This document summarizes a project on recognizing handwritten digits using machine learning classifiers. The researchers used the MNIST dataset and preprocessed the images before extracting features. They then applied Naive Bayes and Logistic Regression classifiers and evaluated their performance based on accuracy and confusion matrices. Logistic Regression significantly outperformed Naive Bayes. Regularization was also investigated for Logistic Regression, with cross-validation used to select the optimal regularization parameter.