Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 1/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Francisco M. Gonzalez-Longatt, PhD
Jairo H. Quiros Tortos. Ph.D. Researcher
Manchester, UK, Enero, 2011
Análisis de Sistemas de
Protección empleando
DIgSILENT PowerFactory
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 2/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Mostrar los aspectos teoricos del analisis de sistemas de
proteccion empleando la herramienta DigSILENT
PowerFactory
Análisis de Sistemas de Protección
empleando
DIgSILENT PowerFactory
Francisco M. Gonzalez-Longatt, PhD,
Jairo H. Quiros Tortos. Ph.D. Researcher
fglogatt@fglongatt.org.ve, jquiros@eie.ucr.ac.cr
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 3/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
1. Introducción a los Sistemas de
Protección
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 4/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Objetivos de los Sistemas de Protección
• Prevenir lesiones a las personas.
• Minimizar el daño en los componentes del
sistema.
• Limitar la duración y minimizar las
interrupciones del servicio.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 5/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Aspectos de Sistemas de Protección
• Confiabilidad
– Propiedad de garantizar un funcionamiento correcto de la
protección. Incluye operar cuando se requiere
(dependebilidad) y no operar incorrectamente (seguridad).
• Selectividad
– Eliminar la falla o anomalía mediante la desconexión del
menor número de elementos.
• Velocidad de Operación
– Desconexión de la falla en el menor tiempo posible.
• Simplicidad
– Mínimo de dispositivo de protección y circuitería asociados
para lograr los objetivos de protección.
• Sensibilidad
– Detección de fallas o condiciones anormales que
provoquen variaciones pequeñas en el sistema.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 6/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Anormalidades en SP
• Las anormalidades en sistemas de
potencia son miles, pero pueden ser
agrupadas en:
–Cortocircuitos
–Sobrecargas
–Contactos a tierra
–Interrupción de conductores
–Déficit de potencia activa
–Poleslip (Perdida de estabilidad)
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 7/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Criterio de deteccion de falla
Criterio de Detección de falla:
• Sobrecorriente (cortocircuito, sobrecarga)
• Corriente diferencial (cortocircuito).
• Sobre voltaje/Bajo voltaje (cortocircuito, estabilidad de voltaje)
• Dirección de potencia (cortocircuito, contacto a tierra)
• Desbalance (interrupción de conductor, desbalance de
carga).
• Impedancia (cortocircuito, perdida de estabilidad).
• Frecuencia (déficit de potencia activa)
• Temperatura (sobrecarga)
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 8/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
2. Transformadores de Corriente (TC) y
Transformador de Potencial (TP)
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 9/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Clasificación de los TC
Clases de predicción por IEC:
ejemplo: 15VA Clase 10 P 20
 15VA : Burden in VA
 10 : Clase de precisión
 P : Aplicación: P para “Protección”
 20 : Accuracy Limit Factor (factor limite de precisión)
(hasta 10% de error a 20 veces la corriente nominal o
burden)
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 10/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Clasificación de los transformadores
• Definición según ANSI/IEEE:
• Ejemplo: T100 o C 100
 ‘T‘ indica que el desempeno del TC ha sido probado:
Fabricantes pueden proveer pruebas y datos medidos.
 ‘C‘ indica que el desempeno ha sido calculado.
 Numero que define el maximo voltaje en el secundario a
el cual el error es menor a 10%, para corrientes entre 1-
Number defines the maximum secondary voltage at
which the error is less than 10%, for currents between 1-
20 veces la corriente secundaria.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 11/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Saturación del Transformador de Corriente
 Los transformadores de corriente (TC) se pueden
saturar si:
 Voltaje AC secundario es mas alto que el voltaje del codo
(kneepoint).
 Corriente primaria contiene componentes DC.
 La corriente secundaria de un TC saturado es
distorcionada y mas pequena de la corriente no
saturada.
 TC especiales con caracteristicas dinamicas mejorasas
son clasificados segun la norma IEC como TPX,TPY o
TPZ
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 12/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
CT Saturacion
0.200
0.100
0.000
-0.1000 ..
1200.0
800.00
400.00
0.000
-400.00
-800.00
-1200.0
Stromwandler: Mag.-Fluss L1 in V
0.200
0.100
0.000
-0.1000 ..
1200.0
800.00
400.00
0.000
-400.00
-800.00
-1200.0
Stromwandler: Mag.-Fluss L2 in V
0.200
0.100
0.000
-0.1000 ..
1200.0
800.00
400.00
0.000
-400.00
-800.00
-1200.0
Stromwandler: Mag.-Fluss L3 in V
DIgSILENT
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 13/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
3. Proteccion contra Sobrecorrientes
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 14/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Característica de tiempo definido
• Tiempo total de limpieza de
falla (Tcf):
Tfc = Trelay + Tbrk
Trelay: tiempo de disparo del rele
Tbrk : Tiempo de disparo del interruptor
• Tiempo de disparo del rele
(Trelay):
Trelay = Ts + Tset
Ts: tiempo de arranque
Tset: tiempo ajustado
• Ajuste de corriente
Ajuste de corriente de
arranque
>>
> I
und
I
1000 10000 100000
[pri.A]
0.01
0.1
1
10
[s]
I>/I>>
DIgS
ILE
NT
Tfct=Trelay+Tbrk
Tfct=Trelay+Tbrk
I>>
I>
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 15/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Característica de tiempo inverso
• Tiempo total de limpieza de
falla (Tcf):
Tfc = Trelay + Tbrk
Trelay: tiempo de disparo del rele
Tbrk : Tiempo de disparo del interruptor
• Tiempo de disparo del rele
(Trelay):
Trelay = Ts + Tset
Ts: tiempo de arranque
Tset: tiempo ajustado
• Ajuste de corriente
Ipset: rango de corriente ajustada
Imin: Corriente de arranque
1000 10000 100000
[pri.A]
0.01
0.1
1
10
[s]
AMZ
DIgSILENT
Tpset
Ipset
Tfct=Trelay+Tbrk
Imin
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 16/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Características - IEC
• Normalmente Inverso:
• Muy Inverso:
• Extremadamente Inverso:
• Inverso Largo:
1
)
/
(
14
.
0
t 02
.
0
−
⋅
=
pset
pset
I
I
T
1
)
/
(
5
.
13
t
−
⋅
=
pset
pset
I
I
T
1
)
/
(
80
t 2
−
⋅
=
pset
pset
I
I
T
1
)
/
(
120
t
−
⋅
=
pset
pset
I
I
T
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 17/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Características - ANSI / IEEE
• Normalmente inversa
• Inverso corto
• Largamente inversa
• Moderadamente inversa
• Muy inversa
• Extremadamente inversa
• Inversa definidad
• Corriente cuadrada








+
−
⋅
= 0.17966
1
)
/
(
8.9341
t 2,0938
pset
pset
I
I
T








+
−
⋅
= 0982
.
0
1
)
/
(
922
.
3
t 2
pset
pset
I
I
T








+
−
⋅
= 18592
.
2
1
)
/
(
64143
.
5
t
pset
pset
I
I
T








+
−
⋅
= 21359
.
0
1
)
/
(
4797
.
0
t 5625
.
1
pset
pset
I
I
T








+
−
⋅
= 03393
.
0
1
)
/
(
2663
.
0
t 2969
.
1
pset
pset
I
I
T








+
−
⋅
= 0243
.
0
1
)
/
(
64
.
5
t 2
pset
pset
I
I
T








+
−
⋅
= 0228
.
0
1
)
/
(
0103
.
0
t 02
.
0
pset
pset
I
I
T
2
)
/
(
14
.
10
7
.
50
t
pset
pset
I
I
T +
⋅
=
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 18/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Coordinacion por Tiempo
C-D
B-C
A-B
D
C
B
A
t
t=1.2 s
t= 0.8 s
t= 0.4 s
Infeed
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 19/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Coordinación Tiempo/Corriente
C-D
B-C
A-B
D
C
B
A
t
lmax(0.8*LAB) lmax(0.8*LBC) lmax(0.8*LCD)
Infeed
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 20/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Fusibles
Average Melt Curve
Min. Melt Curve
Max. Melt Curve
Fuse 1 Fuse 2
Mínimo tiempo de
liberación de falla
Máximo tiempo de
liberación de falla
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 21/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Interruptores de Bajo Voltaje
• Tiempo largo con retardo
por protección de
sobrecarga
• Tiempo corto con retardo
por cortocircuito – con o
sin característica I²t
• Protección instantánea
contra cortocircuito
1000 10000 100000
[pri.A]
0.001
0.1
10
1000
[s]
DIgSILENT
I²t on/off
Ir
Im
I
tm
tr
Tiempo largo de
retardo por
proteccion de
sobrecarga
Tiempo corto con
retardo por cortocircuito
Protección instantánea
contra cortocircuito
LV-Breaker
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 22/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Caracteristicas de Arranque de Motores
• Característica de
arranque
Corriente nominal
Corriente de arranque
Corriente de magnetización (Inrush)
Duración de la corriente de Inrush
Limite térmico
bajo condiciones frías
bajo condiciones calientes
n
n
n
U
S
I
⋅
=
3
a
I
cold
t
hot
t
start
t
p
I
inrush
t
1000 10000
[pri.A]
0
0.1
1
10
100
[s]
Motor - 1
DIgSILENT
Ia
In
tinrush
thot
tcold
Ip
tstart
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 23/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Curva Limite de Cables
• Capabilidad térmica
Corriente de cortocircuito
Periodo nominal(1s)
Tiempo de liberación de falla
• Corriente de
magnetización
Corriente de magnetizacion
(Inrush)
Duración de la corriente de
Inrush
0.01 10
kr
th thr k
k
T
I I con s T s
T
< ≤ ≤
thr
I
kr
T
k
T
100 10000 100000
[pri.A]
0.01
0.1
1
10
[s]
Cable-1
DIgSILENT
Ithr
Tkr
Ip
tinrush
p
I
inrush
t
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 24/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Curva limite de cales/ Parámetros de líneas
IEC/VDE
constante de aislamiento
Temperatura inicial
Max. Temperatura alcanzable
Área transversal in mm²
Tiempo de liberación de falla
Relación del efecto piel
226 ln 1
234.5
f i
i
k para Cu
ϑ ϑ
ϑ
−
 
= ⋅ +
 
+
 
k
i
ϑ
k
T
148 ln 1
228
f i
i
k para Al
ϑ ϑ
ϑ
−
 
= ⋅ +
 
+
 
f
ϑ
0.01 10
th thr ac k
k
k A
I I F con s T s
T
⋅
<
= ≤ ≤
A
ac
F
ANSI/IEEE
constante de aislamiento
Temperatura inicial
Max. Temperatura alcanzable
Área transversal in mm²
Tiempo de liberación de falla
Relación del efecto piel
10
234
0.0297 log
234
f
i
k para Cu
ϑ
ϑ
+
= ⋅
+
0.01 10
th thr ac k
k
k A
I I F con s T s
T
⋅
<
= ≤ ≤
10
228
0.0125 log
228
f
i
k para Al
ϑ
ϑ
+
= ⋅
+
k
i
ϑ
k
T
f
ϑ
A
ac
F
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 25/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Curva de Sobrecarga de Cables
• Sobrecarga (for t > 10s )
Corriente nominal en A
Corriente de prefalla en A
Tiempo de sobrecarga en s
Mínimo constante de tiempo
del cable
2
0
1
1
b
b
t
b
n t
I
e
I
I I para corta operacion
e
τ
τ
−
−
 
− 
 
<
−
n
I
0
I
b
t
τ
100 1000 10000
[pri.A]
10
100
1000
10000
[s]
Cable-1
DIgSILENT
In
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 26/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Curva de Transformadores ANSI/IEEE - Cat. I/II
• Curva de limite térmico
– Categoría I (0.15 - 0.5
MVA)
– Categoría II (0.501 - 5
MVA)
• Curva de limite mecánico
– Categoría II (0.501 - 5
MVA)
• Corriente de
magnetización
Corriente de magnetización
Duración de la corriente de
magnetización
p
I
inrush
t
10 100 1000 10000
[pri.A]
0.1
1
10
100
1000
10000
[s]
Category I Category II
DIgSILENT
5 4
7
8
10
12 uk in %
Sn = 1MVA (10kV)
Sn = 0,1 MVA (10kV)
Ip
tinrush
térmica
mecánica
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 27/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Curva de Transformadores ANSI/IEEE Cat. III/IV
• Curva de limite térmico
– Categoría III (5.001 - 30
MVA)
– Categoría IV ( > 30 MVA)
• Curva de limite mecánico
– Categoría III (5.001 - 30
MVA)
– Categoría IV ( > 30 MVA)
• Curvas de cambio de fase
ANSI
100 1000 10000
[pri.A]
1
10
100
1000
10000
[s]
Category III Category IV
DIgSIL
ENT
Sn = 50MVA (110kV)
Sn = 10 MVA (110kV)
5 4
7
8
10
12
uk in % 5 4
7
8
10
12
thermal
mechanical
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 28/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
4. Protección de Distancia
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 29/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
1/10/2011
Relés de Impedancia: Principio de Operación
Medición/
filtración
Arranque/
Detección
falla Auslöse-
zonen
Auslöse-
zonen
Zonas de
disparo Auslöse-
zonen
Auslöse-
zonen
Elementos
Tempo-
rizados
Logica de salida
Disparo
U
I
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 30/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Medición de Impedancia
• Lazo de falla Línea - Línea
2
1
2
1
2
1
2
1
L
L
L
L
L
L
L
L
L
L
L
I
I
U
Z
U
I
Z
I
Z
−
=
=
−
−
−
1
L
I
2
L
I
L2
L1
U −
L
Z
L
Z
L
Z
E
Z
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 31/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Medición de Impedancia
• Lazo de falla Línea - Tierra
• K0 es independiente de la posición de la falla:
1/10/2011
E
L
E
L
E
L
L
E
L
E
E
L
L
I
Z
Z
I
U
Z
U
I
Z
I
Z
⋅
−
=
=
−
−
−
1
1
1
1
L
E
Z
Z
k =
0
1
L
I
E
I
E
1
L
U − E
Z
L
Z
L
Z
L
Z
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 32/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Elemento Direccional/Polarizacion
X
R
induktiv
kapazitiv
Z
vorwärts
rückwärts
α
inductivo
capacitivo
atras
adelante
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 33/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Elemento Direccional/Polarizacion
Relais
G1
S2
S1
F2 F1
ZG1 ZL ZG2
G2
X
R
ZL+ZG2
ZG1
F1
F2
ZL+ZG2
X
R
ZG1
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 34/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Coordinación Impedancia Tiempo
A B C D
DIgSILENT
Z1 = (0.8...0.9)*ZAB
Z2 = 0.8*(ZAB + (0.8...0.9)*ZBC)
Z3 = 0.8*(ZAB + 0.8*(ZBC+ (0.8...0.9)*ZCD))
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 35/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
5. Esquemas de teleprotección
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 36/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Comparación de Senales
R1 R2
Lógica
R1
Lógica
R2
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 37/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
PUTT con detección de falla
(Permisivo de bajo alcance)
R1
R2
R2:Z1
R1:Z1
R1:S
R2:S
R1 dispara si (R1:Z1 o R1:S y R2:Z1)
R2 dispara si (R2:Z1 o R2:S y R1:Z1)
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 38/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
1/10/2011
PUTT con aceleración por Z1B
R1
R2
R2:Z1
R1:Z1
R1:S
R2:S
R1 dispara si (R1:Z1 o R1:Z1B y R2:Z1)
R2 dispara si (R2:Z1 o R2:Z1B y R1:Z1)
R1:Z1B
R2:Z1B
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 39/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
POTT con Zona Z1B
R1
R2
R1 dispara si (R1:Z1 o R1:Z1B y R2:Z1B)
R2 dispara si (R2:Z1 o R2:Z1B y R1:Z1B)
R2:Z1
R1:Z1 R1:Z1B
R2:Z1B
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 40/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Comparación direccional de bloqueo
(Blocking)
R1
R2
R2:Z1
R1:Z1
R1 dispara si (R1:Z1 y no R2:R)
R2 dispara si (R2:Z1 y no R1:R)
R1:R
R2:R
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 41/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
L3
B
B3
L2
L1
B2
A
B1
DIgSILENT
Entrada
2
I
1
I
1
2
2
2
1
1
2
1
2
1
1 )
(
I
I
Z
Z
Z
Z
I
I
I
Z
I
Z
Z
M
M
+
+
=
+
+
=
M
Z
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 42/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
5. Modelando Relés de Protección en
DIgSILENT PowerFactory
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 43/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Estructura General
G
~
G1
G
~
G2
T1
T2
VT
Elemento
Del
relé
CT
Tipo
Rele
Diagrama de bloque
Ajustes
Rangos
Estructura
Voltaje
Corriente
Disparo
Librería
Red
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 44/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Modelando Relés de Sobrecorriente
• No hay limites en termino de complejidad de los
modelos
• Caracteristicas Disponibles:
– Todos los tipos ANSI / IEEE
– Todos los tipos IEC
– Ecuaciones Matematicas
– Tablas
• Interruptores de bajo voltaje
• Elementos Direccionales
• Fusibles
• Curvas limite de Transformador y de Cable
• Caracteristicas de arranque de motores
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 45/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Ejemplo: I-t Time-grading Diagram
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 46/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
• No hay limites en la complejidad de los modelos
• Soporta reles modenos, digitales, multi-funcionales
• Caracteristicas
– MHO
– Quadrilateral
– X constante, R constante
– Z constante (circulo)
• Varios elementos direccionales estan disponibles
• Es posible el uso de operaciones logicas complejas
• Es posible la comparacion entre senales.
Modelado de Rele de Distancia
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 47/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Ejemplo: Digrama de Impedancia R-X
130.
120.
110.
100.
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
-70.0
-80.0
-90.0
-100...
-110. [pri.Ohm]
100.
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
-10.0..
-20.0
-30.0
-40.0
-50.0
-60.0
[pri.Ohm]
R1-Dist
R3-Mho-1
R3-Mho-1
Zl A 131.086 pri.Ohm 4.31 deg
Zl B 26.306 pri.Ohm 81.25 deg
Zl C 129.771 pri.Ohm 161.03 deg
Faulttype: BC
Tripping Time: 0.19 s
Zone:2
Ph-Ph 2: 0.19 s
Zone:3
Ph-Ph 3: 0.29 s
Zone:4
Ph-Ph 4: 0.44 s
R1-Dist
Zl A 141.551 pri.Ohm 17.88 deg
Zl B 60.135 pri.Ohm 82.35 deg
Zl C 140.851 pri.Ohm 147.44 deg
Faulttype: BC
Tripping Time: 0.37 s
Zone3
ZPHPH3: 0.37 s
DIgSILENT
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 48/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Ejemplo: Z-t Time-grading Diagram
105.
84.1
63.1
42.0
21.0
0.0 [pri.Ohm]
0.46
0.37
0.28
0.18
0.09
0.00
[s]
HV-UT2 SS-D3 SS-D2 SS-D1 HV-Infeed
105. 84.1 63.1 42.0 21.0 0.0
[pri.Ohm]
0.46
0.37
0.28
0.18
0.09
0.00
[s]
HV-Infeed
SS-D1
SS-D2
SS-D3
HV-UT2
x-Achse: Reaktanz Cub_2Rel-U1 Cub_2Rel-L2-1 Cub_3R1-Dist
Cub_1R2-D1 Cub_2R3-Mho-1 Cub_1R4-Mho-2 Cub_2R5-Mho-4
Cub_1R6-Mho-5 Cub_2R7-Mho-6 Cub_2R8-Dist
R4-Mho-2
Ph-Ph 3
Zone 3
R8-Dist
ZPHPH1
Zone 1
DIgSILENT
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 49/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Preguntas
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 50/23
All
rights
reserved.
No
part
of
this
publication
may
be
reproduced
or
distributed
in
any
form
without
permission
of
the
author.
Copyright
©
2009.
http:www.fglongatt.org.ve
Por favor visite:
http://www.fglongatt.org.ve
Comentarios y sugerencias son bienvenidos:
fglongatt@fglongatt.org.ve
jquiros@eie.ucr.ac.cr

Sistemas_Proteccion.pdf

  • 1.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 1/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Francisco M. Gonzalez-Longatt, PhD Jairo H. Quiros Tortos. Ph.D. Researcher Manchester, UK, Enero, 2011 Análisis de Sistemas de Protección empleando DIgSILENT PowerFactory
  • 2.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 2/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Mostrar los aspectos teoricos del analisis de sistemas de proteccion empleando la herramienta DigSILENT PowerFactory Análisis de Sistemas de Protección empleando DIgSILENT PowerFactory Francisco M. Gonzalez-Longatt, PhD, Jairo H. Quiros Tortos. Ph.D. Researcher fglogatt@fglongatt.org.ve, jquiros@eie.ucr.ac.cr
  • 3.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 3/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 1. Introducción a los Sistemas de Protección
  • 4.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 4/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Objetivos de los Sistemas de Protección • Prevenir lesiones a las personas. • Minimizar el daño en los componentes del sistema. • Limitar la duración y minimizar las interrupciones del servicio.
  • 5.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 5/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Aspectos de Sistemas de Protección • Confiabilidad – Propiedad de garantizar un funcionamiento correcto de la protección. Incluye operar cuando se requiere (dependebilidad) y no operar incorrectamente (seguridad). • Selectividad – Eliminar la falla o anomalía mediante la desconexión del menor número de elementos. • Velocidad de Operación – Desconexión de la falla en el menor tiempo posible. • Simplicidad – Mínimo de dispositivo de protección y circuitería asociados para lograr los objetivos de protección. • Sensibilidad – Detección de fallas o condiciones anormales que provoquen variaciones pequeñas en el sistema.
  • 6.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 6/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Anormalidades en SP • Las anormalidades en sistemas de potencia son miles, pero pueden ser agrupadas en: –Cortocircuitos –Sobrecargas –Contactos a tierra –Interrupción de conductores –Déficit de potencia activa –Poleslip (Perdida de estabilidad)
  • 7.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 7/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Criterio de deteccion de falla Criterio de Detección de falla: • Sobrecorriente (cortocircuito, sobrecarga) • Corriente diferencial (cortocircuito). • Sobre voltaje/Bajo voltaje (cortocircuito, estabilidad de voltaje) • Dirección de potencia (cortocircuito, contacto a tierra) • Desbalance (interrupción de conductor, desbalance de carga). • Impedancia (cortocircuito, perdida de estabilidad). • Frecuencia (déficit de potencia activa) • Temperatura (sobrecarga)
  • 8.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 8/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 2. Transformadores de Corriente (TC) y Transformador de Potencial (TP)
  • 9.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 9/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Clasificación de los TC Clases de predicción por IEC: ejemplo: 15VA Clase 10 P 20  15VA : Burden in VA  10 : Clase de precisión  P : Aplicación: P para “Protección”  20 : Accuracy Limit Factor (factor limite de precisión) (hasta 10% de error a 20 veces la corriente nominal o burden)
  • 10.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 10/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Clasificación de los transformadores • Definición según ANSI/IEEE: • Ejemplo: T100 o C 100  ‘T‘ indica que el desempeno del TC ha sido probado: Fabricantes pueden proveer pruebas y datos medidos.  ‘C‘ indica que el desempeno ha sido calculado.  Numero que define el maximo voltaje en el secundario a el cual el error es menor a 10%, para corrientes entre 1- Number defines the maximum secondary voltage at which the error is less than 10%, for currents between 1- 20 veces la corriente secundaria.
  • 11.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 11/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Saturación del Transformador de Corriente  Los transformadores de corriente (TC) se pueden saturar si:  Voltaje AC secundario es mas alto que el voltaje del codo (kneepoint).  Corriente primaria contiene componentes DC.  La corriente secundaria de un TC saturado es distorcionada y mas pequena de la corriente no saturada.  TC especiales con caracteristicas dinamicas mejorasas son clasificados segun la norma IEC como TPX,TPY o TPZ
  • 12.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 12/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve CT Saturacion 0.200 0.100 0.000 -0.1000 .. 1200.0 800.00 400.00 0.000 -400.00 -800.00 -1200.0 Stromwandler: Mag.-Fluss L1 in V 0.200 0.100 0.000 -0.1000 .. 1200.0 800.00 400.00 0.000 -400.00 -800.00 -1200.0 Stromwandler: Mag.-Fluss L2 in V 0.200 0.100 0.000 -0.1000 .. 1200.0 800.00 400.00 0.000 -400.00 -800.00 -1200.0 Stromwandler: Mag.-Fluss L3 in V DIgSILENT
  • 13.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 13/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 3. Proteccion contra Sobrecorrientes
  • 14.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 14/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Característica de tiempo definido • Tiempo total de limpieza de falla (Tcf): Tfc = Trelay + Tbrk Trelay: tiempo de disparo del rele Tbrk : Tiempo de disparo del interruptor • Tiempo de disparo del rele (Trelay): Trelay = Ts + Tset Ts: tiempo de arranque Tset: tiempo ajustado • Ajuste de corriente Ajuste de corriente de arranque >> > I und I 1000 10000 100000 [pri.A] 0.01 0.1 1 10 [s] I>/I>> DIgS ILE NT Tfct=Trelay+Tbrk Tfct=Trelay+Tbrk I>> I>
  • 15.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 15/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Característica de tiempo inverso • Tiempo total de limpieza de falla (Tcf): Tfc = Trelay + Tbrk Trelay: tiempo de disparo del rele Tbrk : Tiempo de disparo del interruptor • Tiempo de disparo del rele (Trelay): Trelay = Ts + Tset Ts: tiempo de arranque Tset: tiempo ajustado • Ajuste de corriente Ipset: rango de corriente ajustada Imin: Corriente de arranque 1000 10000 100000 [pri.A] 0.01 0.1 1 10 [s] AMZ DIgSILENT Tpset Ipset Tfct=Trelay+Tbrk Imin
  • 16.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 16/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Características - IEC • Normalmente Inverso: • Muy Inverso: • Extremadamente Inverso: • Inverso Largo: 1 ) / ( 14 . 0 t 02 . 0 − ⋅ = pset pset I I T 1 ) / ( 5 . 13 t − ⋅ = pset pset I I T 1 ) / ( 80 t 2 − ⋅ = pset pset I I T 1 ) / ( 120 t − ⋅ = pset pset I I T
  • 17.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 17/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Características - ANSI / IEEE • Normalmente inversa • Inverso corto • Largamente inversa • Moderadamente inversa • Muy inversa • Extremadamente inversa • Inversa definidad • Corriente cuadrada         + − ⋅ = 0.17966 1 ) / ( 8.9341 t 2,0938 pset pset I I T         + − ⋅ = 0982 . 0 1 ) / ( 922 . 3 t 2 pset pset I I T         + − ⋅ = 18592 . 2 1 ) / ( 64143 . 5 t pset pset I I T         + − ⋅ = 21359 . 0 1 ) / ( 4797 . 0 t 5625 . 1 pset pset I I T         + − ⋅ = 03393 . 0 1 ) / ( 2663 . 0 t 2969 . 1 pset pset I I T         + − ⋅ = 0243 . 0 1 ) / ( 64 . 5 t 2 pset pset I I T         + − ⋅ = 0228 . 0 1 ) / ( 0103 . 0 t 02 . 0 pset pset I I T 2 ) / ( 14 . 10 7 . 50 t pset pset I I T + ⋅ =
  • 18.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 18/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Coordinacion por Tiempo C-D B-C A-B D C B A t t=1.2 s t= 0.8 s t= 0.4 s Infeed
  • 19.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 19/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Coordinación Tiempo/Corriente C-D B-C A-B D C B A t lmax(0.8*LAB) lmax(0.8*LBC) lmax(0.8*LCD) Infeed
  • 20.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 20/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Fusibles Average Melt Curve Min. Melt Curve Max. Melt Curve Fuse 1 Fuse 2 Mínimo tiempo de liberación de falla Máximo tiempo de liberación de falla
  • 21.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 21/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Interruptores de Bajo Voltaje • Tiempo largo con retardo por protección de sobrecarga • Tiempo corto con retardo por cortocircuito – con o sin característica I²t • Protección instantánea contra cortocircuito 1000 10000 100000 [pri.A] 0.001 0.1 10 1000 [s] DIgSILENT I²t on/off Ir Im I tm tr Tiempo largo de retardo por proteccion de sobrecarga Tiempo corto con retardo por cortocircuito Protección instantánea contra cortocircuito LV-Breaker
  • 22.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 22/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Caracteristicas de Arranque de Motores • Característica de arranque Corriente nominal Corriente de arranque Corriente de magnetización (Inrush) Duración de la corriente de Inrush Limite térmico bajo condiciones frías bajo condiciones calientes n n n U S I ⋅ = 3 a I cold t hot t start t p I inrush t 1000 10000 [pri.A] 0 0.1 1 10 100 [s] Motor - 1 DIgSILENT Ia In tinrush thot tcold Ip tstart
  • 23.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 23/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Curva Limite de Cables • Capabilidad térmica Corriente de cortocircuito Periodo nominal(1s) Tiempo de liberación de falla • Corriente de magnetización Corriente de magnetizacion (Inrush) Duración de la corriente de Inrush 0.01 10 kr th thr k k T I I con s T s T < ≤ ≤ thr I kr T k T 100 10000 100000 [pri.A] 0.01 0.1 1 10 [s] Cable-1 DIgSILENT Ithr Tkr Ip tinrush p I inrush t
  • 24.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 24/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Curva limite de cales/ Parámetros de líneas IEC/VDE constante de aislamiento Temperatura inicial Max. Temperatura alcanzable Área transversal in mm² Tiempo de liberación de falla Relación del efecto piel 226 ln 1 234.5 f i i k para Cu ϑ ϑ ϑ −   = ⋅ +   +   k i ϑ k T 148 ln 1 228 f i i k para Al ϑ ϑ ϑ −   = ⋅ +   +   f ϑ 0.01 10 th thr ac k k k A I I F con s T s T ⋅ < = ≤ ≤ A ac F ANSI/IEEE constante de aislamiento Temperatura inicial Max. Temperatura alcanzable Área transversal in mm² Tiempo de liberación de falla Relación del efecto piel 10 234 0.0297 log 234 f i k para Cu ϑ ϑ + = ⋅ + 0.01 10 th thr ac k k k A I I F con s T s T ⋅ < = ≤ ≤ 10 228 0.0125 log 228 f i k para Al ϑ ϑ + = ⋅ + k i ϑ k T f ϑ A ac F
  • 25.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 25/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Curva de Sobrecarga de Cables • Sobrecarga (for t > 10s ) Corriente nominal en A Corriente de prefalla en A Tiempo de sobrecarga en s Mínimo constante de tiempo del cable 2 0 1 1 b b t b n t I e I I I para corta operacion e τ τ − −   −    < − n I 0 I b t τ 100 1000 10000 [pri.A] 10 100 1000 10000 [s] Cable-1 DIgSILENT In
  • 26.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 26/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Curva de Transformadores ANSI/IEEE - Cat. I/II • Curva de limite térmico – Categoría I (0.15 - 0.5 MVA) – Categoría II (0.501 - 5 MVA) • Curva de limite mecánico – Categoría II (0.501 - 5 MVA) • Corriente de magnetización Corriente de magnetización Duración de la corriente de magnetización p I inrush t 10 100 1000 10000 [pri.A] 0.1 1 10 100 1000 10000 [s] Category I Category II DIgSILENT 5 4 7 8 10 12 uk in % Sn = 1MVA (10kV) Sn = 0,1 MVA (10kV) Ip tinrush térmica mecánica
  • 27.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 27/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Curva de Transformadores ANSI/IEEE Cat. III/IV • Curva de limite térmico – Categoría III (5.001 - 30 MVA) – Categoría IV ( > 30 MVA) • Curva de limite mecánico – Categoría III (5.001 - 30 MVA) – Categoría IV ( > 30 MVA) • Curvas de cambio de fase ANSI 100 1000 10000 [pri.A] 1 10 100 1000 10000 [s] Category III Category IV DIgSIL ENT Sn = 50MVA (110kV) Sn = 10 MVA (110kV) 5 4 7 8 10 12 uk in % 5 4 7 8 10 12 thermal mechanical
  • 28.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 28/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 4. Protección de Distancia
  • 29.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 29/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 1/10/2011 Relés de Impedancia: Principio de Operación Medición/ filtración Arranque/ Detección falla Auslöse- zonen Auslöse- zonen Zonas de disparo Auslöse- zonen Auslöse- zonen Elementos Tempo- rizados Logica de salida Disparo U I
  • 30.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 30/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Medición de Impedancia • Lazo de falla Línea - Línea 2 1 2 1 2 1 2 1 L L L L L L L L L L L I I U Z U I Z I Z − = = − − − 1 L I 2 L I L2 L1 U − L Z L Z L Z E Z
  • 31.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 31/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Medición de Impedancia • Lazo de falla Línea - Tierra • K0 es independiente de la posición de la falla: 1/10/2011 E L E L E L L E L E E L L I Z Z I U Z U I Z I Z ⋅ − = = − − − 1 1 1 1 L E Z Z k = 0 1 L I E I E 1 L U − E Z L Z L Z L Z
  • 32.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 32/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Elemento Direccional/Polarizacion X R induktiv kapazitiv Z vorwärts rückwärts α inductivo capacitivo atras adelante
  • 33.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 33/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Elemento Direccional/Polarizacion Relais G1 S2 S1 F2 F1 ZG1 ZL ZG2 G2 X R ZL+ZG2 ZG1 F1 F2 ZL+ZG2 X R ZG1
  • 34.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 34/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Coordinación Impedancia Tiempo A B C D DIgSILENT Z1 = (0.8...0.9)*ZAB Z2 = 0.8*(ZAB + (0.8...0.9)*ZBC) Z3 = 0.8*(ZAB + 0.8*(ZBC+ (0.8...0.9)*ZCD))
  • 35.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 35/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 5. Esquemas de teleprotección
  • 36.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 36/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Comparación de Senales R1 R2 Lógica R1 Lógica R2
  • 37.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 37/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve PUTT con detección de falla (Permisivo de bajo alcance) R1 R2 R2:Z1 R1:Z1 R1:S R2:S R1 dispara si (R1:Z1 o R1:S y R2:Z1) R2 dispara si (R2:Z1 o R2:S y R1:Z1)
  • 38.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 38/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 1/10/2011 PUTT con aceleración por Z1B R1 R2 R2:Z1 R1:Z1 R1:S R2:S R1 dispara si (R1:Z1 o R1:Z1B y R2:Z1) R2 dispara si (R2:Z1 o R2:Z1B y R1:Z1) R1:Z1B R2:Z1B
  • 39.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 39/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve POTT con Zona Z1B R1 R2 R1 dispara si (R1:Z1 o R1:Z1B y R2:Z1B) R2 dispara si (R2:Z1 o R2:Z1B y R1:Z1B) R2:Z1 R1:Z1 R1:Z1B R2:Z1B
  • 40.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 40/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Comparación direccional de bloqueo (Blocking) R1 R2 R2:Z1 R1:Z1 R1 dispara si (R1:Z1 y no R2:R) R2 dispara si (R2:Z1 y no R1:R) R1:R R2:R
  • 41.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 41/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve L3 B B3 L2 L1 B2 A B1 DIgSILENT Entrada 2 I 1 I 1 2 2 2 1 1 2 1 2 1 1 ) ( I I Z Z Z Z I I I Z I Z Z M M + + = + + = M Z
  • 42.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 42/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve 5. Modelando Relés de Protección en DIgSILENT PowerFactory
  • 43.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 43/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Estructura General G ~ G1 G ~ G2 T1 T2 VT Elemento Del relé CT Tipo Rele Diagrama de bloque Ajustes Rangos Estructura Voltaje Corriente Disparo Librería Red
  • 44.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 44/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Modelando Relés de Sobrecorriente • No hay limites en termino de complejidad de los modelos • Caracteristicas Disponibles: – Todos los tipos ANSI / IEEE – Todos los tipos IEC – Ecuaciones Matematicas – Tablas • Interruptores de bajo voltaje • Elementos Direccionales • Fusibles • Curvas limite de Transformador y de Cable • Caracteristicas de arranque de motores
  • 45.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 45/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Ejemplo: I-t Time-grading Diagram
  • 46.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 46/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve • No hay limites en la complejidad de los modelos • Soporta reles modenos, digitales, multi-funcionales • Caracteristicas – MHO – Quadrilateral – X constante, R constante – Z constante (circulo) • Varios elementos direccionales estan disponibles • Es posible el uso de operaciones logicas complejas • Es posible la comparacion entre senales. Modelado de Rele de Distancia
  • 47.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 47/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Ejemplo: Digrama de Impedancia R-X 130. 120. 110. 100. 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100... -110. [pri.Ohm] 100. 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 -10.0.. -20.0 -30.0 -40.0 -50.0 -60.0 [pri.Ohm] R1-Dist R3-Mho-1 R3-Mho-1 Zl A 131.086 pri.Ohm 4.31 deg Zl B 26.306 pri.Ohm 81.25 deg Zl C 129.771 pri.Ohm 161.03 deg Faulttype: BC Tripping Time: 0.19 s Zone:2 Ph-Ph 2: 0.19 s Zone:3 Ph-Ph 3: 0.29 s Zone:4 Ph-Ph 4: 0.44 s R1-Dist Zl A 141.551 pri.Ohm 17.88 deg Zl B 60.135 pri.Ohm 82.35 deg Zl C 140.851 pri.Ohm 147.44 deg Faulttype: BC Tripping Time: 0.37 s Zone3 ZPHPH3: 0.37 s DIgSILENT
  • 48.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 48/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Ejemplo: Z-t Time-grading Diagram 105. 84.1 63.1 42.0 21.0 0.0 [pri.Ohm] 0.46 0.37 0.28 0.18 0.09 0.00 [s] HV-UT2 SS-D3 SS-D2 SS-D1 HV-Infeed 105. 84.1 63.1 42.0 21.0 0.0 [pri.Ohm] 0.46 0.37 0.28 0.18 0.09 0.00 [s] HV-Infeed SS-D1 SS-D2 SS-D3 HV-UT2 x-Achse: Reaktanz Cub_2Rel-U1 Cub_2Rel-L2-1 Cub_3R1-Dist Cub_1R2-D1 Cub_2R3-Mho-1 Cub_1R4-Mho-2 Cub_2R5-Mho-4 Cub_1R6-Mho-5 Cub_2R7-Mho-6 Cub_2R8-Dist R4-Mho-2 Ph-Ph 3 Zone 3 R8-Dist ZPHPH1 Zone 1 DIgSILENT
  • 49.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 49/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Preguntas
  • 50.
    Dr. Francisco M.Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 50/23 All rights reserved. No part of this publication may be reproduced or distributed in any form without permission of the author. Copyright © 2009. http:www.fglongatt.org.ve Por favor visite: http://www.fglongatt.org.ve Comentarios y sugerencias son bienvenidos: fglongatt@fglongatt.org.ve jquiros@eie.ucr.ac.cr