10章 クラスタリング 前半
はじパタ 10章 クラスタリング 前半はじパタ 10章 クラスタリング 前半
はじパタ 10章 クラスタリング 前半Katsushi Yamashita
 
春期インターンシップについて(レキサス)
春期インターンシップについて(レキサス)春期インターンシップについて(レキサス)
春期インターンシップについて(レキサス)lexuesHR
 
第17回コンピュータビジョン勉強会@関東
第17回コンピュータビジョン勉強会@関東第17回コンピュータビジョン勉強会@関東
第17回コンピュータビジョン勉強会@関東ukyoda
 
ベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMC
ベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMCベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMC
ベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMC基晴 出井
 
ベイズ基本0425
ベイズ基本0425ベイズ基本0425
ベイズ基本0425asato kuno
 
スペクトラル・クラスタリング
スペクトラル・クラスタリングスペクトラル・クラスタリング
スペクトラル・クラスタリングAkira Miyazawa
 
社内勉強会-ナイーブベイジアンフィルタの実装
社内勉強会-ナイーブベイジアンフィルタの実装社内勉強会-ナイーブベイジアンフィルタの実装
社内勉強会-ナイーブベイジアンフィルタの実装Kenta Onishi
 
Machine learning for biginner
Machine learning for biginnerMachine learning for biginner
Machine learning for biginnerAtsushi Hayakawa
 
Webサービスを分類してみた
Webサービスを分類してみたWebサービスを分類してみた
Webサービスを分類してみたしくみ製作所
 
機械学習技術の紹介
機械学習技術の紹介機械学習技術の紹介
機械学習技術の紹介Takahiro Kubo
 
Zansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.html
Zansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.htmlZansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.html
Zansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.htmlZansa
 
【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へ【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へZansa
 
ラーメンと自然言語処理
ラーメンと自然言語処理ラーメンと自然言語処理
ラーメンと自然言語処理naotaka 1128
 
ナイーブベイズによる言語判定
ナイーブベイズによる言語判定ナイーブベイズによる言語判定
ナイーブベイズによる言語判定Shuyo Nakatani
 
合コンで学ぶベイズ推定
合コンで学ぶベイズ推定合コンで学ぶベイズ推定
合コンで学ぶベイズ推定Kenta Matsui
 
いいからベイズ推定してみる
いいからベイズ推定してみるいいからベイズ推定してみる
いいからベイズ推定してみるMakoto Hirakawa
 
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論Hiroshi Nakagawa
 
大森ゼミ新歓
大森ゼミ新歓大森ゼミ新歓
大森ゼミ新歓T Nakagawa
 

Viewers also liked (20)

機械学習基礎(1)(基礎知識編-最適化問題)
機械学習基礎(1)(基礎知識編-最適化問題)機械学習基礎(1)(基礎知識編-最適化問題)
機械学習基礎(1)(基礎知識編-最適化問題)
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
 
はじパタ 10章 クラスタリング 前半
はじパタ 10章 クラスタリング 前半はじパタ 10章 クラスタリング 前半
はじパタ 10章 クラスタリング 前半
 
春期インターンシップについて(レキサス)
春期インターンシップについて(レキサス)春期インターンシップについて(レキサス)
春期インターンシップについて(レキサス)
 
第17回コンピュータビジョン勉強会@関東
第17回コンピュータビジョン勉強会@関東第17回コンピュータビジョン勉強会@関東
第17回コンピュータビジョン勉強会@関東
 
ベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMC
ベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMCベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMC
ベイズ推定でパラメータリスクを捉える&優れたサンプラーとしてのMCMC
 
ベイズ基本0425
ベイズ基本0425ベイズ基本0425
ベイズ基本0425
 
スペクトラル・クラスタリング
スペクトラル・クラスタリングスペクトラル・クラスタリング
スペクトラル・クラスタリング
 
社内勉強会-ナイーブベイジアンフィルタの実装
社内勉強会-ナイーブベイジアンフィルタの実装社内勉強会-ナイーブベイジアンフィルタの実装
社内勉強会-ナイーブベイジアンフィルタの実装
 
Machine learning for biginner
Machine learning for biginnerMachine learning for biginner
Machine learning for biginner
 
Webサービスを分類してみた
Webサービスを分類してみたWebサービスを分類してみた
Webサービスを分類してみた
 
機械学習技術の紹介
機械学習技術の紹介機械学習技術の紹介
機械学習技術の紹介
 
Zansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.html
Zansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.htmlZansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.html
Zansa アト テクノロシ-ー業界の分析という仕事について http://zansa.info/materials-11.html
 
【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へ【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へ
 
ラーメンと自然言語処理
ラーメンと自然言語処理ラーメンと自然言語処理
ラーメンと自然言語処理
 
ナイーブベイズによる言語判定
ナイーブベイズによる言語判定ナイーブベイズによる言語判定
ナイーブベイズによる言語判定
 
合コンで学ぶベイズ推定
合コンで学ぶベイズ推定合コンで学ぶベイズ推定
合コンで学ぶベイズ推定
 
いいからベイズ推定してみる
いいからベイズ推定してみるいいからベイズ推定してみる
いいからベイズ推定してみる
 
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
 
大森ゼミ新歓
大森ゼミ新歓大森ゼミ新歓
大森ゼミ新歓
 

Recently uploaded

AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfFumieNakayama
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineerYuki Kikuchi
 
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?akihisamiyanaga1
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...博三 太田
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NTT DATA Technology & Innovation
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)UEHARA, Tetsutaro
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案sugiuralab
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)Hiroshi Tomioka
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfFumieNakayama
 

Recently uploaded (9)

AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
 
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
 

機械学習基礎(3)(クラスタリング編)

Editor's Notes

  1. 入力:不完全データD\\ \theta の初期値は無作為に決める\\ until\quad 収束\\ \quad Eステップ:任意のx_{ i },c_{ i }についてP(c|x_{ i };\theta' )を計算\\ \quad Mステップ:\theta^{max}=arg\max Q(\theta;\theta')\\ \quad \theta'=\theta^{max}\\ end\quad until