SlideShare a Scribd company logo
1 of 17
Download to read offline
ONE-SCHOOL.NET
                       Physics Equation List :Form 4
                                 Introduction to Physics
Relative Deviation


                       Relative Deviation = Mean Deviation ×100%
                                             Mean Value
Prefixes

                   Prefixes                  Value              Standard form   Symbol
               Tera             1 000 000 000 000                    1012           T
               Giga             1 000 000 000                         109           G
               Mega             1 000 000                             106           M
               Kilo             1 000                                 103           k
               deci             0.1                                  10-1           d
               centi            0.01                                 10-2           c
               milli            0.001                                10-3           m
               micro            0.000 001                            10-6           μ
               nano             0.000 000 001                        10-9           n
               pico             0.000 000 000 001                    10-12          p

Units for Area and Volume

 1 m = 102 cm                 (100 cm)                                                        1
     2     4   2                         2               1 cm       = 10-2 m             (       m)
 1 m = 10 cm                  (10,000 cm )                                                   100
 1 m3 = 106 cm3               (1,000,000 cm3)                                          1
                                                         1 cm2 = 10-4 m2        (          m2 )
                                                                                    10,000
                                                                                        1
                                                         1 cm3 = 10-6 m3        (             m3 )
                                                                                    1,000,000




http://www.one-school.net/notes.html                 1
ONE-SCHOOL.NET
                                   Force and Motion
Average Speed


                                  Average Speed = Total Distance
                                                   Total Time
Velocity

                                                      (ms-1)
           v= s
                              v = velocity
                              s = displacement        (m)
              t               t = time                (s)


Acceleration


               v−u            a = acceleration                            (ms-2)
     a=                       v = final velocity
                              u = initial velocity
                                                                          (ms-1)
                                                                          (ms-1)
                t              t =time for the velocity change            (s)

Equation of Linear Motion

                                              Linear Motion



                                               Motion with          Motion with
                      Motion with
                                                constant             changing
                    constant velocity
                                               acceleration         acceleration



                              s                v = u + at         Using Calculus
                         v=                                        (In Additional
                              t                  1
                                             s = (u + v)t          Mathematics
                                                 2                   Syllabus)
                                                    1
                                            s = ut + at 2
                                                    2
                                            v 2 = u 2 + 2as

                                     u = initial velocity        (ms-1)
                                     v = final velocity          (ms-1)
                                     a = acceleration            (ms-2)
                                     s = displacement            (m)
                                     t = time                    (s)




http://www.one-school.net/notes.html                  2
ONE-SCHOOL.NET
Ticker Tape

Finding Velocity:




                                                         s
                                 velocity =
                                              number of ticks × 0.02s

                                              1 tick = 0.02s

Finding Acceleration:


                                                                              v−u
                                                                           a=
                                                                               t
                                                        a = acceleration                             (ms-2)
                                                        v = final velocity                           (ms-1)
                                                        u = initial velocity                         (ms-1)
                                                        t = time for the velocity change             (s)




Graph of Motion

Gradient of a Graph                                     The gradient 'm' of a line segment between two
                                                        points and is defined as follows:

                                                                        Change in y coordinate, Δy
                                                        Gradient, m =
                                                                        Change in x coordinate, Δx
                                                        or
                                                             Δy
                                                        m=
                                                             Δx




http://www.one-school.net/notes.html                3
ONE-SCHOOL.NET
            Displacement-Time Graph                                     Velocity-Time Graph




Gradient = Velocity (ms-1)                                Gradient = Acceleration (ms-2)
                                                          Area in between       the   graph   and   x-axis   =
                                                          Displacement


Momentum

 p = m×v                         p = momentum
                                 m = mass
                                                      (kg ms-1)
                                                      (kg)
                                 v = velocity         (ms-1)


Principle of Conservation of Momentum


                             m1u1 + m2u2 = m1v1 + m2 v2
                             m1 = mass of object 1                          (kg)
                             m2 = mass of object 2                          (kg)
                             u1 = initial velocity of object 1              (ms-1)
                             u2 = initial velocity of object 2              (ms-1)
                             v1 = final velocity of object 1                (ms-1)
                             v2 = final velocity of object 2                (ms-1)

Newton’s Law of Motion
Newton’s First Law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in
motion with a constant velocity (that is, with a constant speed in a straight line).




http://www.one-school.net/notes.html                  4
ONE-SCHOOL.NET
Newton’s Second Law

       mv − mu                 The rate of change of momentum of a body is directly proportional to the
    Fα                         resultant force acting on the body and is in the same direction.
          t                      F = Net Force        (N or kgms-2)
                                 m = mass             (kg)
       F = ma                    a = acceleration     (ms-2)

                               Implication
                               When there is resultant force acting on an object, the object will accelerate
                               (moving faster, moving slower or change direction).


Newton’s Third Law

Newton's third law of motion states that for every force, there is a reaction force with the same magnitude
but in the opposite direction.

Impulse

     Impulse = Ft                            F = force
                                             t = time
                                                                         (N)
                                                                         (s)

Impulse = mv − mu                            m = mass
                                             v = final velocity
                                                                         (kg)
                                                                         (ms-1)
                                             u = initial velocity        (ms-1)

Impulsive Force


            mv − mu                          F = Force                   (N or kgms-2)
    F=                                       t = time
                                             m = mass
                                                                         (s)
                                                                         (kg)
               t                             v = final velocity          (ms-1)
                                             u = initial velocity        (ms-1)


Gravitational Field Strength

                                             g = gravitational field strength            (N kg-1)
              F
           g=                                F = gravitational force
                                             m = mass
                                                                                         (N or kgms-2)
                                                                                         (kg)
              m
Weight

          W = mg                        W = Weight
                                        m = mass                   (kg)
                                                                          (N or kgms-2)

                                       g = gravitational field strength/gravitational acceleration       (ms-2)




http://www.one-school.net/notes.html                  5
ONE-SCHOOL.NET
Vertical Motion




•   If an object is release from a high position:          •   If an object is launched vertically upward:
•   The initial velocity, u = 0.                           •   The velocity at the maximum height, v = 0.
•   The acceleration of the object = gravitational         •   The deceleration of the object = -gravitational
    acceleration = 10ms-2(or 9.81 ms-2).                       acceleration = -10ms-2(or -9.81 ms-2).
•   The displacement of the object when it reach the       •   The displacement of the object when it reach the
    ground = the height of the original position, h.           ground = the height of the original position, h.




Lift
In Stationary
                                                           •   When a man standing inside an elevator, there
                                                               are two forces acting on him.
                                                               (a) His weight, which acting downward.
                                                               (b) Normal reaction (R), acting in the opposite
                                                                   direction of weight.

                                                           •   The reading of the balance is equal to the normal
                                                               reaction.


                    R = mg




http://www.one-school.net/notes.html                   6
ONE-SCHOOL.NET
Moving Upward with positive acceleration       Moving downward with positive acceleration




              R = mg + ma                                   R = mg − ma
Moving Upward with constant velocity           Moving downward with constant velocity.




                   R = mg                                        R = mg
Moving Upward with negative acceleration       Moving downward with negative acceleration




              R = mg − ma                                   R = mg + ma




http://www.one-school.net/notes.html       7
ONE-SCHOOL.NET
Smooth Pulley

With 1 Load
                                                                     Moving with uniform speed:

                                        T1 = T2                                      T1 = mg


                      Stationary:                                    Accelerating:

                                        T1 = mg                                  T1 – mg = ma




With 2 Loads
                      Finding Acceleration:
                      (If m2 > m1)
                                                       m2g – m1g = (m1+ m2)a

                      Finding Tension:
                      (If m2 > m1)
                                                                 T1 = T2
                                                              T1 – m1g = ma
                                                              m2g – T2 = ma


Vector

Vector Addition (Perpendicular Vector)
                                       Magnitude =        x2 + y2

                                                              | y|
                                       Direction =   tan −1
                                                              | x|

Vector Resolution

                                       | x |=| p | sin θ
                                       | y |=| p | cosθ




http://www.one-school.net/notes.html                  8
ONE-SCHOOL.NET
Inclined Plane

                                              Component parallel to the plane             = mgsinθ

                                              Component perpendicular to the plane        = mgcosθ




Forces In Equilibrium




              T3 = mg                                                T3 = mg

              T2 sin θ = mg                                          T2 cosθ = T1 cos α

              T2 cosθ = T1                                           T2 sin θ + T1 sin α = mg

              T1 tan θ = mg

Work Done




  W = Fx cos θ                W = Work Done                        (J or Nm)
                              F = Force                            (N or kgms-2)
                              x = displacement                     (m)
                              θ = angle between the force and the direction of motion           (o )

When the force and motion are in the same direction.

       W = Fs                 W = Work Done
                              F = Force
                                                           (J or Nm)
                                                           (N or kgms-2)
                              s = displacement             (m)




http://www.one-school.net/notes.html                   9
ONE-SCHOOL.NET
Energy

Kinetic Energy
    1                        EK = Kinetic Energy          (J)
EK = mv 2                    m = mass                     (kg)
    2                        v = velocity                 (ms-1)

Gravitational Potential Energy
EP = mgh                    EP = Potential Energy
                            m = mass
                                                                   (J)
                                                                   (kg)
                            g = gravitational acceleration         (ms-2)
                            h = height                             (m)

Elastic Potential Energy
            1                EP = Potential Energy                 (J)
        EP = kx 2            k = spring constant                   (N m-1)
            2                x = extension of spring               (m)
            1
        EP = Fx              F = Force                             (N)
            2
Power and Efficiency

Power
            W                 P = power                   (W or Js-1)
         P=                   W = work done               (J or Nm)
            t                 E = energy change           (J or Nm)
                 E            t = time                    (s)
         P=
                 t
Efficiency
                                              Useful Energy
                             Efficiency =                   × 100%
                                                 Energy
                                                   Or

                                              Power Output
                             Efficiency =                  × 100%
                                               Power Input
Hooke’s Law


F = kx                        F = Force
                              k = spring constant
                                                                             (N or kgms-2)
                                                                             (N m-1)
                              x = extension or compression of spring         (m)




http://www.one-school.net/notes.html               10
ONE-SCHOOL.NET
                                   Force and Pressure
Density


                                               m
                                            ρ=
                                               V
                                         ρ = density             (kg m-3)
                                         m = mass                (kg)
                                         V = volume              (m3)
Pressure

   F                          P = Pressure                        (Pa or N m-2)
P=                            A = Area of the surface             (m2)
   A                          F = Force acting normally to the surface (N or kgms-2)


Liquid Pressure
P = hρ g                      h = depth                           (m)
                              ρ = density                         (kg m-3)
                              g = gravitational Field Strength    (N kg-1)


Pressure in Liquid
P = Patm + h ρ g             h = depth                            (m)
                             ρ = density                          (kg m-3)
                             g = gravitational Field Strength     (N kg-1)
                             Patm = atmospheric Pressure          (Pa or N m-2)

Gas Pressure

Manometer


                                          P = Patm + h ρ g
                                         Pgas = Pressure                      (Pa or N m-2)

                                         Patm = Atmospheric Pressure          (Pa or N m-2)

                                         g = gravitational field strength     (N kg-1)




http://www.one-school.net/notes.html               11
ONE-SCHOOL.NET
U=tube
                                                            h1 ρ1 = h2 ρ 2




Pressure in a Capillary Tube




              Pgas = gas pressure in the capillary tube    (Pa or N m-2)
              Patm = atmospheric pressure                  (Pa or N m-2)
              h = length of the captured mercury           (m)
              ρ = density of mercury                       (kg m-3)
              g = gravitational field strength             (N kg-1)
Barometer

                                   Pressure in unit cmHg           Pressure in unit Pa

                               Pa = 0                        Pa = 0
                               P b = 26                      P b = 0.26×13600×10
                               P c = 76                      P c = 0.76×13600×10
                               P d = 76                      P d = 0.76×13600×10
                               P e = 76                      P e = 0.76×13600×10
                               P f = 84                      P f = 0.84×13600×10

                                                                (Density of mercury = 13600kgm-3)




http://www.one-school.net/notes.html                12
ONE-SCHOOL.NET
Pascal’s Principle



                                                           F1 F2
                                                             =
                                                           A1 A2
                                       F1 = Force exerted on the small piston
                                       A1 = area of the small piston
                                       F2 = Force exerted on the big piston
                                       A2 = area of the big piston


Archimedes Principle

                                               Weight of the object, W   = ρ1V1 g

                                               Upthrust,   F = ρ 2V2 g

                                               ρ1 = density of wooden block
                                               V1 = volume of the wooden block
                                               ρ2 = density of water
                                               V2 = volume of the displaced water
                                               g = gravitational field strength




Density of water > Density of wood             Density of Iron > Density of water

                     F=T+W                                          T+F=W
                ρVg = T + mg                                    ρVg + T = mg




http://www.one-school.net/notes.html         13
ONE-SCHOOL.NET
Heat

Heat Change
                                                Q = mcθ
                                  m = mass                                     (kg)
                                  c = specific heat capacity                   (J kg-1 oC-1)
                                  θ = temperature change                       (o)

                Electric Heater                                             Mixing 2 Liquid

Energy Supply, E = Pt                               Heat Gain by Liquid 1 = Heat Loss by Liquid 2
Energy Receive, Q = mcθ                                                   m1c1θ1 = m2 c2θ 2
    Energy Supply, E = Energy Receive, Q            m1 = mass of liquid 1
                                                    c1 = specific heat capacity of liquid 1
                 Pt = mcθ                           θ1 = temperature change of liquid 1

 E = electrical Energy (J or Nm)                    m2 = mass of liquid 2
 P = Power of the electric heater (W)               c2 = specific heat capacity of liquid 2
 t = time (in second)      (s)                      θ2 = temperature change of liquid 2

 Q = Heat Change (J or Nm)
 m = mass            (kg)
 c = specific heat capacity (J kg-1 oC-1)
 θ = temperature change (o)

Specific Latent Heat

                                                Q = mL
                              Q = Heat Change                 (J or Nm)
                              m = mass                        (kg)
                              L = specific latent heat         (J kg-1)

Boyle’s Law

                                               PV1 = P2V2
                                                1

(Requirement: Temperature in constant)
Pressure Law

                                                 P P2
                                                  1
                                                    =
                                                 T1 T2
(Requirement: Volume is constant)




http://www.one-school.net/notes.html                     14
ONE-SCHOOL.NET
Charles’s Law

                                           V1 V2
                                             =
                                           T1 T2
(Requirement: Pressure is constant)
Universal Gas Law
                                           PV1 PV2
                                            1
                                              = 2
                                           T1   T2
                         P = Pressure                (Pa or cmHg …….)
                         V = Volume                 (m3 or cm3)
                         T = Temperature            (MUST be in K(Kelvin))

                                            Light
Refractive Index

Snell’s Law
Real depth/Apparent Depth
                                                                              sin i
                                                                      n=
                                                                              sin r
                                                    n = refractive index                  (No unit)
                                                    i = angle of incident                 (o)
                                                    r = angle of reflection        (o )



                                                                               D
                                                                        n=
                                                                               d
                                                    n = refractive index                  (No unit)
                                                    D = real depth                        (m or cm…)
                                                    d = apparent depth             (m or cm…)




Speed of light                                    Total Internal Reflection
                            c                                                   1
                       n=                                              n=
                            v                                                 sin c
   n = refractive index              (No unit)       n = refractive index          (No unit)
   c = speed of light in vacuum      (ms-1)         c = critical angle             (o )
   v = speed of light in a medium (like water,
   glass …) (ms-1)




http://www.one-school.net/notes.html         15
ONE-SCHOOL.NET
Lens

Power
                                                       1
                                               P=
                                                       f
                          P = Power                        (D(Diopter))
                          f = focal length                 (m)

Linear Magnification
                            hi                    v                       hi v
                       m=                    m=                             =
                            ho                    u                       ho u

                          m = linear magnification         (No unit)
                          u = distance of object           (m or cm…)
                          v = distance of image            (m or cm…)
                          hi = heigth of image             (m or cm…)
                          ho = heigth of object            (m or cm…)

Lens Equation




                                                      Conventional symbol
                                                                         positive negative
                   1 1 1                                      u           Real object   Virtual object
                    + =
                   u v f                                      v           Real image    Virtual image

                                                              f           Convex lens   Concave lens




http://www.one-school.net/notes.html              16
ONE-SCHOOL.NET
Astronomical Telescope

Magnification,
                                Pe                                       fo
                             m=                                       m=
                                Po                                       fe
                            m = linear magnification
                            Pe = Power of the eyepiece
                            Po = Power of the objective lens
                            fe = focal length of the eyepiece
                            fo = focal length of the objective lens

Distance between eye lens and objective lens

                                                  d = fo + fe

                            d = Distance between eye lens and objective lens
                            fe = focal length of the eyepiece
                            fo = focal length of the objective lens

Compound Microscope

Magnification
                   m = m1 × m2
                          Height of first image , I1 Height of second image, I 2
                      =                             ×
                             Height of object         Height of first image , I1
                          Height of second image, I 2
                      =
                             Height of object, I1


                 m = Magnification of the microscope
                 m1 = Linear magnification of the object lens
                 m2 = Linear magnification of the eyepiece

Distance in between the two lens
                                                 d > fo + fe

                            d = Distance between eye lens and objective lens
                            fe = focal length of the eyepiece
                            fo = focal length of the objective lens




http://www.one-school.net/notes.html                  17

More Related Content

What's hot

Skema Fizik K1 K2 N9.pdf
Skema Fizik K1 K2 N9.pdfSkema Fizik K1 K2 N9.pdf
Skema Fizik K1 K2 N9.pdfNurul Fadhilah
 
Peka form 4 (inertia)
Peka form 4 (inertia)Peka form 4 (inertia)
Peka form 4 (inertia)Idrul Nafiz
 
SPM Tingkatan 5 Fizik - Elektronik
SPM Tingkatan 5 Fizik - ElektronikSPM Tingkatan 5 Fizik - Elektronik
SPM Tingkatan 5 Fizik - ElektronikLoo Carmen
 
SPM Physics Formula List Form 5
SPM  Physics Formula List Form 5 SPM  Physics Formula List Form 5
SPM Physics Formula List Form 5 Zhang Ewe
 
F4 Experiments
F4 ExperimentsF4 Experiments
F4 Experimentsmarjerin
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdfLIMXINGHOOIMoe
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4guest76f49d
 
Spm chemistry formula list form 4
Spm chemistry formula list form 4Spm chemistry formula list form 4
Spm chemistry formula list form 4Zhang Ewe
 
Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematicsRagulan Dev
 
Bab 3 - Formula dan persamaan kimia
Bab 3 - Formula dan persamaan kimiaBab 3 - Formula dan persamaan kimia
Bab 3 - Formula dan persamaan kimiaCikgu Ummi
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index numberatiqah ayie
 
35.hukum gas,hukum boyle
35.hukum gas,hukum boyle35.hukum gas,hukum boyle
35.hukum gas,hukum boyleAtiqah Azmi
 
Bab 3 formula dan persamaan kimia tingkatan 4
Bab 3 formula dan persamaan kimia tingkatan 4Bab 3 formula dan persamaan kimia tingkatan 4
Bab 3 formula dan persamaan kimia tingkatan 4mrs imran
 
kata kerja - kata kerja transitif aktif pasif
kata kerja - kata kerja transitif aktif pasifkata kerja - kata kerja transitif aktif pasif
kata kerja - kata kerja transitif aktif pasifAlaireena Hms
 

What's hot (20)

Skema Fizik K1 K2 N9.pdf
Skema Fizik K1 K2 N9.pdfSkema Fizik K1 K2 N9.pdf
Skema Fizik K1 K2 N9.pdf
 
Koleksi Makna, Istilah Dan Formula Fizik SPM (Tingkatan 4 & 5)
Koleksi Makna, Istilah Dan Formula Fizik SPM (Tingkatan 4 & 5)Koleksi Makna, Istilah Dan Formula Fizik SPM (Tingkatan 4 & 5)
Koleksi Makna, Istilah Dan Formula Fizik SPM (Tingkatan 4 & 5)
 
Peka form 4 (inertia)
Peka form 4 (inertia)Peka form 4 (inertia)
Peka form 4 (inertia)
 
SPM Tingkatan 5 Fizik - Elektronik
SPM Tingkatan 5 Fizik - ElektronikSPM Tingkatan 5 Fizik - Elektronik
SPM Tingkatan 5 Fizik - Elektronik
 
SPM Physics Formula List Form 5
SPM  Physics Formula List Form 5 SPM  Physics Formula List Form 5
SPM Physics Formula List Form 5
 
F4 Experiments
F4 ExperimentsF4 Experiments
F4 Experiments
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf
551920773-Bahasa-Melayu-Standard-Kempimpinan-Melalui-Teladan (1).pdf
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4
 
Spm chemistry formula list form 4
Spm chemistry formula list form 4Spm chemistry formula list form 4
Spm chemistry formula list form 4
 
16.impuls
16.impuls16.impuls
16.impuls
 
8 garam
8 garam8 garam
8 garam
 
Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
 
KBAT Sejarah SPM
KBAT Sejarah SPMKBAT Sejarah SPM
KBAT Sejarah SPM
 
Bab 3 - Formula dan persamaan kimia
Bab 3 - Formula dan persamaan kimiaBab 3 - Formula dan persamaan kimia
Bab 3 - Formula dan persamaan kimia
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index number
 
35.hukum gas,hukum boyle
35.hukum gas,hukum boyle35.hukum gas,hukum boyle
35.hukum gas,hukum boyle
 
Kata tunggal
Kata tunggalKata tunggal
Kata tunggal
 
Bab 3 formula dan persamaan kimia tingkatan 4
Bab 3 formula dan persamaan kimia tingkatan 4Bab 3 formula dan persamaan kimia tingkatan 4
Bab 3 formula dan persamaan kimia tingkatan 4
 
kata kerja - kata kerja transitif aktif pasif
kata kerja - kata kerja transitif aktif pasifkata kerja - kata kerja transitif aktif pasif
kata kerja - kata kerja transitif aktif pasif
 

Viewers also liked

Viewers also liked (10)

Important formula for physics form 5
Important formula for physics form 5Important formula for physics form 5
Important formula for physics form 5
 
SPM PHYSICS-PAPER-3--GUIDE-
SPM PHYSICS-PAPER-3--GUIDE-SPM PHYSICS-PAPER-3--GUIDE-
SPM PHYSICS-PAPER-3--GUIDE-
 
4.3 transistor
4.3 transistor4.3 transistor
4.3 transistor
 
Sejarah Tingkatan 4: Bab1
Sejarah Tingkatan 4: Bab1Sejarah Tingkatan 4: Bab1
Sejarah Tingkatan 4: Bab1
 
SPM PHYSICS FORM 4 intro to physics
SPM PHYSICS FORM 4  intro to physicsSPM PHYSICS FORM 4  intro to physics
SPM PHYSICS FORM 4 intro to physics
 
spm-physics-definition-list
spm-physics-definition-listspm-physics-definition-list
spm-physics-definition-list
 
Revision physics spm 2015
Revision physics spm 2015 Revision physics spm 2015
Revision physics spm 2015
 
4831603 physics-formula-list-form-4
4831603 physics-formula-list-form-44831603 physics-formula-list-form-4
4831603 physics-formula-list-form-4
 
Guidelines on answering paper 2 and paper 3 questions
Guidelines on answering paper 2 and paper 3 questionsGuidelines on answering paper 2 and paper 3 questions
Guidelines on answering paper 2 and paper 3 questions
 
Sejarah 4 tingkatan bab 1
Sejarah 4 tingkatan bab 1Sejarah 4 tingkatan bab 1
Sejarah 4 tingkatan bab 1
 

Similar to Spm physics-formula-list-form4

Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)gracenyura
 
Chapter 2-forces-and-motion-2011
Chapter 2-forces-and-motion-2011Chapter 2-forces-and-motion-2011
Chapter 2-forces-and-motion-2011izzatulsyahadah97
 
2007 u2 lisachem
2007 u2 lisachem2007 u2 lisachem
2007 u2 lisachemhithtere
 
GEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptx
GEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptxGEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptx
GEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptxAshmontefalco4
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursGabriel Peyré
 
Using Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication FlowUsing Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication FlowMartin Harrigan
 
Vibrational Rotational Spectrum of HCl and DCl
Vibrational Rotational Spectrum of HCl and DClVibrational Rotational Spectrum of HCl and DCl
Vibrational Rotational Spectrum of HCl and DClTianna Drew
 
Computational Method to Solve the Partial Differential Equations (PDEs)
Computational Method to Solve the Partial Differential  Equations (PDEs)Computational Method to Solve the Partial Differential  Equations (PDEs)
Computational Method to Solve the Partial Differential Equations (PDEs)Dr. Khurram Mehboob
 
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serwayCapítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway.. ..
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)asghar123456
 
Radiation physics 2
Radiation physics 2Radiation physics 2
Radiation physics 2Rad Tech
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasirymmanz86
 
Related rates ppt
Related rates pptRelated rates ppt
Related rates pptRon Eick
 

Similar to Spm physics-formula-list-form4 (20)

Ch02sol
Ch02solCh02sol
Ch02sol
 
Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)
 
Chapter 2-forces-and-motion-2011
Chapter 2-forces-and-motion-2011Chapter 2-forces-and-motion-2011
Chapter 2-forces-and-motion-2011
 
2007 u2 lisachem
2007 u2 lisachem2007 u2 lisachem
2007 u2 lisachem
 
Rectilinear motion
Rectilinear motionRectilinear motion
Rectilinear motion
 
GEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptx
GEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptxGEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptx
GEN PHYSICS 1 WEEK 2 KINEMATICS IN ONE DIMENSION.pptx
 
Sect2 3
Sect2 3Sect2 3
Sect2 3
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
Using Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication FlowUsing Vector Clocks to Visualize Communication Flow
Using Vector Clocks to Visualize Communication Flow
 
Vibrational Rotational Spectrum of HCl and DCl
Vibrational Rotational Spectrum of HCl and DClVibrational Rotational Spectrum of HCl and DCl
Vibrational Rotational Spectrum of HCl and DCl
 
Newton's Laws of Motion L2.1
Newton's Laws of Motion L2.1Newton's Laws of Motion L2.1
Newton's Laws of Motion L2.1
 
pRO
pROpRO
pRO
 
Computational Method to Solve the Partial Differential Equations (PDEs)
Computational Method to Solve the Partial Differential  Equations (PDEs)Computational Method to Solve the Partial Differential  Equations (PDEs)
Computational Method to Solve the Partial Differential Equations (PDEs)
 
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serwayCapítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
 
Topic 3 kft 131
Topic 3 kft 131Topic 3 kft 131
Topic 3 kft 131
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)
 
Radiation physics 2
Radiation physics 2Radiation physics 2
Radiation physics 2
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasi
 
Related rates ppt
Related rates pptRelated rates ppt
Related rates ppt
 

Recently uploaded

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Recently uploaded (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

Spm physics-formula-list-form4

  • 1. ONE-SCHOOL.NET Physics Equation List :Form 4 Introduction to Physics Relative Deviation Relative Deviation = Mean Deviation ×100% Mean Value Prefixes Prefixes Value Standard form Symbol Tera 1 000 000 000 000 1012 T Giga 1 000 000 000 109 G Mega 1 000 000 106 M Kilo 1 000 103 k deci 0.1 10-1 d centi 0.01 10-2 c milli 0.001 10-3 m micro 0.000 001 10-6 μ nano 0.000 000 001 10-9 n pico 0.000 000 000 001 10-12 p Units for Area and Volume 1 m = 102 cm (100 cm) 1 2 4 2 2 1 cm = 10-2 m ( m) 1 m = 10 cm (10,000 cm ) 100 1 m3 = 106 cm3 (1,000,000 cm3) 1 1 cm2 = 10-4 m2 ( m2 ) 10,000 1 1 cm3 = 10-6 m3 ( m3 ) 1,000,000 http://www.one-school.net/notes.html 1
  • 2. ONE-SCHOOL.NET Force and Motion Average Speed Average Speed = Total Distance Total Time Velocity (ms-1) v= s v = velocity s = displacement (m) t t = time (s) Acceleration v−u a = acceleration (ms-2) a= v = final velocity u = initial velocity (ms-1) (ms-1) t t =time for the velocity change (s) Equation of Linear Motion Linear Motion Motion with Motion with Motion with constant changing constant velocity acceleration acceleration s v = u + at Using Calculus v= (In Additional t 1 s = (u + v)t Mathematics 2 Syllabus) 1 s = ut + at 2 2 v 2 = u 2 + 2as u = initial velocity (ms-1) v = final velocity (ms-1) a = acceleration (ms-2) s = displacement (m) t = time (s) http://www.one-school.net/notes.html 2
  • 3. ONE-SCHOOL.NET Ticker Tape Finding Velocity: s velocity = number of ticks × 0.02s 1 tick = 0.02s Finding Acceleration: v−u a= t a = acceleration (ms-2) v = final velocity (ms-1) u = initial velocity (ms-1) t = time for the velocity change (s) Graph of Motion Gradient of a Graph The gradient 'm' of a line segment between two points and is defined as follows: Change in y coordinate, Δy Gradient, m = Change in x coordinate, Δx or Δy m= Δx http://www.one-school.net/notes.html 3
  • 4. ONE-SCHOOL.NET Displacement-Time Graph Velocity-Time Graph Gradient = Velocity (ms-1) Gradient = Acceleration (ms-2) Area in between the graph and x-axis = Displacement Momentum p = m×v p = momentum m = mass (kg ms-1) (kg) v = velocity (ms-1) Principle of Conservation of Momentum m1u1 + m2u2 = m1v1 + m2 v2 m1 = mass of object 1 (kg) m2 = mass of object 2 (kg) u1 = initial velocity of object 1 (ms-1) u2 = initial velocity of object 2 (ms-1) v1 = final velocity of object 1 (ms-1) v2 = final velocity of object 2 (ms-1) Newton’s Law of Motion Newton’s First Law In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line). http://www.one-school.net/notes.html 4
  • 5. ONE-SCHOOL.NET Newton’s Second Law mv − mu The rate of change of momentum of a body is directly proportional to the Fα resultant force acting on the body and is in the same direction. t F = Net Force (N or kgms-2) m = mass (kg) F = ma a = acceleration (ms-2) Implication When there is resultant force acting on an object, the object will accelerate (moving faster, moving slower or change direction). Newton’s Third Law Newton's third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction. Impulse Impulse = Ft F = force t = time (N) (s) Impulse = mv − mu m = mass v = final velocity (kg) (ms-1) u = initial velocity (ms-1) Impulsive Force mv − mu F = Force (N or kgms-2) F= t = time m = mass (s) (kg) t v = final velocity (ms-1) u = initial velocity (ms-1) Gravitational Field Strength g = gravitational field strength (N kg-1) F g= F = gravitational force m = mass (N or kgms-2) (kg) m Weight W = mg W = Weight m = mass (kg) (N or kgms-2) g = gravitational field strength/gravitational acceleration (ms-2) http://www.one-school.net/notes.html 5
  • 6. ONE-SCHOOL.NET Vertical Motion • If an object is release from a high position: • If an object is launched vertically upward: • The initial velocity, u = 0. • The velocity at the maximum height, v = 0. • The acceleration of the object = gravitational • The deceleration of the object = -gravitational acceleration = 10ms-2(or 9.81 ms-2). acceleration = -10ms-2(or -9.81 ms-2). • The displacement of the object when it reach the • The displacement of the object when it reach the ground = the height of the original position, h. ground = the height of the original position, h. Lift In Stationary • When a man standing inside an elevator, there are two forces acting on him. (a) His weight, which acting downward. (b) Normal reaction (R), acting in the opposite direction of weight. • The reading of the balance is equal to the normal reaction. R = mg http://www.one-school.net/notes.html 6
  • 7. ONE-SCHOOL.NET Moving Upward with positive acceleration Moving downward with positive acceleration R = mg + ma R = mg − ma Moving Upward with constant velocity Moving downward with constant velocity. R = mg R = mg Moving Upward with negative acceleration Moving downward with negative acceleration R = mg − ma R = mg + ma http://www.one-school.net/notes.html 7
  • 8. ONE-SCHOOL.NET Smooth Pulley With 1 Load Moving with uniform speed: T1 = T2 T1 = mg Stationary: Accelerating: T1 = mg T1 – mg = ma With 2 Loads Finding Acceleration: (If m2 > m1) m2g – m1g = (m1+ m2)a Finding Tension: (If m2 > m1) T1 = T2 T1 – m1g = ma m2g – T2 = ma Vector Vector Addition (Perpendicular Vector) Magnitude = x2 + y2 | y| Direction = tan −1 | x| Vector Resolution | x |=| p | sin θ | y |=| p | cosθ http://www.one-school.net/notes.html 8
  • 9. ONE-SCHOOL.NET Inclined Plane Component parallel to the plane = mgsinθ Component perpendicular to the plane = mgcosθ Forces In Equilibrium T3 = mg T3 = mg T2 sin θ = mg T2 cosθ = T1 cos α T2 cosθ = T1 T2 sin θ + T1 sin α = mg T1 tan θ = mg Work Done W = Fx cos θ W = Work Done (J or Nm) F = Force (N or kgms-2) x = displacement (m) θ = angle between the force and the direction of motion (o ) When the force and motion are in the same direction. W = Fs W = Work Done F = Force (J or Nm) (N or kgms-2) s = displacement (m) http://www.one-school.net/notes.html 9
  • 10. ONE-SCHOOL.NET Energy Kinetic Energy 1 EK = Kinetic Energy (J) EK = mv 2 m = mass (kg) 2 v = velocity (ms-1) Gravitational Potential Energy EP = mgh EP = Potential Energy m = mass (J) (kg) g = gravitational acceleration (ms-2) h = height (m) Elastic Potential Energy 1 EP = Potential Energy (J) EP = kx 2 k = spring constant (N m-1) 2 x = extension of spring (m) 1 EP = Fx F = Force (N) 2 Power and Efficiency Power W P = power (W or Js-1) P= W = work done (J or Nm) t E = energy change (J or Nm) E t = time (s) P= t Efficiency Useful Energy Efficiency = × 100% Energy Or Power Output Efficiency = × 100% Power Input Hooke’s Law F = kx F = Force k = spring constant (N or kgms-2) (N m-1) x = extension or compression of spring (m) http://www.one-school.net/notes.html 10
  • 11. ONE-SCHOOL.NET Force and Pressure Density m ρ= V ρ = density (kg m-3) m = mass (kg) V = volume (m3) Pressure F P = Pressure (Pa or N m-2) P= A = Area of the surface (m2) A F = Force acting normally to the surface (N or kgms-2) Liquid Pressure P = hρ g h = depth (m) ρ = density (kg m-3) g = gravitational Field Strength (N kg-1) Pressure in Liquid P = Patm + h ρ g h = depth (m) ρ = density (kg m-3) g = gravitational Field Strength (N kg-1) Patm = atmospheric Pressure (Pa or N m-2) Gas Pressure Manometer P = Patm + h ρ g Pgas = Pressure (Pa or N m-2) Patm = Atmospheric Pressure (Pa or N m-2) g = gravitational field strength (N kg-1) http://www.one-school.net/notes.html 11
  • 12. ONE-SCHOOL.NET U=tube h1 ρ1 = h2 ρ 2 Pressure in a Capillary Tube Pgas = gas pressure in the capillary tube (Pa or N m-2) Patm = atmospheric pressure (Pa or N m-2) h = length of the captured mercury (m) ρ = density of mercury (kg m-3) g = gravitational field strength (N kg-1) Barometer Pressure in unit cmHg Pressure in unit Pa Pa = 0 Pa = 0 P b = 26 P b = 0.26×13600×10 P c = 76 P c = 0.76×13600×10 P d = 76 P d = 0.76×13600×10 P e = 76 P e = 0.76×13600×10 P f = 84 P f = 0.84×13600×10 (Density of mercury = 13600kgm-3) http://www.one-school.net/notes.html 12
  • 13. ONE-SCHOOL.NET Pascal’s Principle F1 F2 = A1 A2 F1 = Force exerted on the small piston A1 = area of the small piston F2 = Force exerted on the big piston A2 = area of the big piston Archimedes Principle Weight of the object, W = ρ1V1 g Upthrust, F = ρ 2V2 g ρ1 = density of wooden block V1 = volume of the wooden block ρ2 = density of water V2 = volume of the displaced water g = gravitational field strength Density of water > Density of wood Density of Iron > Density of water F=T+W T+F=W ρVg = T + mg ρVg + T = mg http://www.one-school.net/notes.html 13
  • 14. ONE-SCHOOL.NET Heat Heat Change Q = mcθ m = mass (kg) c = specific heat capacity (J kg-1 oC-1) θ = temperature change (o) Electric Heater Mixing 2 Liquid Energy Supply, E = Pt Heat Gain by Liquid 1 = Heat Loss by Liquid 2 Energy Receive, Q = mcθ m1c1θ1 = m2 c2θ 2 Energy Supply, E = Energy Receive, Q m1 = mass of liquid 1 c1 = specific heat capacity of liquid 1 Pt = mcθ θ1 = temperature change of liquid 1 E = electrical Energy (J or Nm) m2 = mass of liquid 2 P = Power of the electric heater (W) c2 = specific heat capacity of liquid 2 t = time (in second) (s) θ2 = temperature change of liquid 2 Q = Heat Change (J or Nm) m = mass (kg) c = specific heat capacity (J kg-1 oC-1) θ = temperature change (o) Specific Latent Heat Q = mL Q = Heat Change (J or Nm) m = mass (kg) L = specific latent heat (J kg-1) Boyle’s Law PV1 = P2V2 1 (Requirement: Temperature in constant) Pressure Law P P2 1 = T1 T2 (Requirement: Volume is constant) http://www.one-school.net/notes.html 14
  • 15. ONE-SCHOOL.NET Charles’s Law V1 V2 = T1 T2 (Requirement: Pressure is constant) Universal Gas Law PV1 PV2 1 = 2 T1 T2 P = Pressure (Pa or cmHg …….) V = Volume (m3 or cm3) T = Temperature (MUST be in K(Kelvin)) Light Refractive Index Snell’s Law Real depth/Apparent Depth sin i n= sin r n = refractive index (No unit) i = angle of incident (o) r = angle of reflection (o ) D n= d n = refractive index (No unit) D = real depth (m or cm…) d = apparent depth (m or cm…) Speed of light Total Internal Reflection c 1 n= n= v sin c n = refractive index (No unit) n = refractive index (No unit) c = speed of light in vacuum (ms-1) c = critical angle (o ) v = speed of light in a medium (like water, glass …) (ms-1) http://www.one-school.net/notes.html 15
  • 16. ONE-SCHOOL.NET Lens Power 1 P= f P = Power (D(Diopter)) f = focal length (m) Linear Magnification hi v hi v m= m= = ho u ho u m = linear magnification (No unit) u = distance of object (m or cm…) v = distance of image (m or cm…) hi = heigth of image (m or cm…) ho = heigth of object (m or cm…) Lens Equation Conventional symbol positive negative 1 1 1 u Real object Virtual object + = u v f v Real image Virtual image f Convex lens Concave lens http://www.one-school.net/notes.html 16
  • 17. ONE-SCHOOL.NET Astronomical Telescope Magnification, Pe fo m= m= Po fe m = linear magnification Pe = Power of the eyepiece Po = Power of the objective lens fe = focal length of the eyepiece fo = focal length of the objective lens Distance between eye lens and objective lens d = fo + fe d = Distance between eye lens and objective lens fe = focal length of the eyepiece fo = focal length of the objective lens Compound Microscope Magnification m = m1 × m2 Height of first image , I1 Height of second image, I 2 = × Height of object Height of first image , I1 Height of second image, I 2 = Height of object, I1 m = Magnification of the microscope m1 = Linear magnification of the object lens m2 = Linear magnification of the eyepiece Distance in between the two lens d > fo + fe d = Distance between eye lens and objective lens fe = focal length of the eyepiece fo = focal length of the objective lens http://www.one-school.net/notes.html 17