SlideShare a Scribd company logo
1 of 43
Download to read offline
arXiv:1703.10132v2[math.RA]1May2017
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES
STEVEN DUPLIJ
ABSTRACT. Concrete two-set (module-like and algebra-like) algebraic structures are investigated from
the viewpoint that the initial arities of all operations are arbitrary. The relations between operations
appearing from the structure definitions lead to restrictions, which determine their arity shape and lead
to the partial arity freedom principle. In this manner, polyadic vector spaces and algebras, dual vector
spaces, direct sums, tensor products and inner pairing spaces are reconsidered. As one application,
elements of polyadic operator theory are outlined: multistars and polyadic analogs of adjoints, oper-
ator norms, isometries and projections, as well as polyadic C∗
-algebras, Toeplitz algebras and Cuntz
algebras represented by polyadic operators are introduced. Another application is connected with num-
ber theory, and it is shown that the congruence classes are polyadic rings of a special kind. Polyadic
numbers are introduced, see Definition 6.16. Diophantine equations over these polyadic rings are then
considered. Polyadic analogs of the Lander-Parkin-Selfridge conjecture and Fermat’s last theorem are
formulated. For the nonderived polyadic ring operations (polyadic numbers) neither of these holds, and
counterexamples are given. A procedure for obtaining new solutions to the equal sums of like powers
equation over polyadic rings by applying Frolov’s theorem for the Tarry-Escott problem is presented.
CONTENTS
INTRODUCTION 2
1. ONE SET POLYADIC “LINEAR” STRUCTURES 3
1.1. POLYADIC DISTRIBUTIVITY 3
1.2. POLYADIC RINGS AND FIELDS 4
2. TWO SET POLYADIC STRUCTURES 5
2.1. POLYADIC VECTOR SPACES 5
2.2. ONE-SET POLYADIC VECTOR SPACE 8
2.3. POLYADIC ALGEBRAS 9
3. MAPPINGS BETWEEN POLYADIC ALGEBRAIC STRUCTURES 12
3.1. POLYADIC FUNCTIONALS AND DUAL POLYADIC VECTOR SPACES 13
3.2. POLYADIC DIRECT SUM AND TENSOR PRODUCT 15
4. POLYADIC INNER PAIRING SPACES AND NORMS 19
APPLICATIONS 21
5. ELEMENTS OF POLYADIC OPERATOR THEORY 21
5.1. MULTISTARS AND POLYADIC ADJOINTS 23
5.2. POLYADIC ISOMETRY AND PROJECTION 27
5.3. TOWARDS POLYADIC ANALOG OF C∗-ALGEBRAS 28
6. CONGRUENCE CLASSES AS POLYADIC RINGS 30
6.1. POLYADIC RING ON INTEGERS 31
6.2. LIMITING CASES 33
7. EQUAL SUMS OF LIKE POWERS DIOPHANTINE EQUATION OVER POLYADIC INTEGERS 35
7.1. POLYADIC ANALOG OF THE LANDER-PARKIN-SELFRIDGE CONJECTURE 36
7.2. FROLOV’S THEOREM AND THE TARRY-ESCOTT PROBLEM 40
ACKNOWLEDGMENTS 41
REFERENCES 42
LIST OF TABLES 43
Date: March 29, 2017.
2010 Mathematics Subject Classification. 11D41, 11R04, 11R06, 17A42, 20N15, 47A05, 47L30, 47L70, 47L80.
2 STEVEN DUPLIJ
INTRODUCTION
The study of polyadic (higher arity) algebraic structures has a two-century long history, start-
ing with works by Cayley, Sylvester, Kasner, Pr¨ufer, D¨ornte, Lehmer, Post, etc. They took a sin-
gle set, closed under one (main) binary operation having special properties (the so called group-
like structure), and “generalized” it by increasing the arity of that operation, which can then be
called a polyadic operation and the corresponding algebraic structure polyadic as well1
. An “ab-
stract way” to study polyadic algebraic structures is via the use of universal algebras defined as sets
with different axioms (equational laws) for polyadic operations COHN [1965], GR ¨ATSER [1968],
BERGMAN [2012]. However, in this language some important algebraic structures cannot be de-
scribed, e.g. ordered groups, fields, etc. DENECKE AND WISMATH [2009]. Therefore, another
“concrete approach” is to study examples of binary algebraic structures and then to “polyadize”
them properly. This initiated the development of a corresponding theory of n-ary quasigroups
BELOUSOV [1972], n-ary semigroups MONK AND SIOSON [1966], ZUPNIK [1967] and n-ary
groups GAL’MAK [2003], RUSAKOV [1998] (for a more recent review, see, e.g., DUPLIJ [2012]
and comprehensive list of references therein). The binary algebraic structures with two operations
(addition and multiplication) on one set (the so-called ring-like structures) were later on generalized
to (m, n)-rings CELAKOSKI [1977], CROMBEZ [1972], LEESON AND BUTSON [1980] and (m, n)-
fields IANCU AND POP [1997], while these were investigated mostly in a more restrictive manner by
considering particular cases: ternary rings (or (2, 3)-rings) LISTER [1971], (m, 2)-rings BOCCIONI
[1965], POP AND POP [2002], as well as (3, 2)-fields DUPLIJ AND WERNER [2015].
In the case of one set, speaking informally, the “polyadization” of two operations’ “interaction”
is straightforward, giving only polyadic distributivity which does not connect or restrict their arities.
However, when the number of sets becomes greater than one, the “polyadization” turns out to be non-
trivial, leading to special relations between the operation arities, and introduces additional (to arities)
parameters, which allows us to classify them. We call the selection of such relations an arity shape and
formulate the arity partial freedom principle that not all arities of operations during “polyadization”
of binary operations are possible.
In this paper we consider two-set algebraic structures in the “concrete way” and provide the con-
sequent “polyadization” of binary operations on them for the so-called module-like structures (vector
spaces) and algebra-like structures (algebras and inner product spaces). The “polyadization” of the
binary scalar multiplication is made in terms of multiactions introduced in DUPLIJ [2012], having
special arity shapes parametrized by the number of intact elements (ℓid) in the corresponding multi-
actions. Then we “polyadize” the related constructions, as dual vector spaces and direct sums, and
also tensor products, and show that, as opposed to the binary case, they can be implemented in spaces
of different arity signatures. The “polyadization” of inner product spaces and related norms gives
additional arity shapes and restrictions. In the resulting TABLE 2 we present the arity signatures and
shapes of the polyadic algebraic structures under consideration.
In the application part we note some starting points for polyadic operator theory by introducing
multistars and polyadic analogs of adjoints, operator norms, isometries and projections. It is proved
(Theorem 5.7) that, if the polyadic inner pairing (the analog of the inner product) is symmetric, then
all multistars coincide and all polyadic operators are self-adjoint (as opposed to the binary case). The
polyadic analogs of C∗
-algebras, Toeplitz algebras and Cuntz algebras are presented in terms of the
polyadic operators introduced here, and the ternary example is given.
Another application is connected with number theory: we show that the internal structure of the
congruence classes is described by a polyadic ring having a special arity signature (TABLE 3), and we
call them polyadic integers (numbers) Z(m,n) (Definition 6.17). They are classified by polyadic shape
invariants, and the relations between them giving the same arity signature are established. Also the
1
We use the term “polyadic” in this sense only, while there are other uses in the literature (see, e.g., HALMOS [1962]).
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 3
limiting cases are analyzed, and it is shown that in one such a case the polyadic rings can be embedded
into polyadic fields with binary multiplication, which leads to the so-called polyadic rational num-
bers CROMBEZ AND TIMM [1972]. Then we consider the Diophantine equations over these polyadic
rings in a straightforward manner: we change only arities of operations (“additions” and “multipli-
cations”), but save their mutual “interaction”. In this way we try to “polyadize” the equal sums of
like powers equation and formulate the polyadic analogs of the Lander-Parkin-Selfridge conjecture
and Fermat’s last theorem LANDER ET AL. [1967]. It is shown, that in the simplest case, when the
polyadic “addition” and “multiplication” are nonderived (e.g., polyadic numbers), neither conjecture
is valid, and counterexamples are presented. Finally, we apply Frolov’s theorem for the Tarry-Escott
problem DORWART AND BROWN [1937], NGUYEN [2016] over polyadic rings to obtain new solu-
tions to the equal sums of like powers equation for a fixed congruence classes.
1. ONE SET POLYADIC “LINEAR” STRUCTURES
We use concise notations from our previous work on polyadic structures DUPLIJ [2012, 2016].
Take a non-empty set A, then n-tuple (or polyad) consisting of the elements (a1, . . . , an), ai ∈ A, is
denoted by bold letter (a) taking it values in the Cartesian product A×n
. If the number of elements in
the n-tuple is important, we denote it manifestly a(n)
, and an n-tuple with equal elements is denoted
by (an
). On the Cartesian product A×n
one can define a polyadic operation µn : A×n
→ A, and use
the notation µn [a]. A polyadic structure A is a set A which is closed under polyadic operations, and
a polyadic signature is the selection of their arities. For formal definitions, see, e.g., COHN [1965].
1.1. Polyadic distributivity. Let us consider a polyadic structure with two operations on the same
set A: the “chief” (multiplication) n-ary operation µn : An
→ A and the additional m-ary operation
νm : Am
→ A, that is A | µn, νm . If there are no relations between µn and νm, then nothing
new, as compared with the polyadic structures having a single operation A | µn or A | νm , can be
said. Informally, the “interaction” between operations can be described using the important relation
of distributivity (an analog of a · (b + c) = a · b + a · c, a, b, c ∈ A in the binary case).
Definition 1.1. The polyadic distributivity for the operations µn and νm (no additional properties are
implied for now) consists of n relations
µn [νm [a1, . . . am] , b2, b3, . . . bn]
= νm [µn [a1, b2, b3, . . . bn] , µn [a2, b2, b3, . . . bn] , . . . µn [am, b2, b3, . . . bn]] (1.1)
µn [b1, νm [a1, . . . am] , b3, . . . bn]
= νm [µn [b1, a1, b3, . . . bn] , µn [b1, a2, b3, . . . bn] , . . . µn [b1, am, b3, . . . bn]] (1.2)
...
µn [b1, b2, . . . bn−1, νm [a1, . . . am]]
= νm [µn [b1, b2, . . . bn−1, a1] , µn [b1, b2, . . . bn−1, a2] , . . . µn [b1, b2, . . . bn−1, am]] , (1.3)
where ai, bj ∈ A.
It is seen that the operations µn and νm enter into (1.1)-(1.3) in a non-symmetric way, which
allows us to distinguish them: one of them (µn, the n-ary multiplication) “distributes” over the other
one νm, and therefore νm is called the addition. If only some of the relations (1.1)-(1.3) hold, then
such distributivity is partial (the analog of left and right distributivity in the binary case). Obviously,
the operations µn and νm need have nothing to do with ordinary multiplication (in the binary case
denoted by µ2 =⇒ (·)) and addition (in the binary case denoted by ν2 =⇒ (+)), as in the below
example.
4 STEVEN DUPLIJ
Example 1.2. Let A = R, n = 2, m = 3, and µ2 [b1, b2] = bb2
1 , ν3 [a1, a2, a3] = a1a2a3 (product in
R). The partial distributivity now is (a1a2a3)b2
= ab2
1 ab2
2 ab2
3 (only the first relation (1.1) holds).
1.2. Polyadic rings and fields. Here we briefly remind the reader of one-set (ring-like) polyadic
structures (informally). Let both operations µn and νm be (totally) associative, which (in our defi-
nition DUPLIJ [2012]) means independence of the composition of two operations under placement
of the internal operations (there are n and m such placements and therefore (n + m) corresponding
relations)
µn [a, µn [b] , c] = invariant, (1.4)
νm [d, νm [e] , f] = invariant, (1.5)
where the polyads a, b, c, d, e, f have corresponding length, and then both A | µn | assoc
and A | νm | assoc are polyadic semigroups Sn and Sm. A commutative semigroup
A | νm | assoc, comm is defined by νm [a] = νm [σ ◦ a], for all σ ∈ Sn, where Sn is the symmetry
group. If the equation νm [a, x, b] = c is solvable for any place of x, then A | νm | assoc, solv
is a polyadic group Gm, and such x = ˜c is called a (additive) querelement for c, which defines the
(additive) unary queroperation ˜ν1 by ˜ν1 [c] = ˜c.
Definition 1.3. A polyadic (m, n)-ring Rm,n is a set A with two operations µn : An
→ A and
νm : Am
→ A, such that: 1) they are distributive (1.1)-(1.3); 2) A | µn | assoc is a polyadic
semigroup; 3) A | νm | assoc, comm, solv is a commutative polyadic group.
It is obvious that a (2, 2)-ring R2,2 is an ordinary (binary) ring. Polyadic rings have much richer
structure and can have unusual properties CELAKOSKI [1977], CROMBEZ [1972], ˇCUPONA [1965],
LEESON AND BUTSON [1980]. If the multiplicative semigroup A | µn | assoc is commutative,
µn [a] = µn [σ ◦ a], for all σ ∈ Sn, then Rm,n is called a commutative polyadic ring, and if it
contains the identity, then Rm,n is a (polyadic) (m, n)-semiring. If the distributivity is only partial,
then Rm,n is called a polyadic near-ring.
Introduce in Rm,n additive and multiplicative idempotent elements by νm [am
] = a and µn [bn
] = b,
respectively. A zero z of Rm,n is defined by µn [z, a] = z for any a ∈ An−1
, where z can be
on any place. Evidently, a zero (if exists) is a multiplicative idempotent and is unique, and, if a
polyadic ring has an additive idempotent, it is a zero LEESON AND BUTSON [1980]. Due to the
distributivity (1.1)-(1.3), there can be at most one zero in a polyadic ring. If a zero z exists, denote
A∗
= A  {z}, and observe that (in distinction to binary rings) A∗
| µn | assoc is not a polyadic
group, in general. In the case where A∗
| µn | assoc is a commutative n-ary group, such a polyadic
ring is called a (polyadic) (m, n)-field and Km,n (“polyadic scalars”) (see LEESON AND BUTSON
[1980], IANCU AND POP [1997]).
A multiplicative identity e in Rm,n is a distinguished element e such that
µn a, en−1
= a, (1.6)
for any a ∈ A and where a can be on any place. In binary rings the identity is the only neutral element,
while in polyadic rings there can exist many neutral (n − 1)-polyads e satisfying
µn [a, e] = a, (1.7)
for any a ∈ A which can also be on any place. The neutral polyads e are not determined uniquely.
Obviously, the polyad (en−1
) is neutral. There exist exotic polyadic rings which have no zero, no
identity, and no additive idempotents at all (see, e.g., CROMBEZ [1972]), but, if m = 2, then a zero
always exists LEESON AND BUTSON [1980].
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 5
Example 1.4. Let us consider a polyadic ring R3,4 generated by 2 elements a, b and the relations
µ4 a4
= a, µ4 a3
, b = b, µ4 a2
, b2
= a, µ4 a, b3
= b, µ4 b4
= a, (1.8)
ν3 a3
= b, ν3 a2
, b = a, ν3 a, b2
= b, ν3 b3
= a, (1.9)
which has a multiplicative idempotent a only, but has no zero and no identity.
Proposition 1.5. In the case of polyadic structures with two operations on one set there are no con-
ditions between arities of operations which could follow from distributivity (1.1)-(1.3) or the other
relations above, and therefore they have no arity shape.
Such conditions will appear below, when we consider more complicated universal algebraic struc-
tures with two or more sets with operations and relations.
2. TWO SET POLYADIC STRUCTURES
2.1. Polyadic vector spaces. Let us consider a polyadic field KmK ,nK
= K | σmK
, κnK
(“polyadic
scalars”), having mK-ary addition σmK
: KmK
→ K and nK-ary multiplication κnK
: KnK
→ K,
and the identity eK ∈ K, a neutral element with respect to multiplication κnK
enK −1
K , λ = λ, for
all λ ∈ K. In polyadic structures, one can introduce a neutral (nK − 1)-polyad (identity polyad for
“scalars”) eK ∈ KnK−1
by
κnK
[eK, λ] = λ. (2.1)
where λ ∈ K can be on any place.
Next, take a mV -ary commutative (abelian) group V | νmV
, which can be treated as “polyadic
vectors” with mV -ary addition νmV
: VmV
→ V. Define in V | νmV
an additive neutral element
(zero) zV ∈ V by
νmV
zmV −1
V , v = v (2.2)
for any v ∈ V, and a “negative vector” ¯v ∈ V as its querelement
νmV
[aV , ¯v, bV ] = v, (2.3)
where ¯v can be on any place in the l.h.s., and aV , bV are polyads in V. Here, instead of one neutral
element we can also introduce the (mV − 1)-polyad zV (which may not be unique), and so, for a zero
polyad (for “vectors”) we have
νmV
[zV , v] = v, ∀v ∈ V, (2.4)
where v ∈ V can be on any place. The “interaction” between “polyadic scalars” and “polyadic
vectors” (the analog of binary multiplication by a scalar λv) can be defined as a multiaction (kρ-place
action) introduced in DUPLIJ [2012]
ρkρ : Kkρ
× V −→ V. (2.5)
The set of all multiactions form a nρ-ary semigroup Sρ under composition. We can “normalize” the
multiactions in a similar way, as multiplace representations DUPLIJ [2012], by (an analog of 1v = v,
v ∈ V, 1 ∈ K)
ρkρ



eK
...
eK
v



= v, (2.6)
for all v ∈ V, where eK is the identity of KmK ,nK
. In the case of an (ordinary) 1-place (left) action (as
an external binary operation) ρ1 : K × V → V, its consistency with the polyadic field multiplication
κnK
under composition of the binary operations ρ1 {λ|a} gives a product of the same arity
nρ = nK, (2.7)
6 STEVEN DUPLIJ
that is (a polyadic analog of λ (µv) = (λµ) v, v ∈ V, λ, µ ∈ K)
ρ1 {λ1|ρ1 {λ2| . . . |ρ1 {λnK
|v}} . . .} = ρ1 {κnK
[λ1, λ2, . . . λnK
] |v} , λ1, . . . , λn ∈ K, v ∈ V.
(2.8)
In the general case of kρ-place actions, the multiplication in the nρ-ary semigroup Sρ can be defined
by the changing arity formula DUPLIJ [2012] (schematically)
ρkρ
nρ



λ1
...
λkρ
. . . ρkρ



λkρ(nρ−1)
...
λkρnρ
v



. . .



= ρkρ



κnK
[λ1, . . . λnK
] ,
...
κnK
λnK(ℓµ−1), . . . λnKℓµ



ℓµ
λnKℓµ+1,
...
λnKℓµ+ℓid



ℓid
v



,
(2.9)
where ℓµ and ℓid are both integers. The associativity of (2.9) in each concrete case can be achieved by
applying the associativity quiver concept from DUPLIJ [2012].
Definition 2.1. The ℓ-shape is a pair (ℓµ, ℓid) , where ℓµ is the number of multiplications and ℓid is the
number of intact elements in the composition of operations.
It follows from (2.9),
Proposition 2.2. The arities of the polyadic field KmK ,nK
, the arity nρ of the multiaction semigroup
Sρ and the ℓ-shape of the composition satisfy
kρnρ = nKℓµ + ℓid, (2.10)
kρ = ℓµ + ℓid. (2.11)
We can exclude ℓµ or ℓid and obtain
nρ = nK −
nK − 1
kρ
ℓid, nρ =
nK − 1
kρ
ℓµ + 1, (2.12)
respectively, where nK−1
kρ
ℓid ≥ 1 and nK−1
kρ
ℓµ ≥ 1 are integers. The following inequalities hold
1 ≤ ℓµ ≤ kρ, 0 ≤ ℓid ≤ kρ − 1, ℓµ ≤ kρ ≤ (nK − 1) ℓµ, 2 ≤ nρ ≤ nK. (2.13)
Remark 2.3. The formulas (2.12) coincide with the arity changing formulas for heteromorphisms
DUPLIJ [2012] applied to (2.9).
It follows from (2.10), that the ℓ-shape is determined by the arities and number of places kρ by
ℓµ =
kρ (nρ − 1)
nK − 1
, ℓid =
kρ (nK − nρ)
nK − 1
. (2.14)
Because we have two polyadic “additions” νmV
and σmK
, we need to consider, how the multiaction
ρkρ “distributes” between each of them. First, consider distributivity of the multiaction ρkρ with
respect to “vector addition” νmV
(a polyadic analog of the binary λ (v + u) = λv + λu, v, u ∈ V,
λ, µ ∈ K)
ρkρ



λ1
...
λkρ
νmV
[v1, . . . , vmV
]



= νmV

ρkρ



λ1
...
λkρ
v1



, . . . , ρkρ



λ1
...
λkρ
vmV




 . (2.15)
Observe that here, in distinction to (2.9), there is no connection between the arities mV and kρ.
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 7
Secondly, the distributivity of the multiaction ρkρ (“multiplication by scalar”) with respect to the
“field addition” (a polyadic analog of (λ + µ) v = λv + µv, v ∈ A, λ, µ ∈ K) has a form similar to
(2.9) (which can be obtained from the changing arity formula DUPLIJ [2012])
ρkρ
nρ



λ1
...
λkρ
. . . ρkρ



λkρ(nρ−1)
...
λkρnρ
v



. . .



= ρkρ



σmK
[λ1, . . . λmK
] ,
...
σmK
λmK (ℓ′
µ−1), . . . λmK ℓ′
µ



ℓ′
µ
λmK ℓ′
µ+1,
...
λmK ℓ′
µ+ℓid



ℓ′
id
v



,
(2.16)
where ℓ′
ρ and ℓ′
id are the numbers of multiplications and intact elements in the resulting multiaction,
respectively. Here the arities are not independent as in (2.15), and so we have
Proposition 2.4. The arities of the polyadic field KmK ,nK
, the arity nρ of the multiaction semigroup
Sρ and the ℓ-shape of the distributivity satisfy
kρnρ = mKℓ′
µ + ℓ′
id, (2.17)
kρ = ℓ′
µ + ℓ′
id. (2.18)
It follows from (2.17)–(2.18)
nρ = mK −
mK − 1
kρ
ℓ′
id, nρ =
mK − 1
kρ
ℓ′
µ + 1. (2.19)
Here mK −1
kρ
ℓ′
id ≥ 1 and mK −1
kρ
ℓ′
µ ≥ 1 are integers, and we have the inequalities
1 ≤ ℓ′
µ ≤ kρ, 0 ≤ ℓ′
id ≤ kρ − 1, ℓ′
µ ≤ kρ ≤ (mK − 1) ℓ′
µ, 2 ≤ nρ ≤ mK. (2.20)
Now, the ℓ-shape of the distributivity is fully determined from the arities and number of places kρ by
the arity shape formulas
ℓ′
ρ =
kρ (nρ − 1)
mK − 1
, ℓ′
id =
kρ (mK − nρ)
mK − 1
. (2.21)
It follows from (2.20) that:
Corollary 2.5. The arity nρ of the multiaction semigroup Sρ is less than or equal to the arity of the
field addition mK.
Definition 2.6. A polyadic (K)-vector (“linear”) space over a polyadic field is the 2-set 4-operation
algebraic structure
VmK ,nK,mV ,kρ = K; V | σmK
, κnK
; νmV
| ρkρ , (2.22)
such that the following axioms hold:
1) K | σmK
, κnK
is a polyadic (mK, nK)-field KmK ,nK
;
2) A | νmV
is a commutative mV -ary group;
3) ρkρ | composition is a nρ-ary semigroup Sρ;
4) Distributivity of the multiaction ρkρ with respect to the “vector addition” νmV
(2.15);
5) Distributivity of ρkρ with respect to the “scalar addition” σmK
(2.16);
6) Compatibility of ρkρ with the “scalar multiplication” κnK
(2.9);
7) Normalization of the multiaction ρkρ (2.6).
8 STEVEN DUPLIJ
All of the arities in (2.22) are independent and can be chosen arbitrarily, but they fix the ℓ-shape
of the multiaction composition (2.9) and the distributivity (2.16) by (2.14) and (2.21), respectively.
Note that the main distinction from the binary case is the possibility for the arity nρ of the multiaction
semigroup Sρ to be arbitrary.
Definition 2.7. A polyadic K-vector subspace is
Vsub
mK ,nK,mV ,kρ
= K; Vsub
| σmK
, κnK
; νmV
| ρkρ , (2.23)
where the subset Vsub
⊂ V is closed under all operations σmK
, κnK
, νmV
, ρkρ and the axioms 1)-7).
Let us consider a subset S = {v1, . . . , vdV
} ⊆ V (of dV “vectors”), then a polyadic span of S is (a
“linear combination”)
Spanλ
pol (v1, . . . , vdV
) = {w} , (2.24)
w = νℓν
mV

ρkρ



λ1
...
λkρ
v1



, . . . , ρkρ



λ(dV −1)kρ
...
λdV kρ
vs




 , (2.25)
where (dV · kρ) “scalars” play the role of coefficients (or coordinates as columns consisting of kρ
elements from the polyadic field KmK ,nK
), and the number of “vectors” s is connected with the
“number of mV -ary additions” ℓν by
dV = ℓν (mV − 1) + 1, (2.26)
while Spanλ
pol S is the set of all “vectors” of this form (2.24) (we consider here finite “sums” only).
Definition 2.8. A polyadic span S = {v1, . . . , vdV
} ⊆ V is nontrivial, if at least one multiaction ρkρ
in (2.24) is nonzero.
Since polyadic fields and groups may not contain zeroes, we need to redefine the basic notions of
equivalences. Let us take two different spans of the same set S.
Definition 2.9. A set {v1, . . . , vdV
} is called “linear” polyadic independent, if from the equality of
nontrivial spans, as Spanλ
pol (v1, . . . , vdV
) = Spanλ′
pol (v1, . . . , vdV
), it follows that all λi = λ′
i, i =
1, . . . , dV kρ.
Definition 2.10. A set {v1, . . . , vdV
} is called a polyadic basis of a polyadic vector space VmK nK mV kρ ,
if it spans the whole space Spanλ
pol (v1, . . . , vdV
) = V.
In other words, any element of V can be uniquely presented in the form of the polyadic “linear
combination” (2.24). If a polyadic vector space VmK nK mV kρ has a finite basis {v1, . . . , vdV
}, then any
another basis v′
1, . . . , v′
dV
has the same number of elements.
Definition 2.11. The number of elements in the polyadic basis {v1, . . . , vdV
} is called the polyadic
dimension of VmK ,nK ,mV ,kρ.
Remark 2.12. The so-called 3-vector space introduced and studied in DUPLIJ AND WERNER [2015],
corresponds to VmK =3,nK=2,mV =3,kρ=1.
2.2. One-set polyadic vector space. A particular polyadic vector space is important: consider V =
K, νmV
= σmK
and mV = mK, which gives the following one-set “linear” algebraic structure (we
call it a one-set polyadic vector space)
KmK ,nK,kρ = K | σmK
, κnK
| ρλ
kρ
, (2.27)
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 9
where now the multiaction
ρλ
kρ



λ1
...
λkρ
λ



, λ, λi ∈ K, (2.28)
acts on K itself (in some special way), and therefore can be called a regular multiaction. In the binary
case nK = mK = 2, the only possibility for the regular action is the multiplication (by “scalars”) in
the field ρλ
1 {λ1| λ} = κ2 [λ1λ] (≡ λ1λ), which obviously satisfies the axioms 4)-7) of a vector space
in Definition 2.6. In this way we arrive at the definition of the binary field K ≡ K2,2 = K | σ2, κ2 ,
and so a one-set binary vector space coincides with the underlying field KmK =2,nK=2,kρ=1 = K, or as
it is said “a field is a (one-dimensional) vector space over itself”.
Remark 2.13. In the polyadic case, the regular multiaction ρλ
kρ
can be chosen, as any (additional to
σmK
, κnK
) function satisfying axioms 4)-7) of a polyadic vector space and the number of places kρ
and the arity of the semigroup of multiactions Sρ can be arbitrary, in general. Also, ρλ
kρ
can be taken
as a some nontrivial combination of σmK
, κnK
satisfying axioms 4)-7) (which admits a nontrivial
“multiplication by scalars”).
In the simplest regular (similar to the binary) case,
ρλ
kρ



λ1
...
λkρ
λ



= κℓκ
nK
λ1, . . . , λkρ, λ , (2.29)
where ℓκ is the number of multiplications κnK
, and the number of places kρ is now fixed by
kρ = ℓκ (nK − 1) , (2.30)
while λ in (2.29) can be on any place due the commutativity of the field multiplication κnK
.
Remark 2.14. In general, the one-set polyadic vector space need not coincide with the underlying
polyadic field, KmK ,nK ,kρ = KnK mK
(as opposed to the binary case), but can have a more complicated
structure which is determined by an additional multiplace function, the multiaction ρλ
kρ
.
2.3. Polyadic algebras. By analogy with the binary case, introducing an additional operation on
vectors, a multiplication which is distributive and “linear” with respect to “scalars”, leads to a polyadic
generalization of the (associative) algebra notion CARLSSON [1980]. Here, we denote the second
(except for the ’scalars’ K) set by A (instead of V above), on which we define two operations: mA-ary
“addition” νmA
: A×mA
→ A and nA-ary “multiplication” µnA
: A×nA
→ A. To interpret the nA-ary
operation as a true multiplication, the operations µnA
and νmA
should satisfy polyadic distributivity
(1.1)–(1.3) (an analog of (a + b) · c = a · c + b · c, with a, b, c ∈ A). Then we should consider the
“interaction” of this new operation µnA
with the multiaction ρkρ (an analog of the “compatibility with
scalars” (λa) · (µb) = (λµ) a · b, a, b ∈ A, λ, µ ∈ K). In the most general case, when all arities are
10 STEVEN DUPLIJ
arbitrary, we have the polyadic compatibility of µnA
with the field multiplication κnK
as follows
µnA

ρkρ



λ1
...
λkρ
a1



, . . . , ρkρ



λkρ(nA−1)
...
λkρnA
anA





= ρkρ



κnK
[λ1, . . . , λnK
] ,
...
κnK
λnK (ℓ′′
µ−1), . . . , λnKℓ′′
µ



ℓ′′
µ
λnKℓ′′
µ+1,
...
λnKℓ′′
µ+ℓ′′
id



ℓ′′
id
µnA
[a1 . . . anA
]



, (2.31)
where ℓ′′
µ and ℓ′′
id are the numbers of multiplications and intact elements in the resulting multiaction,
respectively.
Proposition 2.15. The arities of the polyadic field KmK ,nK
, the arity nρ of the multiaction semigroup
Sρ and the ℓ-shape of the polyadic compatibility (2.31) satisfy
kρnA = nKℓ′′
µ + ℓ′′
id, kρ = ℓ′′
µ + ℓ′′
id. (2.32)
We can exclude from (2.32) ℓ′′
ρ or ℓ′′
id and obtain
nA = nK −
nK − 1
kρ
ℓ′′
id, nA =
nK − 1
kρ
ℓ′′
µ + 1, (2.33)
where nK −1
kρ
ℓ′′
id ≥ 1 and nK−1
kρ
ℓ′′
µ ≥ 1 are integer, and the inequalities hold
1 ≤ ℓ′′
µ ≤ kρ, 0 ≤ ℓ′′
id ≤ kρ − 1, ℓ′′
µ ≤ kρ ≤ (nK − 1) ℓ′′
µ, 2 ≤ nA ≤ nK. (2.34)
It follows from (2.32), that the ℓ-shape is determined by the arities and number of places kρ as
ℓ′′
µ =
kρ (nA − 1)
nK − 1
, ℓ′′
id =
kρ (nK − nA)
nK − 1
. (2.35)
Definition 2.16. A polyadic (“linear”) algebra over a polyadic field is the 2-set 5-operation algebraic
structure
AmK ,nK,mA,nA,kρ = K; A | σmK
, κnK
; νmA
, µnA
| ρkρ , (2.36)
such that the following axioms hold:
1) K; A | σmK
, κnK
; νmA
| ρkρ is a polyadic vector space over a polyadic field KmK ,nK
;
2) The algebra multiplication µnA
and the algebra addition νmA
satisfy the polyadic distributivity
(1.1)–(1.3);
3) The multiplications in the algebra µnA
and in the field κnK
are compatible by (2.31).
In the case where the algebra multiplication µnA
is associative (1.4), then AmK,nK ,mA,nA,kρ is an
associative polyadic algebra (for kρ = 1 see CARLSSON [1980]). If µnA
is commutative, µnA
[aA] =
µnA
[σ ◦ aA], for any polyad in algebra aA ∈ A×nA
for all permutations σ ∈ Sn, where Sn is the
symmetry group, then AmK ,nK,mA,nA,kρ is called a commutative polyadic algebra. As in the n-ary
(semi)group theory, for polyadic algebras one can introduce special kinds of associativity and partial
commutativity. If the multiplication µnA
contains the identity eA (1.6) or a neutral polyad for any
element, such a polyadic algebra is called unital or neutral-unital, respectively. It follows from (2.34)
that:
Corollary 2.17. In a polyadic (“linear”) algebra the arity of the algebra multiplication nA is less than
or equal to the arity of the field multiplication nK.
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 11
Proposition 2.18. It all the operation ℓ-shapes in (2.9), (2.16) and (2.31) coincide
ℓ′′
µ = ℓ′
µ = ℓµ, ℓ′′
id = ℓ′
id = ℓid, (2.37)
then, we obtain the conditions for the arities
nK = mK, nρ = nA, (2.38)
while mA and kρ are not connected.
Proof. Use (2.14) and (2.35).
Proposition 2.19. In the case of equal ℓ-shapes the multiplication and addition of the ground polyadic
field (“scalars”) should coincide, while the arity nρ of the multiaction semigroup Sρ should be the
same as of the algebra multiplication nA, while the arity of the algebra addition mA and number of
places kρ remain arbitrary.
Remark 2.20. The above ℓ-shapes (2.14), (2.21), and (2.35) are defined by a pair of integers, and
therefore the arities in them are not arbitrary, but should be “quantized” in the same manner as the
arities of heteromorphisms in DUPLIJ [2012].
Therefore, numerically the “quantization” rules for the ℓ-shapes (2.14), (2.21), and (2.35) coincide
and given in TABLE 1.
TABLE 1. “Quantization” of arity ℓ-shapes
kρ ℓµ | ℓ′
µ | ℓ′′
µ ℓid | ℓ′
id | ℓ′′
id
nK
nρ
|
mK
nρ
|
nK
nA
2 1 1
3, 5, 7, . . .
2, 3, 4, . . .
3 1 2
4, 7, 10, . . .
2, 3, 4, . . .
3 2 1
4, 7, 10, . . .
3, 5, 7, . . .
4 1 3
5, 9, 13, . . .
2, 3, 4, . . .
4 2 2
3, 5, 7, . . .
2, 3, 4, . . .
4 3 1
5, 9, 13, . . .
4, 7, 10, . . .
Thus, we arrive at the following
Theorem 2.21 (The arity partial freedom principle). The basic two-set polyadic algebraic structures
have non-free underlying operation arities which are “quantized” in such a way that their ℓ-shape is
given by integers.
The above definitions can be generalized, as in the binary case by considering a polyadic ring
RmK ,nK
instead of a polyadic field KmK ,nK
. In this way a polyadic vector space becomes a polyadic
module over a ring or polyadic R-module, while a polyadic algebra over a polyadic field becomes a
polyadic algebra over a ring or polyadic R-algebra. All the axioms and relations between arities in
the Definition 2.6 and Definition 2.16 remain the same. However, one should take into account that
the ring multiplication κnK
can be noncommutative, and therefore for polyadic R-modules and R-
algebras it is necessary to consider many different kinds of multiactions ρkρ (all of them are described
in (2.9)). For instance, in the ternary case this corresponds to left, right and central ternary modules,
and tri-modules CARLSSON [1976], BAZUNOVA ET AL. [2004].
12 STEVEN DUPLIJ
3. MAPPINGS BETWEEN POLYADIC ALGEBRAIC STRUCTURES
Let us consider DV different polyadic vector spaces over the same polyadic field KmK ,nK
, as
V
(i)
mK ,nK,m
(i)
V ,k
(i)
ρ
= K; V(i)
| σmK
, κnK
; ν
(i)
m
(i)
V
| ρ
(i)
k
(i)
ρ
, i = 1, . . . , DV < ∞. (3.1)
Here we define a polyadic analog of a “linear” mapping for polyadic vector spaces which “com-
mutes“ with the “vector addition” and the “multiplication by scalar” (an analog of the additivity
F (v + u) = F (v) + F (u), and the homogeneity of degree one F (λv) = λF (v), v, u ∈ V, λ ∈ K).
Definition 3.1. A 1-place (“K-linear”) mapping between polyadic vector spaces VmK ,nK,mV ,kρ =
K; V | σmK
, κnK
; νmV
| ρkρ and VmK ,nK,mV ,kρ = K; V′
| σmK
, κnK
; ν′
mV
| ρ′
kρ
over the same
polyadic field KmK ,nK
= K | σmK
, κnK
is F1 : V → V′
, such that
F1 (νmV
[v1, . . . , vmV
]) = ν′
mV
[F1 (v1) , . . . , F1 (vmV
)] , (3.2)
F1

ρkρ



λ1
...
λkρ
v




 = ρ′
kρ



λ1
...
λkρ
F1 (v)



, (3.3)
where v1, . . . , vmV
, v ∈ V, λ1, . . . , λkρ ∈ K.
If zV is a “zero vector” in V and zV ′ is a “zero vector” in V′
(see (2.2)), then it follows from
(3.2)–(3.3), that F1 (zV ) = zV ′ .
The initial and final arities of νmV
(“vector addition”) and the multiaction ρkρ (“multiplication by
scalar”) coincide, because F1 is a 1-place mapping (a linear homomorphism). In DUPLIJ [2012]
multiplace mappings and corresponding heteromorphisms were introduced. The latter allow us to
change arities (mV → m′
V , kρ → k′
ρ), which is the main difference between binary and polyadic
mappings.
Definition 3.2. A kF -place (“K-linear”) mapping between two polyadic vector spaces
VmK ,nK,mV ,kρ = K; V | σmK
, κnK
; νmV
| ρkρ and VmK ,nK,mV ,kρ = K; V′
| σmK
, κnK
; ν′
m′
V
| ρ′
k′
ρ
over the same polyadic field KmK ,nK
= K | σmK
, κnK
is defined, if there exists FkF
: V×kF
→ V′
,
such that
FkF











νmV
[v1, . . . , vmV
]
...
νmV
vmV (ℓk
µ−1), . . . vmV ℓk
µ



ℓk
µ
vmV ℓk
µ+1,
...
vmV ℓk
µ+ℓk
id



ℓk
id











= ν′
m′
V


FkF


v1
...
vkF

 , . . . , FkF



vkF (m′
V −1)
...
vkF m′
V





 ,
(3.4)
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 13
FkF



















ρkρ



λ1
...
λkρ
v1



...
ρkρ



λkρ(ℓf
µ−1)
...
λkρℓf
µ
vℓf
µ






ℓf
µ
vℓf
µ+1
...
vkF



ℓf
id



















= ρ′
k′
ρ



λ1
...
λk′
ρ
FkF


v1
...
vkF





, (3.5)
where v1, . . . , vmV
, v ∈ V, λ1, . . . , λkρ ∈ K, and the four integers ℓk
ρ, ℓk
id, ℓf
ρ, ℓf
id define the ℓ-shape of
the mapping.
It follows from (3.4)–(3.5), that the arities satisfy
kF m′
V = mV ℓk
µ + ℓk
id, kF = ℓk
µ + ℓk
id, kF = ℓf
µ + ℓf
id, k′
µ = kρℓf
µ. (3.6)
The following inequalities hold
1 ≤ ℓk
µ ≤ kF , 0 ≤ ℓk
id ≤ kF − 1, ℓk
µ ≤ kF ≤ (mV − 1) ℓk
µ, 2 ≤ m′
V ≤ mV , 2 ≤ kρ ≤ k′
ρ. (3.7)
Thus, the ℓ-shape of the kF -place mapping between polyadic vector spaces is determined by
ℓk
µ =
kF (mV − 1)
mV − 1
, ℓk
id =
kF (mV − m′
V )
mV − 1
, ℓf
µ =
kρ
k′
ρ
, ℓf
id = kF −
kρ
k′
ρ
. (3.8)
3.1. Polyadic functionals and dual polyadic vector spaces. An important particular case of the kF -
place mapping can be considered, where the final polyadic vector space coincides with the underlying
field (analog of a “linear functional”).
Definition 3.3. A “linear” polyadic functional (or polyadic dual vector, polyadic covector) is a kL-
place mapping of a polyadic vector space VmK ,nK,mV ,kρ = K; V | σmK
, κnK
; νmV
| ρkρ into its
polyadic field KmK ,nK
= K | σmK
, κnK
, such that there exists LkL
: V×kL
→ K, and
LkL











νmV
[v1, . . . , vmV
]
...
νmV
vmV (ℓk
ν−1), . . . vmV ℓk
ν



ℓk
ν
vmV ℓk
ν+1,
...
vnK ℓk
ν+ℓν
id



ℓν
id











= σmK

LkL


v1
...
vkL

 , . . . , LkL


vkL(mK −1)
...
vkLmK



 ,
(3.9)
14 STEVEN DUPLIJ
LkL



















ρkρ



λ1
...
λkρ
v1



...
ρkρ



λkρ(ℓL
µ −1)
...
λkρℓL
µ
vℓL
µ






ℓL
µ
vℓL
µ +1
...
vkL



ℓL
id



















= κnK

λ1, . . . , λnK−1, LkL


v1
...
vkL



 , (3.10)
where v1, . . . , vmV
, v ∈ V , λ1, . . . , λnK
∈ K, and the integers ℓk
ν, ℓν
id, ℓL
µ, ℓL
id define the ℓ-shape of LkL
.
It follows from (3.4)–(3.5), that the arities satisfy
kLmK = mV ℓk
ν + ℓν
id, kL = ℓk
ν + ℓν
id, kL = ℓh
µ + ℓh
id, nK − 1 = kρℓh
µ, (3.11)
and for them
1 ≤ ℓk
ν ≤ kL, 0 ≤ ℓν
id ≤ kL −1, ℓk
ν ≤ kL ≤ (mV − 1) ℓk
ν, 2 ≤ mK ≤ mV , 2 ≤ kρ ≤ nK −1. (3.12)
Thus, the ℓ-shape of the polyadic functional is determined by
ℓk
ν =
kL (mK − 1)
mV − 1
, ℓν
id =
kL (mV − mK)
mV − 1
, ℓh
µ =
kρ
nK − 1
, ℓh
id = kL −
kρ
nK − 1
. (3.13)
In the binary case, because the dual vectors (linear functionals) take their values in the underlying
field, new operations between them, such that the dual vector “addition” (+∗
) and the “multiplication
by a scalar” (•∗
) can be naturally introduced by L(1)
+∗
L(2)
(v) = L(1)
(v)+L(2)
(v), (λ •∗
L) (v) =
λ•L (v), which leads to another vector space structure, called a dual vector space. Note that operations
+∗
and +, •∗
and • are different, because + and • are the operations in the underlying field K. In
the polyadic case, we have more complicated arity changing formulas, and here we consider finite-
dimensional spaces only. The arities of operations between dual vectors can be different from ones in
the underlying polyadic field KmK nK
, in general. In this way, we arrive to the following
Definition 3.4. A polyadic dual vector space over a polyadic field KmK ,nK
is
V∗
mK ,nK,m∗
V ,k∗
ρ
= K; L
(i)
kL
| σmK
, κnK
; ν∗
mL
| ρ∗
kL
, (3.14)
and the axioms are:
1) K | σmK
, κnK
is a polyadic (mK, nK)-field KmK ,nK
;
2) L
(i)
kL
| ν∗
mL
, i = 1, . . . , DL is a commutative mL-ary group (which is finite, if DL < ∞);
3) The “dual vector addition” ν∗
mL
is compatible with the polyadic field addition σmK
by
ν∗
mL
L
(1)
kL
, . . . , L
(mL)
kL
a(kL)
= σmK
L
(1)
kL
a(kL)
, . . . , L
(mK )
kL
v(kL)
, (3.15)
where v(kL)
=


v1
...
vkL

, v1, . . . , vkL
∈ V, and it follows that
mL = mK. (3.16)
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 15
4) The compatibility of ρ∗
kL
with the “multiplication by a scalar” in the underlying polyadic field
ρ∗
kL



λ1
...
λkL
LkL



v(kL)
= κnK
λ1, . . . , λnK−1, LkL
v(kL)
, (3.17)
and then
kL = nK − 1 (3.18)
5) ρ∗
kL
| composition is a nL-ary semigroup SL (similar to (2.9))
ρ∗
kL
nL



λ1
...
λkL
. . . ρ∗
kL



λkL(nL−1)
...
λkLnL
LkL



. . .



v(kL)
(3.19)
= ρ∗
kL



κnK
[λ1, . . . λnK
] ,
...
κnK
λnK(ℓL
µ −1), . . . λnK ℓL
µ



ℓL
µ
λnK ℓL
µ +1,
...
λnKℓL
µ +ℓL
id



ℓL
id
LkL



v(kL)
, (3.20)
where the ℓ-shape is determined by the system
kLnL = nKℓL
µ + ℓL
id, kL = ℓL
µ + ℓL
id. (3.21)
Using (3.18) and (3.21), we obtain the ℓ-shape as
ℓL
µ = nL − 1, ℓL
id = nK − nL. (3.22)
Corollary 3.5. The arity nL of the semigroup SL is less than or equal to the arity nK of the underlying
polyadic field nL ≤ nK.
3.2. Polyadic direct sum and tensor product. The Cartesian product of DV polyadic vector spaces
×ΠmV
i=1V
(i)
mK nKm
(i)
V k
(i)
ρ
(sometimes we use the concise notation ×ΠV(i)
), i = 1, . . . , DV is given by the
DV -ples (an analog of the Cartesian pair (v, u), v ∈ V(1)
, u ∈ V(2)
)



v(1)
...
v(DV )


 ≡ v(DV )
∈ V×DV
. (3.23)
We introduce a polyadic generalization of the direct sum and tensor product of vector spaces by
considering “linear” operations on the DV -ples (3.23).
In the first case, to endow ×ΠV(i)
with the structure of a vector space we need to define a new
operation between the DV -ples (3.23) (similar to vector addition, but between elements from different
spaces) and a rule, specifying how they are “multiplied by scalars” (analogs of (v1, v2) + (u1, u2) =
(v1 + u1, v2 + u2) and λ (v1, v2) = (λv1, λv2) ). In the binary case, a formal summation is used, but it
can be different from the addition in the initial vector spaces. Therefore, we can define on the set of the
DV -ples (3.23) new operations χmV
(“addition of vectors from different spaces”) and “multiplication
by a scalar” τkρ , which does not need to coincide with the corresponding operations ν
(i)
m
(i)
V
and ρ
(i)
k
(i)
ρ
of the initial polyadic vector spaces V
(i)
mK ,nK,m
(i)
V ,k
(i)
ρ
.
16 STEVEN DUPLIJ
If all DV -ples (3.23) are of fixed length, then we can define their “addition” χmV
in the standard
way, if all the arities m
(i)
V coincide and equal the arity of the resulting vector space
mV = m
(1)
V = . . . = m
(DV )
V , (3.24)
while the operations (“additions”) themselves ν
(i)
mV between vectors in different spaces can be still
different. Thus, a new commutative mV -ary operation (“addition”) χmV
of the DV -ples of the same
length is defined by
χmV






v
(1)
1
...
v
(DV )
1


 , . . . ,



v
(1)
mV
...
v
(DV )
mV





 =





ν
(1)
mV v
(1)
1 , . . . , v
(1)
mV
...
ν
(DV )
mV v
(DV )
1 , . . . , v
(DV )
mV





, (3.25)
where DV = mV , in general. However, it is also possible to add DV -ples of different length such
that the operation (3.25) is compatible with all arities m
(i)
V , i = 1, . . . , mV . For instance, if mV = 3,
m
(1)
V = m
(2)
V = 3, m
(3)
V = 2, then
χ3






v
(1)
1
v
(2)
1
v
(3)
1


 ,



v
(1)
2
v
(2)
2
v
(3)
2


 ,


v
(1)
3
v
(2)
3




 =





ν
(1)
3 v
(1)
1 , v
(1)
2 , v
(1)
3
ν
(2)
3 v
(2)
1 , v
(2)
2 , v
(2)
3
ν
(3)
2 v
(3)
1 , v
(3)
2





. (3.26)
Assertion 3.6. In the polyadic case, a direct sum of polyadic vector spaces having different arities of
“vector addition” m
(i)
V can be defined.
Let us introduce the multiaction τkρ (“multiplication by a scalar”) acting on DV -ple v(mV )
, then
ρkρ



λ1
...
λkρ



v(1)
...
v(DV )






=














ρ
(1)
k
(1)
ρ



λ1
...
λk
(1)
ρ
v(1)



...
ρ
(mV )
k
(DV )
ρ



λ
k
(1)
ρ +...+k
(DV −1)
ρ +1
...
λ
k
(1)
ρ +...+k
(DV )
ρ
v(DV )

















, (3.27)
where
k(1)
ρ + . . . + k(DV )
ρ = kρ. (3.28)
Definition 3.7. A polyadic direct sum of mV polyadic vector spaces is their Cartesian product
equipped with the mV -ary addition χmV
and the kρ-place multiaction τkρ , satisfying (3.25) and (3.27)
respectively
⊕ ΠDV
i=1V
(i)
mK ,nK,m
(i)
V ,k
(i)
ρ
= ×ΠDV
i=1V
(i)
mK ,nK,m
(i)
V ,k
(i)
ρ
| χmV
, τkρ . (3.29)
Let us consider another way to define a vector space structure on the DV -ples from the Carte-
sian product ×ΠV(i)
. Remember that in the binary case, the concept of bilinearity is used, which
means “distributivity” and “multiplicativity by scalars” on each place separately in the Cartesian pair
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 17
(v1, v2) ∈ V(1)
× V(2)
(as opposed to the direct sum, where these relations hold on all places simulta-
neously, see (3.25) and (3.27)) such that
(v1 + u1, v2) = (v1, v2) + (u1, v2) , (v1, v2 + u2) = (v1, v2) + (v1, u2) , (3.30)
λ (v1, v2) = (λv1, v2) = (v1, λv2) , (3.31)
respectively. If we denote the ideal corresponding to the relations (3.30)–(3.31) by B2, then the binary
tensor product of the vector spaces can be defined as their Cartesian product by factoring out this ideal,
as V(1)
⊗V(2) def
= V(1)
×V(2)
B2. Note first, that the additions and multiplications by a scalar on both
sides of (3.30)–(3.31) “work” in different spaces, which sometimes can be concealed by adding the
word “formal” to them. Second, all these operations have the same arity (binary ones), which need
not be the case when considering polyadic structures.
As in the case of the polyadic direct sum, we first define a new operation ˜χmV
(“addition”) of the
DV -ples of fixed length (different from χmV
in (3.25)), when all the arities m
(i)
V coincide and equal to
mV (3.24). Then, a straightforward generalization of (3.30) can be defined for mV -ples similar to the
polyadic distributivity (1.1)–(1.3), as in the following mV relations





ν
(1)
mV v
(1)
1 , . . . , v
(1)
mV
u2
...
uDV





= ˜χmV










v
(1)
1
u2
...
uDV





, . . . ,





v
(1)
mV
u2
...
uDV










, (3.32)





u1
ν
(2)
mV v
(2)
1 , . . . , v
(2)
mV
...
umV





= ˜χmV










u1
v
(2)
1
...
umV





, . . . ,





u1
v
(2)
mV
...
umV










, (3.33)
...





u1
u2
...
ν
(mV )
mV v
(DV )
1 , . . . , v
(DV )
mV





= ˜χmV










u1
u2
...
v
(DV )
1





, . . . ,





u1
u2
...
v
(DV )
mV










. (3.34)
By analogy, if all k
(i)
ρ are equal we can define a new multiaction ˜τkρ (different from τkρ (3.27)) with
the same number of places
kρ = k(1)
ρ = . . . = k(DV )
ρ (3.35)
as the DV relations (an analog of (3.31))
ρ′
kρ



λ1
...
λkρ



v(1)
...
v(DV )






=









ρ
(1)
kρ



λ1
...
λkρ
v(1)



v(2)
...
v(DV )









(3.36)
18 STEVEN DUPLIJ
=









v(1)
ρ
(2)
kρ



λ1
...
λkρ
v(2)



...
v(DV )









(3.37)
...
=









v(1)
v(2)
...
ρ
(DV )
kρ



λ1
...
λkρ
v(DV )












. (3.38)
Let us denote the ideal corresponding to the relations (3.32)–(3.34), (3.36)–(3.38) by BDV
.
Definition 3.8. A polyadic tensor product of DV polyadic vector spaces V
(i)
mK ,nK,m
(i)
V ,k
(i)
ρ
is their Carte-
sian product equipped with the mV -ary addition ˜χmV
(of DV -ples) and the kρ-place multiaction ˜τkρ ,
satisfying (3.32)–(3.34) and (3.36)–(3.38), respectively, by factoring out the ideal BDV
⊗ ΠmV
i=1V
(i)
mK ,nK,m
(i)
V ,k
(i)
ρ
= ×ΠmV
i=1V
(i)
mK ,nK,m
(i)
V ,k
(i)
ρ
| ˜χmV
, ˜τkρ BDV
. (3.39)
As in the case of the polyadic direct sum, we can consider the distributivity for DV -ples of different
length. In a similar example (3.26), if mV = 3, m
(1)
V = m
(2)
V = 3, m
(3)
V = 2, we have



ν
(1)
3 v
(1)
1 , v
(1)
2 , v
(1)
3
u2
u3


 = ˜χ3




v
(1)
1
u2
u3

 ,


v
(1)
2
u2
u3

 ,


v
(1)
3
u2



 , (3.40)



u1
ν
(2)
3 v
(2)
1 , v
(2)
2 , v
(2)
3
u3


 = ˜χ3




u1
v
(2)
1
u3

 ,


u1
v
(2)
2
u3

 ,


u1
v
(2)
3



 , (3.41)



u1
u2
ν
(3)
2 v
(3)
1 , v
(3)
2


 = ˜χ3




u1
u2
v
(3)
1

 ,


u1
u2
v
(3)
2

 ,


u1
u2



 . (3.42)
Assertion 3.9. A tensor product of polyadic vector spaces having different arities of the “vector
addition” m
(i)
V can be defined.
In the case of modules over a polyadic ring, the formulas connecting arities and ℓ-shapes similar to
those above hold, while concrete properties (noncommutativity, mediality, etc.) should be taken into
account.
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 19
4. POLYADIC INNER PAIRING SPACES AND NORMS
Here we introduce the next important operation: a polyadic analog of the inner product for polyadic
vector spaces - a polyadic inner pairing2
. Let VmK ,nK,mV ,kρ = K; V | σmK
, κnK
; νmV
| ρkρ be
a polyadic vector space over the polyadic field KmK ,nK
(2.22). By analogy with the binary inner
product, we introduce its polyadic counterpart and study its arity shape.
Definition 4.1. A polyadic N-place inner pairing (an analog of the inner product) is a mapping
N
•|•| . . . |• : V×N
→ K, (4.1)
satisfying the following conditions:
1) Polyadic “linearity” (2.9) (for first argument):
ρkρ



λ1
...
λkρ
v1



|v2| . . . |vN = κnK
λ1, . . . , λkρ , v1|v2| . . . |vN . (4.2)
2) Polyadic “distributivity” (1.1)–(1.3) (on each place):
νmV
[v1, u1, . . . umV −1] |v2| . . . |vN
= σmK
[ v1|v2| . . . |vN , u1|v2| . . . |vN . . . umV −1|v2| . . . |vN ] . (4.3)
If the polyadic field KmK ,nK
contains the zero zK and V | mV has the zero “vector” zV (which is
not always the case in the polyadic case), we have the additional axiom:
3) The polyadic inner pairing vanishes v1|v2| . . . |vN = zK, iff any of the “vectors” vanishes,
∃i ∈ 1, . . . , N, such that vi = zV .
If the standard binary ordering on KmK ,nK
can be defined, then the polyadic inner pairing satisfies:
4) The positivity condition
N
v|v| . . . |v ≥ zK, (4.4)
5) The polyadic Cauchy-Schwarz inequality (“triangle” inequality)
κnK






nK
N
v1|v1| . . . |v1 ,
N
v2|v2| . . . |v2 . . .
N
vnK
|vnK
| . . . |vnK






≥ κnK


nK
v1|v2| . . . |vN , v1|v2| . . . |vN . . . , v1|v2| . . . |vN

 . (4.5)
To make the above relations consistent, the arity shapes should be fixed.
Definition 4.2. If the inner pairing is fully symmetric under permutations it is called a polyadic inner
product.
Proposition 4.3. The number of places in the multiaction ρkρ differs by 1 from the multiplication arity
of the polyadic field
nK − kρ = 1. (4.6)
Proof. It follows from the polyadic “linearity” (4.2).
2
Note that this concept is different from the n-inner product spaces considered in [Misiak, et al].
20 STEVEN DUPLIJ
Proposition 4.4. The arities of “vector addition” and “field addition” coincide
mV = mK. (4.7)
Proof. Implied by the polyadic “distributivity” (4.3).
Proposition 4.5. The arity of the “field multiplication” is equal to the arity of the polyadic inner
pairing space
nK = N. (4.8)
Proof. This follows from the polyadic Cauchy-Schwarz inequality (4.5).
Definition 4.6. The polyadic vector space VmK ,nK,mV ,kρ equipped with the polyadic inner pairing
N
•|•| . . . |• : V×N
→ K is called a polyadic inner pairing space HmK ,nK,mV ,kρ,N .
A polyadic analog of the binary norm • : V → K can be induced by the inner pairing similarly
to the binary case for the inner product (we use the form v 2
= v|v ).
Definition 4.7. A polyadic norm of a “vector” v in the polyadic inner pairing space HmK ,nK,mV ,kρ,N
is a mapping • N : V → K, such that
κnK


nK
v N , v N , . . . , v N

 =
N
v|v| . . . |v , (4.9)
nK = N, (4.10)
and the following axioms apply:
1) The polyadic “linearity”
ρkρ



λ1
...
λkρ
v



N
= κnK
λ1, . . . , λkρ , v N , (4.11)
nK − kρ = 1. (4.12)
If the polyadic field KmK ,nK
contains the zero zK and V | mV has a zero “vector” zV , then:
2) The polyadic norm vanishes v N = zK, iff v = zV .
If the binary ordering on V | mV can be defined, then:
3) The polyadic norm is positive v N ≥ zK.
4) The polyadic“triangle” inequality holds
σmK


mK
v1 N , v2 N , . . . , vN N

 ≥ νmV


mV
v1 N , v2 N , . . . , vN N

 , (4.13)
mK = mV = N. (4.14)
Definition 4.8. The polyadic inner pairing space HmK ,nK ,mV ,kρ,N equipped with the polyadic norm
v N is called a polyadic normed space.
Recall that in the binary vector space V over the field K equipped with the inner product •|•
and the norm • , one can introduce the angle between vectors v1 · v2 · cos θ = v1|v2 , where
on l.h.s. there are two binary multiplications (·).
Definition 4.9. A polyadic angle between N vectors v1, v2, . . . , vnK
of the polyadic inner pairing
space HmK ,nK,mV ,kρ,N is defined as a set of angles ϑ = {{θi} | i = 1, 2, . . . , nK − 1} satisfying
κ(2)
nK
[ v1 N , v2 N , . . . , vnK N , cos θ1, cos θ2, . . . , cos θnK −1] = v1|v2| . . . |vnK
, (4.15)
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 21
where κ
(2)
nK is a long product of two nK-ary multiplications, which consists of 2 (nK − 1) + 1 terms.
We will not consider the completion with respect to the above norm (to obtain a polyadic analog of
Hilbert space) and corresponding limits and boundedness questions, because it will not give additional
arity shapes, in which we are mostly interested here. Instead, below we turn to some applications and
new general constructions which appear from the above polyadic structures.
TABLE 2. The arity signature and arity shape of polyadic algebraic structures.
Structures
Sets Operations and arities Arity
N Name N Multiplications Additions Multiactions shape
Group-like polyadic algebraic structures
n-ary magma
(or groupoid)
1 M 1
µn :
Mn → M
n-ary semigroup
(and monoid)
1 S 1
µn :
Sn → S
n-ary quasigroup
(and loop)
1 Q 1
µn :
Qn → Q
n-ary group 1 G 1
µn :
Gn → G
Ring-like polyadic algebraic structures
(m, n)-ary ring 1 R 2
µn :
Rn → R
νm :
Rm → R
(m, n)-ary field 1 K 2
µn :
Kn → K
νm :
Km → K
Module-like polyadic algebraic structures
Module
over (m, n) -ring
2 R, M 4
σn :
Rn → R
κm :
Rm → R
νmM :
MmM → M
ρkρ :
Rkρ × M → M
Vector space
over (mK , nK) -field
2 K, V 4
σnK :
KnK → K
κmK :
KmK → K
νmV :
VmV → V
ρkρ :
Kkρ × V → V
(2.14)
(2.21)
Algebra-like polyadic algebraic structures
Inner pairing space
over (mK , nK) -field
2 K, V 5
σnK :
KnK → K
N-Form
•..• :
VN → K
κmK :
KmK → K
νmV :
VmV → V
ρkρ :
Kkρ × V → V
(4.6)
(4.7)
(4.8)
(mA, nA) -algebra
over (mK , nK) -field
2 K, A 5
σnK :
KnK → K
µnA :
An → A
κmK :
KmK → K
νmA :
AmM → A
ρkρ :
Kkρ × A → A
(2.35)
To conclude, we present the resulting TABLE 2 in which the polyadic algebraic structures are listed
together with their arity shapes.
APPLICATIONS
5. ELEMENTS OF POLYADIC OPERATOR THEORY
Here we consider the 1-place polyadic operators T = FkF =1 (the case kF = 1 of the mapping FkF
in Definition 3.2) on polyadic inner pairing spaces and structurally generalize the adjointness and
involution concepts.
Remark 5.1. A polyadic operator is a complicated mapping between polyadic vector spaces having
nontrivial arity shape (3.4) which is actually an action on a set of “vectors”. However, only for kF = 1
it can be written in a formal way multiplicatively, as it is always done in the binary case.
Recall (to fix notations and observe analogies) the informal standard introduction of the operator
algebra and the adjoint operator on a binary pre-Hilbert space H (≡ HmK =2,nK=2,mV =2,kρ=1,N=2)
over a binary field K (≡ KmK =2,nK=2) (having the underlying set {K; V}). For the operator norm
• T : {T } → K we use (among many others) the following definition
T T = inf {M ∈ K | T v ≤ M v , ∀v ∈ V} , (5.1)
22 STEVEN DUPLIJ
which is convenient for further polyadic generalization. Bounded operators have M < ∞. If on the
set of operators {T } (as 1-place mappings V → V) one defines the addition (+T ), product (◦T ) and
scalar multiplication (·T ) in the standard way
(T1 +T T2) (v) = T1v + T2v, (5.2)
(T1 ◦T T2) (v) = T1 (T2v) , (5.3)
(λ ·T T ) (v) = λ (T v) , λ ∈ K, v ∈ V, (5.4)
then {T } | +T , ◦T |·T becomes an operator algebra AT (associativity and distributivity are obvious).
The unity I and zero Z of AT (if they exist), satisfy
Iv = v, (5.5)
Zv = zV , ∀v ∈ V, (5.6)
respectively, where zV ∈ V is the polyadic “zero-vector”.
The connection between operators, linear functionals and inner products is given by the Riesz rep-
resentation theorem. Informally, it states that in a binary pre-Hilbert space H = {K; V} a (bounded)
linear functional (sesquilinear form) L : V × V → K can be uniquely represented as
L (v1, v2) = T v1|v2 sym , ∀v1, v2 ∈ V, (5.7)
where •|• sym : V × V → K is a (binary) inner product with standard properties and T : V → V
is a bounded linear operator, such that the norms of L and T coincide. Because the linear functionals
form a dual space (see Subsection 3.1), the relation (5.7) fixes the shape of its elements. The main
consequence of the Riesz representation theorem is the existence of the adjoint: for any (bounded)
linear operator T : V → V there exists a (unique bounded) adjoint operator T ∗
: V → V satisfying
L (v1, v2) = T v1|v2 sym = v1|T ∗
v2 sym , ∀v1, v2 ∈ V, (5.8)
and the norms of T and T ∗
are equal. It follows from the conjugation symmetry of the standard
binary inner product, that (5.8) coincides with
v1|T v2 sym = T ∗
v1|v2 sym , ∀v1, v2 ∈ V. (5.9)
However, when •|• has no symmetry (permutation, conjugation, etc., see, e.g. MIGNOT
[1976]), it becomes the binary (N = 2) inner pairing (4.1), the binary adjoint consists of 2 opera-
tors (T ⋆12
) = (T ⋆21
), T ⋆ij
: V → V, which should be defined by 2 equations
T v1|v2 = v1|T ⋆12
v2 , (5.10)
v1|T v2 = T ⋆21
v1|v2 , (5.11)
where (⋆12) = (⋆21) are 2 different star operations satisfying 2 relations
T ⋆12⋆21
= T , (5.12)
T ⋆21⋆12
= T. (5.13)
If •|• = •|• sym is symmetric, it becomes the inner product in the pre-Hilbert space H and
the equations (5.12)–(5.13) coincide, while the operation (∗) = (⋆12) = (⋆21) stands for the standard
involution
T ∗∗
= T . (5.14)
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 23
5.1. Multistars and polyadic adjoints. Consider now a special case of the polyadic inner pairing
space (see Definition 4.6)
HmK ,nK,mV ,kρ=1,N = K; V | σmK
, κnK
; νmV
| ρkρ=1 |
N
•| . . . |• (5.15)
with 1-place multiaction ρkρ=1.
Definition 5.2. The set of 1-place operators T : V → V together with the set of “scalars” K be-
come a polyadic operator algebra AT = K; {T } | σmK
, κnK
; ηmT
, ωnT
| θkF =1 , if the operations
ηmT
, ωnT
, θkF =1 to define by
ηmT
[T1, T2, . . . , TmT
] (v) = νmV
[T1v, T2v, . . . , TmT
v] , (5.16)
ωnT
[T1, T2, . . . , TnT
] (v) = T1 (T2 . . . (TnT
v)) , (5.17)
θkF =1 {λ | T } (v) = ρkρ=1 {λ | T v} , ∀λ ∈ K, ∀v ∈ V. (5.18)
The arity shape is fixed by
Proposition 5.3. In the polyadic algebra AT the arity of the operator addition mT coincides with the
“vector” addition of the inner pairing space mV , i.e.
mT = mV . (5.19)
Proof. This follows from (5.16).
To get relations between operators we assume (as in the binary case) uniqueness: for any T1, T2 :
V → V it follows from
v1|v2| . . . |T1vi| . . . vN−1|vN = v1|v2| . . . |T2vi| . . . vN−1|vN , (5.20)
that T1 = T2 on any place i = 1, . . . , N.
First, by analogy with the binary adjoint (5.8) we define N different adjoints for each operator T .
Definition 5.4. Given a polyadic operator T : V → V on the polyadic inner pairing space
HmK ,nK,mV ,kρ=1,N we define a polyadic adjoint as the set {T ⋆ij
} of N operators T ⋆ij
satisfying the
following N equations
T v1|v2|v3| . . . |vN = v1|T ⋆12
v2|v3| . . . |vN ,
v1|T v2|v3| . . . |vN = v1|v2|T ⋆23
v3| . . . |vN ,
...
v1|v2|v3| . . . T vN−1|vN = v1|v2|v3| . . . |T ⋆N−1,N
vN ,
v1|v2|v3| . . . vN−1|T vN = T ⋆N,1
v1|v2|v3| . . . |vN , vi ∈ V. (5.21)
In what follows, for the composition we will use the notation (T ⋆ij
)⋆kl...
≡ T ⋆ij ⋆kl...
. We have from
(5.21) the N relations
T ⋆12⋆23⋆34...⋆N−1,N ⋆N,1
= T,
T ⋆23⋆34...⋆N−1,N ⋆N,1⋆12
= T,
...
T ⋆N,1⋆12⋆23⋆34...⋆N−1,N
= T, (5.22)
which are called multistar cycles.
Definition 5.5. We call the set of adjoint mappings (•⋆ij
) : T → T ⋆ij
a polyadic involution, if they
satisfy the multistar cycles (5.22).
24 STEVEN DUPLIJ
If the inner pairing •| . . . |• has more than two places N ≥ 3, we have some additional structural
issues, which do not exist in the binary case.
First, we observe that the set of the adjointness relations (5.21) can be described in the framework
of the associativity quiver approach introduced in DUPLIJ [2012] for polyadic representations. That
is, for general N ≥ 3 in addition to (5.21) which corresponds to the so called Post-like associativity
quiver (they will be called the Post-like adjointness relations), there also exist other sets. It is cum-
bersome to write additional general formulas like (5.21) for other non-Post-like cases, while instead
we give a clear example for N = 4.
Example 5.6. The polyadic adjointness relations for N = 4 consist of the sets corresponding to
different associativity quivers
1) Post-like adjointness relations
T v1|v2|v3|v4 = v1|T ⋆12
v2|v3|v4 ,
v1|T v2|v3|v4 = v1|v2|T ⋆23
v3|v4 ,
v1|v2|T v3|v4 = v1|v2|v3|T ⋆34
v4 ,
v1|v2|v3|T v4 = T ⋆41
v1|v2|v3|v4 ,
2) Non-Post-like adjointness relations
T v1|v2|v3|v4 = v1|v2|v3|T ⋆14
v4 ,
v1|v2|v3|T v4 = v1|v2|T ⋆43
v3|v4 ,
v1|v2|T v3|v4 = v1|T ⋆32
v2|v3|v4 ,
v1|T v2|v3|v4 = T ⋆21
v1|v2|v3|v4 ,
(5.23)
and the corresponding multistar cycles
1) Post-like multistar cycles
T ⋆12⋆23⋆34⋆41
= T ,
T ⋆23⋆34⋆41⋆12
= T ,
T ⋆34⋆41⋆12⋆23
= T ,
T ⋆41⋆12⋆23⋆34
= T ,
2) Non-Post-like multistar cycles
T ⋆14⋆43⋆32⋆21
= T,
T ⋆43⋆32⋆21⋆14
= T,
T ⋆32⋆21⋆14⋆43
= T,
T ⋆21⋆14⋆43⋆32
= T.
(5.24)
Thus, if the inner pairing has no symmetry, then both the Post-like and non-Post-like adjoints and
corresponding multistar involutions are different.
Second, in the case N ≥ 3 any symmetry of the multiplace inner pairing restricts the polyadic
adjoint sets and multistar involutions considerably.
Theorem 5.7. If the inner pairing with N ≥ 3 has the full permutation symmetry
v1|v2| . . . |vN = σv1|σv2| . . . |σvN , ∀σ ∈ SN , (5.25)
where SN is the symmetric group of N elements, then:
1) All the multistars coincide (⋆ij) = (⋆kl) := (∗) for any allowed i, j, k, l = 1, . . . , N;
2) All the operators are self-adjoint T = T ∗
.
Proof.
1) In each adjointness relation from (5.21) we place the operator T on the l.h.s. to the first position
and its multistar adjoint T ⋆ij
to the second position, using the full permutation symmetry,
which together with (5.20) gives the equality of all multistar operations.
2) We place the operator T on the l.h.s. to the first position and apply the derivation of the
involution in the binary case to increasing cycles of size i ≤ N recursively, that is:
For i = 2
T v1|v2|v3| . . . |vN = v1|T ∗
v2|v3| . . . |vN = T ∗
v2|v1|v3| . . . |vN
= v2|T ∗∗
v1|v3| . . . |vN = T ∗∗
v1|v2|v3| . . . |vN , (5.26)
then, using (5.20) we get
T = T ∗∗
, (5.27)
as in the standard binary case. However, for N ≥ 3 we have N higher cycles in addition.
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 25
For i = 3
T v1|v2|v3| . . . |vN = v1|T ∗
v2|v3| . . . |vN = T ∗
v2|v3|v1| . . . |vN
= v2|T ∗∗
v3|v1| . . . |vN = T ∗∗
v3|v1|v2| . . . |vN
= v3|T ∗∗∗
v1|v2| . . . |vN = T ∗∗∗
v1|v2|v3| . . . |vN , (5.28)
which together with (5.20) gives
T = T ∗∗∗
, (5.29)
and after using (5.27)
T = T ∗
. (5.30)
Similarly, for an arbitrary length of the cycle i we obtain T = T
i
∗ ∗ . . . ∗, which should
be valid for each cycle recursively with i = 2, 3, . . . , N. Therefore, for any N ≥ 3 all the
operators T are self-adjoint (5.30), while N = 2 is an exceptional case, when we have T =
T ∗∗
(5.27) only.
Now we show that imposing a partial symmetry on the polyadic inner pairing will give more inter-
esting properties to the adjoint operators. Recall, that one of possible binary commutativity general-
izations of (semi)groups to the polyadic case is the semicommutativity concept, when in the multipli-
cation only the first and last elements are exchanged. Similarly, we introduce
Definition 5.8. The polyadic inner pairing is called semicommutative, if
v1|v2|v3| . . . |vN = vN |v2|v3| . . . |v1 , vi ∈ V. (5.31)
Proposition 5.9. If the polyadic inner pairing is semicommutative, then for any operator T (satis-
fying Post-like adjointness (5.21)) the last multistar operation (⋆N,1) is a binary involution and is a
composition of all the previous multistars
T ⋆N,1
= T ⋆12⋆23⋆34...⋆N−1,N
, (5.32)
T ⋆N,1⋆N,1
= T . (5.33)
Proof. It follows from (5.21) and (5.31), that
v1|v2|v3| . . . |T vN = T vN |v2|v3| . . . |v1 = vN |v2|v3| . . . |T ⋆12⋆23⋆34...⋆N−1,N
v1 (5.34)
= T ⋆12⋆23⋆34...⋆N−1,N
v1|v2|v3| . . . |vN = T ⋆N,1
v1|v2|v3| . . . |vN , (5.35)
which using (5.20) gives (5.32), (5.33) follows from the first multistar cocycle in (5.22).
The adjointness relations (5.21) (of all kinds) together with (5.18) and (5.19) allows us to fix the
arity shape of the polyadic operator algebra AT . We will assume that the arity of the operator multi-
plication in AT coincides with the number of places of the inner pairing N (4.1)
nT = N, (5.36)
because it is in agreement with (5.21). Thus, the arity shape of the polyadic operator algebra becomes
AT = K; {T } | σmK
, κnK
; ηmT =mV
, ωnT =N | θkF =kρ=1 , (5.37)
Definition 5.10. We call the operator algebra AT which has the arity nT = N a nonderived polyadic
operator algebra.
Let us investigate some structural properties of AT and types of polyadic operators.
26 STEVEN DUPLIJ
Remark 5.11. We can only define, but not derive, as in the binary case, the action of any multistar
(⋆ij) on the product of operators, because in the nonderived nT -ary algebra we have a fixed number
of operators in a product and sum, that is ℓ′
(nT − 1)+1 and ℓ′′
(mT − 1)+1, correspondingly, where
ℓ′
is the number of nT -ary multiplications and ℓ′
is the number of mT -ary additions. Therefore, we
cannot transfer (one at a time) all the polyadic operators from one place in the inner pairing to another
place, as is done in the standard proof in the binary case.
Taking this into account, as well as consistency under the multistar cycles (5.22), we arrive at
Definition 5.12. The fixed multistar operation acts on the ℓ = 1 product of nT polyadic operators,
depending on the sequential number of the multistar (⋆ij) (for the Post-like adjointness relations
(5.21))
sij :=
i + j − 1
2
, if 3 ≤ i + j ≤ 2N − 1
N, if i j = N,
sij = 1, 2, . . . , N − 1, N, (5.38)
in the following way
(ωnT
[T1, T2, . . . , TnT −1, TnT
])⋆ij
=
ωnT
T
⋆ij
nT , T
⋆ij
nT −1, . . . , T
⋆ij
2 , T
⋆ij
1 , if sij is odd,
ωnT
T
⋆ij
1 , T
⋆ij
2 , . . . , T
⋆ij
nT −1, T
⋆ij
nT , if sij is even.
(5.39)
A rule similar to (5.39) holds also for non-Post-like adjointness relations, but their concrete form
depends of the corresponding non-Post-like associative quiver.
Sometimes, to shorten notation, it will be more convenient to mark a multistar by the sequential
number (5.38), such that (⋆ij) ⇒ ⋆sij
, e.g. (⋆23) ⇒ (⋆2), (⋆N,1) ⇒ (⋆N ), etc. Also, in examples,
for the ternary multiplication we will use the square brackets without the name of operation, if it is
clear from the context, e.g. ω3 [T1, T2, T3] ⇒ [T1, T2, T3], etc.
Example 5.13. In the lowest ternary case N = 3 we have
1) Post-like adjointness relations
T v1|v2|v3 = v1|T ⋆1
v2|v3 ,
v1|T v2|v3 = v1|v2|T ⋆2
v3 ,
v1|v2|T v3 = T ⋆3
v1|v2|v3 ,
2) Non-Post-like adjointness relations
T v1|v2|v3 = v1|v2|T ⋆3
v3 ,
v1|v2|T v3 = v1|T ⋆2
v2|v3 ,
v1|T v2|v3 = T ⋆1
v1|v2|v3 ,
(5.40)
and the corresponding multistar cycles
1) Post-like multistar cycles
T ⋆1⋆2⋆3
= T ,
T ⋆2⋆3⋆1
= T ,
T ⋆3⋆1⋆2
= T ,
2) Non-Post-like multistar cycles
T ⋆3⋆2⋆1
= T,
T ⋆2⋆1⋆3
= T,
T ⋆1⋆3⋆2
= T.
(5.41)
Using (5.39) we obtain the following ternary conjugation rules
([T1, T2, T3])⋆1
= [T ⋆1
3 , T ⋆1
2 , T ⋆1
1 ] , (5.42)
([T1, T2, T3])⋆2
= [T ⋆2
1 , T ⋆2
2 , T ⋆2
3 ] , (5.43)
([T1, T2, T3])⋆3
= [T ⋆3
3 , T ⋆3
2 , T ⋆3
1 ] , (5.44)
which are common for both Post-like and non-Post-like adjointness relations (5.40).
Definition 5.14. A polyadic operator T is called self-adjoint, if all multistar operations are identities,
i.e. (⋆ij) = id, ∀i, j.
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 27
5.2. Polyadic isometry and projection. Now we introduce polyadic analogs for the important types
of operators: isometry, unitary, and (orthogonal) projection. Taking into account Remark 5.11, we
again cannot move operators singly, and instead of proving the operator relations, as it is usually done
in the binary case, we can only exploit some mnemonic rules to define the corresponding relations
between polyadic operators.
If the polyadic operator algebra AT contains a unit I and zero Z (see (5.5)–(5.6)) we define the
conditions of polyadic isometry and orthogonality:
Definition 5.15. A polyadic operator T is called a polyadic isometry, if it preserves the polyadic inner
pairing
T v1|T v2|T v3| . . . |T vN = v1|v2|v3| . . . |vN , (5.45)
and satisfies
ωnT
[T ⋆N−1,N
, T ⋆N−2,N−1⋆N−1,N
, . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ] = I,
+ (N − 1) cycle permutations of multistars in the first (N − 1) terms. (5.46)
Remark 5.16. If the multiplication in AT is derived and all multistars are equal, then the polyadic
isometry operators satisfy some kind of N-regularity DUPLIJ AND MARCINEK [2002] or regular
N-cocycle condition DUPLIJ AND MARCINEK [2001].
Proposition 5.17. The polyadic isometry operator T preserves the polyadic norm
T v N = v N , ∀v ∈ V. (5.47)
Proof. It follows from (4.9) and (5.45), that
κnK


nK
T v N , T v N , . . . , T v N

 = κnK


nK
v N , v N , . . . , v N

 , (5.48)
which gives (5.47), when nK = N.
Definition 5.18. If for N polyadic operators Ti we have
T1v1|T2v2|T3v3| . . . |TN vN = zK, ∀vi ∈ V, (5.49)
where zK ∈ V is the zero of the underlying polyadic field KmK ,nK
, then we say that Ti are (polyadi-
cally) orthogonal, and they satisfy
ωnT
T
⋆N−1,N
1 , T
⋆N−2,N−1⋆N−1,N
2 , . . . T
⋆23⋆34...⋆N−2,N−1⋆N−1,N
3 , T
⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N
N−1 , TN = Z,
(5.50)
+ (N − 1) cycle permutations of multistars in the first (N − 1) terms. (5.51)
The polyadic analog of projection is given by
Definition 5.19. If a polyadic operator P ∈ AT satisfies the polyadic idempotency condition
ωnT


nT
P , P , . . . P

 = P, (5.52)
then it is called a polyadic projection.
By analogy with the binary case, polyadic projections can be constructed from polyadic isometry
operators in a natural way.
28 STEVEN DUPLIJ
Proposition 5.20. If T ∈ AT is a polyadic isometry, then
P
(1)
T = ωnT
[T , T ⋆N−1,N
, T ⋆N−2,N−1⋆N−1,N
, . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N
] ,
+ (N − 1) cycle permutations of multistars in the last (N − 1) terms. (5.53)
are the corresponding polyadic projections P
(k)
T , k = 1, . . . , N, satisfying (5.52).
Definition 5.21. A polyadic operator T ∈ AT is called normal, if
ωnT
[T ⋆N−1,N
, T ⋆N−2,N−1⋆N−1,N
, . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ] =
ωnT
[T , T ⋆N−1,N
, T ⋆N−2,N−1⋆N−1,N
, . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N
] ,
+ (N − 1) cycle permutations of multistars in the (N − 1) terms. (5.54)
Proof. Insert (5.53) into (5.52) and use (5.46) together with nT -ary associativity.
Definition 5.22. If all the polyadic projections (5.53) are equal to unity P
(k)
T = I, then the corre-
sponding polyadic isometry operator T is called a polyadic unitary operator.
It can be shown, that each polyadic unitary operator is querable (“polyadically invertible”), such
that it has a querelement in AT .
5.3. Towards polyadic analog of C∗
-algebras. Let us, first, generalize the operator binary norm
(5.1) to the polyadic case. This can be done, provided that a binary ordering on the underlying
polyadic field KmK ,nK
can be introduced.
Definition 5.23. The polyadic operator norm • T : {T } → K is defined by
T T = inf



M ∈ K | T v N ≤ µnK


nK −1
M, . . . , M, v N

 , ∀v ∈ V



, (5.55)
where • N is the polyadic norm in the inner pairing space HmK ,nK,mV ,kρ=1,N and µnK
is the nK-ary
multiplication in KmK ,nK
.
Definition 5.24. The polyadic operator norm is called submultiplicative, if
ωnT
[T1, T2, . . . , TnT
] T ≤ µnK
[ T1 T , T2 T , . . . , TnK T ] , (5.56)
nT = nK. (5.57)
Definition 5.25. The polyadic operator norm is called subadditive, if
ηmT
[T1, T2, . . . , TnT
] T ≤ νmK
[ T1 T , T2 T , . . . , TmK T ] , (5.58)
mT = mK. (5.59)
By analogy with the binary case, we have
Definition 5.26. The polyadic operator algebra AT equipped with the submultiplicative norm • T a
polyadic Banach algebra of operators BT .
The connection between the polyadic norms of operators and their polyadic adjoints is given by
Proposition 5.27. For polyadic operators in the inner pairing space HmK ,nK,mV ,kρ=1,N
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 29
1) The following N multi-C∗
-relations
ωnT
[T ⋆N−1,N
, T ⋆N−2,N−1⋆N−1,N
, . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N
, T ] N
= µnK


nK
T T , T T , . . . , T T

 ,
+ (N − 1) cycle permutations of (N − 1) terms with multistars, (5.60)
take place, if nT = nK.
2) The polyadic norms of operator and its all adjoints coincide
T ⋆i,j
T = T T , ∀i, j ∈ 1, . . . , N. (5.61)
Proof. Both statements follow from (5.21) and the definition of the polyadic operator norm (5.55).
Therefore, we arrive to
Definition 5.28. The operator Banach algebra BT satisfying the multi-C∗
-relations is called a
polyadic operator multi-C∗
-algebra.
The first example of a multi-C∗
-algebra (as in the binary case) can be constructed from one isometry
operator (see Definition 5.15).
Definition 5.29. A polyadic algebra generated by one isometry operator T satisfying (5.46) on the
inner pairing space HmK ,nK ,mV ,kρ=1,N represents a polyadic Toeplitz algebra TmT ,nT
and has the arity
shape mT = mV , nT = N.
Example 5.30. The ternary Toeplitz algebra T3,3 is represented by the operator T and relations
[T ⋆1
, T ⋆3⋆1
, T ] = I,
[T ⋆2
, T ⋆1⋆2
, T ] = I,
[T ⋆3
, T ⋆2⋆3
, T ] = I.
(5.62)
Example 5.31. If the inner pairing is semicommutative (5.31), then (⋆3) can be eliminated by
T ⋆3
= T ⋆1⋆2
, (5.63)
T ⋆3⋆3
= T, (5.64)
and the corresponding relations representing T3,3 become
[T ⋆1
, T ⋆1
, T ] = I,
[T ⋆2
, T ⋆1⋆2
, T ] = I,
[T ⋆1⋆2
, T ⋆2
, T ] = I.
(5.65)
Let us consider M polyadic operators T1T2 . . . TM ∈ BT and the related partial (in the usual sense)
isometries (5.52) which are mutually orthogonal (5.50). In the binary case, the algebra generated by
M operators, such that the sum of the related orthogonal partial projections is unity, represents the
Cuntz algebra OM CUNTZ [1977].
Definition 5.32. A polyadic algebra generated by M polyadic isometric operators T1T2 . . . TM ∈ BT
satisfying
η(ℓa)
mT
P
(k)
T1
, P
(k)
T2
. . . P
(k)
TM
= I, k = 1, . . . , N, (5.66)
where P
(k)
Ti
are given by (5.53)and η
(ℓa)
mT is a “long polyadic addition” (5.16), represents a polyadic
Cuntz algebra pOM|mT ,nT
, which has the arity shape
M = ℓa (mT − 1) + 1, (5.67)
30 STEVEN DUPLIJ
where ℓa is number of “mT -ary additions”.
Below we use the same notations, as in Example 5.13, also the ternary addition will be denoted by
(+3) as follows: η3 [T1, T2, T3] ≡ T1 +3 T2 +3 T3.
Example 5.33. In the ternary case mT = nT = 3 and one ternary addition ℓa = 1, we have M = 3
mutually orthogonal isometries T1, T2, T3 ∈ BT and N = 3 multistars (⋆i). In case of the Post-like
multistar cocycles (5.41) they satisfy
Isometry conditions
[T ⋆1
i , T ⋆3⋆1
i , Ti] = I,
[T ⋆2
i , T ⋆1⋆2
i , Ti] = I,
[T ⋆3
i , T ⋆2⋆3
i , Ti] = I,
i = 1, 2, 3,
Orthogonality conditions
T ⋆1
i , T ⋆3⋆1
j , Tk = Z,
T ⋆2
i , T ⋆1⋆2
j , Tk = Z,
T ⋆3
i , T ⋆2⋆3
j , Tk = Z,
i, j, k = 1, 2, 3, i = j = k,
(5.68)
and the (sum of projections) relations
[T1, T ⋆1
1 , T ⋆3⋆1
1 ] +3 [T2, T ⋆1
2 , T ⋆3⋆1
2 ] +3 [T3, T ⋆1
3 , T ⋆3⋆1
3 ] = I, (5.69)
[T1, T ⋆2
1 , T ⋆1⋆2
1 ] +3 [T2, T ⋆2
2 , T ⋆1⋆2
2 ] +3 [T3, T ⋆2
3 , T ⋆1⋆2
3 ] = I, (5.70)
[T1, T ⋆3
1 , T ⋆2⋆3
1 ] +3 [T2, T ⋆3
2 , T ⋆2⋆3
2 ] +3 [T3, T ⋆3
3 , T ⋆2⋆3
3 ] = I, (5.71)
which represent the ternary Cuntz algebra pO3|3,3.
Example 5.34. In the case where the inner pairing is semicommutative (5.31), we can eliminate the
multistar (⋆3) by (5.63) and represent the two-multistar ternary analog of the Cuntz algebra pO3|3,3
by
[T ⋆1
i , T ⋆2
i , Ti] = I,
[T ⋆2
i , T ⋆1⋆2
i , Ti] = I,
[T ⋆1⋆2
i , T ⋆2
i , Ti] = I,
i = 1, 2, 3,
T ⋆1
i , T ⋆2
j , Tk = Z,
T ⋆1
i , T ⋆1⋆2
j , Tk = Z,
T ⋆1⋆2
i , T ⋆2
j , Tk = Z,
i, j, k = 1, 2, 3, i = j = k,
(5.72)
[T1, T ⋆1
1 , T ⋆1
1 ] +3 [T2, T ⋆1
2 , T ⋆1
2 ] +3 [T3, T ⋆1
3 , T ⋆1
3 ] = I, (5.73)
[T1, T ⋆2
1 , T ⋆1⋆2
1 ] +3 [T2, T ⋆2
2 , T ⋆1⋆2
2 ] +3 [T3, T ⋆2
3 , T ⋆1⋆2
3 ] = I, (5.74)
[T1, T ⋆1⋆2
1 , T ⋆2
1 ] +3 [T2, T ⋆1⋆2
2 , T ⋆2
2 ] +3 [T3, T ⋆1⋆2
3 , T ⋆2
3 ] = I. (5.75)
6. CONGRUENCE CLASSES AS POLYADIC RINGS
Here we will show that the inner structure of the residue classes (congruence classes)
over integers is naturally described by polyadic rings CELAKOSKI [1977], CROMBEZ [1972],
LEESON AND BUTSON [1980], and then study some special properties of them.
Denote a residue class (congruence class) of an integer a, modulo b by3
[[a]]b = {{a + bk} | k ∈ Z, a ∈ Z+, b ∈ N, 0 ≤ a ≤ b − 1} . (6.1)
A representative element of the class [[a]]b will be denoted by xk = x
(a,b)
k = a + bk. Here we do
not consider the addition and multiplication of the residue classes (congruence classes). Instead, we
consider the fixed congruence class [[a]]b, and note that, for arbitrary a and b, it is not closed under
binary operations. However, it can be closed with respect to polyadic operations.
3
We use for the residue class the notation [[a]]b , because the standard notations by one square bracket [a]b or ¯ab are
busy by the n-ary operations and querelements, respectively.
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 31
6.1. Polyadic ring on integers. Let us introduce the m-ary addition and n-ary multiplication of
representatives of the fixed congruence class [[a]]b by
νm [xk1 , xk2 , . . . , xkm ] = xk1 + xk2 + . . . + xkm , (6.2)
µn [xk1 , xk2 , . . . , xkn ] = xk1 xk2 . . . xkn , xki
∈ [[a]]b , ki ∈ Z, (6.3)
where on the r.h.s. the operations are the ordinary binary addition and binary multiplication in Z.
Remark 6.1. The polyadic operations (6.2)–(6.3) are not derived (see, e.g., GŁAZEK AND MICHALSKI
[1984], MICHALSKI [1988]), because on the set {xki
} one cannot define the binary semigroup struc-
ture with respect to ordinary addition and multiplication. Derived polyadic rings which consist of the
repeated binary sums and binary products were considered in LEESON AND BUTSON [1980].
Lemma 6.2. In case
(m − 1)
a
b
= I(m)
(a, b) = I = integer (6.4)
the algebraic structure [[a]]b | νm is a commutative m-ary group.
Proof. The closure of the operation (6.2) can be written as xk1 + xk2 + . . . + xkm = xk0 , or ma +
b (k1 + k2 + . . . + km) = a+bk0, and then k0 = (m − 1) a/b+(k1 + k2 + . . . + km), from (6.4). The
(total) associativity and commutativity of νm follows from those of the addition in the binary Z. Each
element xk has its unique querelement ˜x = x˜k determined by the equation (m − 1) xk + x˜k = xk,
which (uniquely, for any k ∈ Z) gives
˜k = bk (2 − m) − (m − 1)
a
b
. (6.5)
Thus, each element is “querable” (polyadic invertible), and so [[a]]b | νm is a m-ary group.
Example 6.3. For a = 2, b = 7 we have 8-ary group, and the querelement of xk is ˜x = x(−2−12k).
Proposition 6.4. The m-ary commutative group [[a]]b | νm :
1) has an infinite number of neutral sequences for each element;
2) if a = 0, it has no “unit” (which is actually zero, because νm plays the role of “addition”);
3) in case of the zero congruence class [[0]]b the zero is xk = 0.
Proof.
1) The (additive) neutral sequence ˜nm−1 of the length (m − 1) is defined by νm [˜nm−1, xk] = xk.
Using (6.2), we take ˜nm−1 = xk1 + xk2 + . . . + xkm−1 = 0 and obtain the equation
(m − 1) a + b (k1 + k2 + . . . + km−1) = 0. (6.6)
Because of (6.4), we obtain
k1 + k2 + . . . + km−1 = −I(m)
(a, b) , (6.7)
and so there is an infinite number of sums satisfying this condition.
2) The polyadic “unit”/zero z = xk0 = a + bk0 satisfies νm
m−1
z, z, . . . , z, xk = xk for
all xk ∈ [[a]]b (the neutral sequence ˜nm−1 consists of one element z only), which gives
(m − 1) (a + bk0) = 0 having no solutions with a = 0, since a < b.
3) In the case a = 0, the only solution is z = xk=0 = 0.
Example 6.5. In case a = 1, b = 2 we have m = 3 and I(3)
(1, 2) = 1, and so from (6.6) we get
k1 + k2 = −1, thus the infinite number of neutral sequences consists of 2 elements ˜n2 = xk + x−1−k,
with arbitrary k ∈ Z.
32 STEVEN DUPLIJ
Lemma 6.6. If
an
− a
b
= J(n)
(a, b) = J = integer, (6.8)
then [[a]]b | µn is a commutative n-ary semigroup.
Proof. It follows from (6.3), that the closeness of the operation µn is xk1 xk2 . . . xkn = xk0 , which can
be written as an
+ b (integer) = a + bk0 leading to (6.8). The (total) associativity and commutativity
of µn follows from those of the multiplication in Z.
Definition 6.7. A unique pair of integers (I, J) is called a (polyadic) shape invariants of the congru-
ence class [[a]]b.
Theorem 6.8. The algebraic structure of the fixed congruence class [[a]]b is a polyadic (m, n)-ring
R[a,b]
m,n = [[a]]b | νm, µn , (6.9)
where the arities m and n are minimal positive integers (more or equal 2), for which the congruences
ma ≡ a (mod b) , (6.10)
an
≡ a (mod b) (6.11)
take place simultaneously, fixating its polyadic shape invariants (I, J).
Proof. By Lemma 6.2, 6.6 the set [[a]]b is a m-ary group with respect to “m-ary addition” νm and a n-
ary semigroup with respect to “n-ary multiplication” µn, while the polyadic distributivity (1.1)–(1.3)
follows from (6.2) and (6.3) and the binary distributivity in Z.
Remark 6.9. For a fixed b ≥ 2 there are b congruence classes [[a]]b, 0 ≤ a ≤ b − 1, and therefore
exactly b corresponding polyadic (m, n)-rings R
[a,b]
m,n, each of them is infinite-dimensional.
Corollary 6.10. In case gcd (a, b) = 1 and b is prime, there exists the solution n = b.
Proof. Follows from (6.11) and Fermat’s little theorem.
Remark 6.11. We exclude from consideration the zero congruence class [[0]]b, because the arities of
operations νm and µn cannot be fixed up by (6.10)–(6.11) becoming identities for any m and n. Since
the arities are uncertain, their minimal values can be chosen m = n = 2, and therefore, it follows
from (6.2) and (6.3), R
[0,b]
2,2 = Z. Thus, in what follows we always imply that a = 0 (without using a
special notation, e.g. R∗
, etc.).
In TABLE 3 we present the allowed (by (6.10)–(6.11)) arities of the polyadic ring R
[a,b]
m,n and the
corresponding polyadic shape invariants (I, J) for b ≤ 10.
Let us investigate the properties of R
[a,b]
m,n in more detail. First, we consider equal arity polyadic
rings and find the relation between the corresponding congruence classes.
Proposition 6.12. The residue (congruence) classes [[a]]b and [[a′
]]b′ which are described by the
polyadic rings of the same arities R
[a,b]
m,n and R
[a′,b′]
m,n are related by
b′
I′
a′
=
bI
a
, (6.12)
a′
+ b′
J′
= (a + bJ)loga a′
. (6.13)
Proof. Follows from (6.4) and (6.8).
For instance, in TABLE 3 the congruence classes [[2]]5, [[3]]5, [[2]]10, and [[8]]10 are (6, 5)-rings. If,
in addition, a = a′
, then the polyadic shapes satisfy
I
J
=
I′
J′
. (6.14)
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 33
6.2. Limiting cases. The limiting cases a ≡ ±1 (mod b) are described by
Corollary 6.13. The polyadic ring of the fixed congruence class [[a]]b is: 1) multiplicative binary,
if a = 1; 2) multiplicative ternary, if a = b − 1; 3) additive (b + 1)-ary in both cases. That is, the
limiting cases contain the rings R
[1,b]
b+1,2 and R
[b−1,b]
b+1,3 , respectively. They correspond to the first row and
the main diagonal of TABLE 3. Their intersection consists of the (3, 2)-ring R
[1,2]
3,2 .
Definition 6.14. The congruence classes [[1]]b and [[b − 1]]b are called the limiting classes, and the
corresponding polyadic rings are named the limiting polyadic rings of a fixed congruence class.
Proposition 6.15. In the limiting cases a = 1 and a = b − 1 the n-ary semigroup [[a]]b | µn :
1) has the neutral sequences of the form ¯nn−1 = xk1 xk2 . . . xkn−1 = 1, where xki
= ±1;
2) has a) the unit e = xk=1 = 1, for the limiting class [[1]]b, b) the unit e−
= xk=−1 = −1, if n is
odd, for [[b − 1]]b, c) the class [[1]]2 contains both polyadic units e and e−
;
3) has the set of “querable” (polyadic invertible) elements which consist of ¯x = x¯k = ±1;
4) has in the “intersecting” case a = 1, b = 2 and n = 2 the binary subgroup Z2 = {1, −1},
while other elements have no inverses.
Proof.
1) The (multiplicative) neutral sequence ¯nn−1 of length (n − 1) is defined by µn [¯nn−1, xk] = xk.
It follows from (6.3) and cancellativity in Z, that ¯nn−1 = xk1 xk2 . . . xkn−1 = 1 which is
(a + bk1) (a + bk2) . . . (a + bkn−1) = 1. (6.15)
The solution of this equation in integers is the following: a) all multipliers are a + bki = 1,
i = 1, . . . , n − 1; b) an even number of multipliers can be a + bki = −1, while the others are
1.
2) If the polyadic unit e = xk1 = a + bk1 exists, it should satisfy µm
n−1
e, e, . . . , e, xk = xk
∀xk ∈ [[a]]b | µn , such that the neutral sequence ¯nn−1 consists of one element e only, and
this leads to (a + bk1)n−1
= 1. For any n this equation has the solution a + bk1 = 1, which
uniquely gives a = 1 and k1 = 0, thus e = xk1=0 = 1. If n is odd, then there exists a “negative
unit” e−
= xk1=−1 = −1, such that a + bk1 = −1, which can be uniquely solved by k1 = −1
and a = b − 1. The neutral sequence becomes ¯nn−1 =
n−1
e−
, e−
, . . . , e−
= 1, as a product of an
even number of e−
= −1. The intersection of limiting classes consists of one class [[1]]2, and
therefore it contains both polyadic units e and e−
.
3) An element xk in [[a]]b | µn is “querable”, if there exists its querelement ¯x = x¯k such that
µn
n−1
xk, xk, . . . , xk, ¯x = xk. Using (6.3) and the cancellativity in Z, we obtain the equa-
tion (a + bk)n−2
a + b¯k = 1, which in integers has 2 solutions: a) (a + bk)n−2
= 1 and
a + b¯k = 1, the last relation fixes up the class [[1]]b, and the arity of multiplication n = 2,
and therefore the first relation is valid for all elements in the class, each of them has the same
querelement ¯x = 1. This means that all elements in [[1]]b are “querable”, but only one element
x = 1 has an inverse, which is also 1; b) (a + bk)n−2
= −1 and a + b¯k = −1. The second
relation fixes the class [[b − 1]]b, and from the first relation we conclude that the arity n should
be odd. In this case only one element −1 is “querable”, which has ¯x = −1, as a querelement.
4) The “intersecting” class [[1]]2 contains 2 “querable” elements ±1 which coincide with their
inverses, which means that {+1, −1} is a binary subgroup (that is Z2) of the binary semigroup
[[1]]2 | µ2 .
34 STEVEN DUPLIJ
Corollary 6.16. In the non-limiting cases a = 1, b − 1, the n-ary semigroup [[a]]b | µn contains no
“querable” (polyadic invertible) elements at all.
Proof. It follows from (a + bk) = ±1 for any k ∈ Z or a = ±1 (mod b).
TABLE 3. The polyadic ring R
Z(a,b)
m,n of the fixed residue class [[a]]b: arity shape.
a  b 2 3 4 5 6 7 8 9 10
1
m = 3
n = 2
I = 1
J = 0
m = 4
n = 2
I = 1
J = 0
m = 5
n = 2
I = 1
J = 0
m = 6
n = 2
I = 1
J = 0
m = 7
n = 2
I = 1
J = 0
m = 8
n = 2
I = 1
J = 0
m = 9
n = 2
I = 1
J = 0
m = 10
n = 2
I = 1
J = 0
m = 11
n = 2
I = 1
J = 0
2
m = 4
n = 3
I = 2
J = 2
m = 6
n = 5
I = 2
J = 6
m = 4
n = 3
I = 1
J = 1
m = 8
n = 4
I = 2
J = 2
m = 10
n = 7
I = 2
J = 14
m = 6
n = 5
I = 1
J = 3
3
m = 5
n = 3
I = 3
J = 6
m = 6
n = 5
I = 3
J = 48
m = 3
n = 2
I = 1
J = 1
m = 8
n = 7
I = 3
J = 312
m = 9
n = 3
I = 3
J = 3
m = 11
n = 5
I = 3
J = 24
4
m = 6
n = 3
I = 4
J = 12
m = 4
n = 2
I = 2
J = 2
m = 8
n = 4
I = 4
J = 36
m = 10
n = 4
I = 4
J = 28
m = 6
n = 3
I = 2
J = 6
5
m = 7
n = 3
I = 5
J = 20
m = 8
n = 7
I = 5
J = 11160
m = 9
n = 3
I = 5
J = 15
m = 10
n = 7
I = 5
J = 8680
m = 3
n = 2
I = 1
J = 2
6
m = 8
n = 3
I = 6
J = 30
m = 6
n = 2
I = 3
J = 3
7
m = 9
n = 3
I = 7
J = 42
m = 10
n = 4
I = 7
J = 266
m = 11
n = 5
I = 7
J = 1680
8
m = 10
n = 3
I = 8
J = 56
m = 6
n = 5
I = 4
J = 3276
9
m = 11
n = 3
I = 9
J = 72
Based on the above statements, consider in the properties of the polyadic rings R
[a,b]
m,n (a = 0)
describing non-zero congruence classes (see Remark 6.11).
Definition 6.17. The infinite set of representatives of the congruence (residue) class [[a]]b having fixed
arities and form the (m, n)-ring R
[a,b]
m,n is called the set of (polyadic) (m, n)-integers (numbers) and
denoted Z(m,n).
Just obviously, for ordinary integers Z = Z(2,2), and they form the binary ring R
[0,1]
2,2 .
Proposition 6.18. The polyadic ring R
[a,b]
m,n is a (m, n)-integral domain.
Proof. It follows from the definitions (6.2)–(6.3), the condition a = 0, and commutativity and can-
cellativity in Z.
ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 35
Lemma 6.19. There are no such congruence classes which can be described by polyadic (m, n)-field.
Proof. Follows from Proposition 6.15 and Corollary 6.16.
This statement for the limiting case [[1]]2 appeared in DUPLIJ AND WERNER [2015], while study-
ing the ideal structure of the corresponding (3, 2)-ring.
Proposition 6.20. In the limiting case a = 1 the polyadic ring R
[1,b]
b+1,2 can be embedded into a
(b + 1, 2)-ary field.
Proof. Because the polyadic ring R
[1,b]
b+1,2 of the congruence class [[1]]b is an (b + 1, 2)-integral domain
by Proposition 6.18, we can construct in a standard way the correspondent (b + 1, 2)-quotient ring
which is a (b + 1, 2)-ary field up to isomorphism, as was shown in CROMBEZ AND TIMM [1972].
By analogy, it can be called the field of polyadic rational numbers which have the form
x =
1 + bk1
1 + bk2
, ki ∈ Z. (6.16)
Indeed, they form a (b + 1, 2)-field, because each element has its inverse under multiplication
(which is obvious) and additively “querable”, such that the equation for the querelement ¯x becomes
νb+1
b
x, x, . . . , x, ¯x = x which can be solved for any x, giving uniquely ¯x = − (b − 1)
1 + bk1
1 + bk2
.
The introduced polyadic inner structure of the residue (congruence) classes allows us to extend
various number theory problems by considering the polyadic (m, n)-integers Z(m,n) instead of Z.
7. EQUAL SUMS OF LIKE POWERS DIOPHANTINE EQUATION OVER POLYADIC INTEGERS
First, recall the standard binary version of the equal sums of like powers Diophantine equation
LANDER ET AL. [1967], EKL [1998]. Take the fixed non-negative integers p, q, l ∈ N0
, p ≤ q, and
the positive integer unknowns ui, vj ∈ Z+, i = 1, . . . p + 1, j = 1, 1, . . . q + 1, then the Diophantine
equation is
p+1
i=1
ul+1
i =
q+1
j=1
vl+1
j . (7.1)
The trivial case, when ui = 0, vj = 0, for all i, j is not considered. We mark the solutions of
(7.1) by the triple (l | p, q)r showing quantity of operations4
, where r (if it is used) is the order of
the solution (ranked by the value of the sum) and the unknowns ui, vj are placed in ascending order
ui ≤ ui+1, vj ≤ vj+1.
Let us recall the Tarry-Escott problem (or multigrades problem) DORWART AND BROWN [1937]:
to find the solutions to (7.1) for an equal number of summands on both sides of p = q and s equations
simultaneously, such that l = 0, . . . , s. Known solutions exist for powers until s = 10, which are
bounded such that s ≤ p (in our notations), see, also, NGUYEN [2016]. The solutions with highest
powers s = p are the most interesting and called the ideal solutions BORWEIN [2002].
Theorem 7.1 (Frolov FROLOV [1889]). If the set of s Diophantine equations (7.1) with
p = q for l = 0, . . . , s has a solution {ui, vi, i = 1, . . . p + 1}, then it has the solution
{a + bui, a + bvi, i = 1, . . . p + 1}, where a, b ∈ Z are arbitrary and fixed.
4
In the binary case, the solutions of (7.1) are usually denoted by (l + 1 | p + 1, q + 1)r, which shows the number of
summands on both sides and powers of elements LANDER ET AL. [1967]. But in the polyadic case (see below), the
number of summands and powers do not coincide with l + 1, p + 1, q + 1, at all.
36 STEVEN DUPLIJ
In the simplest case (1 | 0, 1), one term in l.h.s., one addition on the r.h.s. and one multiplication,
the (coprime) positive numbers satisfying (7.1) are called a (primitive) Pythagorean triple. For the
Fermat’s triple (l | 0, 1) with one addition on the r.h.s. and more than one multiplication l ≥ 2, there
are no solutions of (7.1) , which is known as Fermat’s last theorem proved in WILES [1995]. There
are many solutions known with more than one addition on both sides, where the highest number of
multiplications till now is 31 (S. Chase, 2012).
Before generalizing (7.1) for polyadic case we note the following.
Remark 7.2. The notations in (7.1) are chosen in such a way that p and q are numbers of binary
additions on both sides, while l is the number of binary multiplications in each term, which is natural
for using polyadic powers DUPLIJ [2012].
7.1. Polyadic analog of the Lander-Parkin-Selfridge conjecture. In LANDER ET AL. [1967], a
generalization of Fermat’s last theorem was conjectured, that the solutions of (7.1) exist for small
powers only, which can be formulated in terms of the numbers of operations as
Conjecture 7.3 (Lander-Parkin-Selfridge LANDER ET AL. [1967]). There exist solutions of (7.1)
in positive integers, if the number of multiplications is less than or equal than the total number of
additions plus one
3 ≤ l ≤ lLSP = p + q + 1, (7.2)
where p + q ≥ 2.
Remark 7.4. If the equation (7.1) is considered over the binary ring of integers Z, such that ui, vj ∈ Z,
it leads to a straightforward reformulation: for even powers it is obvious, but for odd powers all
negative terms can be rearranged and placed on the other side.
Let us consider the Diophantine equation (7.1) over polyadic integers Z(m,n) (i.e. over the polyadic
(m, n)-ary ring RZ
m,n) such that ui, vj ∈ RZ
m,n. We use the “long products” µ
(l)
n and ν
(l)
m containing l
operations, and also the “polyadic power” for an element x ∈ RZ
m,n with respect to n-ary multiplica-
tion DUPLIJ [2012]
x l n = µ(l)
n


l(n−1)+1
x, x, . . . , x

 . (7.3)
In the binary case, n = 2, the polyadic power coincides with (l + 1) power of an element x l 2 = xl+1
,
which explains REMARK 7.2. In this notation the polyadic analog of the equal sums of like powers
Diophantine equation has the form
ν(p)
m u
l n
1 , u
l n
2 , . . . , u
l n
p(m−1)+1 = ν(q)
m v
l n
1 , v
l n
2 , . . . , v
l n
q(m−1)+1 , (7.4)
where p and q are number of m-ary additions in l.h.s. and r.h.s. correspondingly. The solutions of (7.4)
will be denoted by u1, u2, . . . , up(m−1)+1; v1, v2, . . . , vq(m−1)+1 . In the binary case m = 2, n = 2,
(7.4) reduces to (7.1). Analogously, we mark the solutions of (7.4) by the polyadic triple (l | p, q)(m,n)
r .
Now the polyadic Pythagorean triple (1 | 0, 1)(m,n)
, having one term on the l.h.s., one m-ary addition
on the r.h.s. and one n-ary multiplication (elements are in the first polyadic power 1 n), becomes
u
1 n
1 = νm v
1 n
1 , v
1 n
2 , . . . , v 1 n
m . (7.5)
Definition 7.5. The equation (7.5) solved by minimal u1, vi ∈ Z, i = 1, . . . , m can be named the
polyadic Pythagorean theorem.
S.Duplij, Arity shape of polyadic algebraic structures (version 2)
S.Duplij, Arity shape of polyadic algebraic structures (version 2)
S.Duplij, Arity shape of polyadic algebraic structures (version 2)
S.Duplij, Arity shape of polyadic algebraic structures (version 2)
S.Duplij, Arity shape of polyadic algebraic structures (version 2)
S.Duplij, Arity shape of polyadic algebraic structures (version 2)
S.Duplij, Arity shape of polyadic algebraic structures (version 2)

More Related Content

What's hot

Steven Duplij, "Polyadic Hopf algebras and quantum groups"
Steven Duplij, "Polyadic Hopf algebras and quantum groups"Steven Duplij, "Polyadic Hopf algebras and quantum groups"
Steven Duplij, "Polyadic Hopf algebras and quantum groups"Steven Duplij (Stepan Douplii)
 
vertical response of a hereditary deformable system
vertical response of a hereditary deformable systemvertical response of a hereditary deformable system
vertical response of a hereditary deformable systemIJAEMSJORNAL
 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Spaceinventionjournals
 
Relations digraphs
Relations  digraphsRelations  digraphs
Relations digraphsIIUM
 
Ck31369376
Ck31369376Ck31369376
Ck31369376IJMER
 
P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...
P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...
P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...SEENET-MTP
 
Phase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsPhase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsLiwei Ren任力偉
 
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Liwei Ren任力偉
 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...arj_online
 
Fractional integration and fractional differentiation of the product of m ser...
Fractional integration and fractional differentiation of the product of m ser...Fractional integration and fractional differentiation of the product of m ser...
Fractional integration and fractional differentiation of the product of m ser...Alexander Decker
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 

What's hot (18)

F031202030035
F031202030035F031202030035
F031202030035
 
Steven Duplij, "Polyadic Hopf algebras and quantum groups"
Steven Duplij, "Polyadic Hopf algebras and quantum groups"Steven Duplij, "Polyadic Hopf algebras and quantum groups"
Steven Duplij, "Polyadic Hopf algebras and quantum groups"
 
vertical response of a hereditary deformable system
vertical response of a hereditary deformable systemvertical response of a hereditary deformable system
vertical response of a hereditary deformable system
 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
 
PCCG- JM ASHFAQUE
PCCG- JM ASHFAQUEPCCG- JM ASHFAQUE
PCCG- JM ASHFAQUE
 
Relations digraphs
Relations  digraphsRelations  digraphs
Relations digraphs
 
K-algebras on quadripartitioned single valued neutrosophic sets
K-algebras on quadripartitioned single valued neutrosophic setsK-algebras on quadripartitioned single valued neutrosophic sets
K-algebras on quadripartitioned single valued neutrosophic sets
 
201977 1-1-1-pb
201977 1-1-1-pb201977 1-1-1-pb
201977 1-1-1-pb
 
1411.4232v1
1411.4232v11411.4232v1
1411.4232v1
 
Ck31369376
Ck31369376Ck31369376
Ck31369376
 
P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...
P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...
P. Aschieri - Noncommutative Differential Geometry: Quantization of Connectio...
 
SPDE
SPDE SPDE
SPDE
 
My presentation slides (3)
My presentation slides (3)My presentation slides (3)
My presentation slides (3)
 
Phase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsPhase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillators
 
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
 
Fractional integration and fractional differentiation of the product of m ser...
Fractional integration and fractional differentiation of the product of m ser...Fractional integration and fractional differentiation of the product of m ser...
Fractional integration and fractional differentiation of the product of m ser...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 

Similar to S.Duplij, Arity shape of polyadic algebraic structures (version 2)

"Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366; 29 pa...
"Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366;  29 pa..."Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366;  29 pa...
"Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366; 29 pa...Steven Duplij (Stepan Douplii)
 
"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366
"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366
"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366Steven Duplij (Stepan Douplii)
 
Gabor Frames for Quasicrystals and K-theory
Gabor Frames for Quasicrystals and K-theoryGabor Frames for Quasicrystals and K-theory
Gabor Frames for Quasicrystals and K-theoryMichael Kreisel
 
General Theory of Boundaries
General Theory of BoundariesGeneral Theory of Boundaries
General Theory of BoundariesVicente Fachina
 
Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...
Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...
Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...Steven Duplij (Stepan Douplii)
 
Effective properties of heterogeneous materials
Effective properties of heterogeneous materialsEffective properties of heterogeneous materials
Effective properties of heterogeneous materialsSpringer
 
Class 11 maths support material
Class 11 maths support materialClass 11 maths support material
Class 11 maths support materialnitishguptamaps
 
Compact Monothetic C semirings
Compact Monothetic C semiringsCompact Monothetic C semirings
Compact Monothetic C semiringsijtsrd
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graphijtsrd
 
A General Relativity Primer
A General Relativity PrimerA General Relativity Primer
A General Relativity PrimerIOSR Journals
 
FDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdfFDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdfHanumanJadhav
 
Relations, functions, and their graphs
Relations, functions, and their graphsRelations, functions, and their graphs
Relations, functions, and their graphsElkin Guillen
 
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij (Stepan Douplii)
 
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...Steven Duplij (Stepan Douplii)
 
Maths 12 supporting material by cbse
Maths 12 supporting material by cbseMaths 12 supporting material by cbse
Maths 12 supporting material by cbsenitishguptamaps
 
Numerical approach of riemann-liouville fractional derivative operator
Numerical approach of riemann-liouville fractional derivative operatorNumerical approach of riemann-liouville fractional derivative operator
Numerical approach of riemann-liouville fractional derivative operatorIJECEIAES
 

Similar to S.Duplij, Arity shape of polyadic algebraic structures (version 2) (20)

"Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366; 29 pa...
"Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366;  29 pa..."Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366;  29 pa...
"Hyperpolyadic structures" (Version 4) by S. Duplij, arxiv:2312.01366; 29 pa...
 
"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366
"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366
"Hyperpolyadic structures" by S. Duplij, arxiv:2312.01366
 
Gabor Frames for Quasicrystals and K-theory
Gabor Frames for Quasicrystals and K-theoryGabor Frames for Quasicrystals and K-theory
Gabor Frames for Quasicrystals and K-theory
 
Polyadic integer numbers and finite (m,n) fields
Polyadic integer numbers and finite (m,n) fieldsPolyadic integer numbers and finite (m,n) fields
Polyadic integer numbers and finite (m,n) fields
 
General Theory of Boundaries
General Theory of BoundariesGeneral Theory of Boundaries
General Theory of Boundaries
 
Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...
Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...
Steven Duplij, "Graded Medial n-Ary Algebras and Polyadic Tensor Categories",...
 
Effective properties of heterogeneous materials
Effective properties of heterogeneous materialsEffective properties of heterogeneous materials
Effective properties of heterogeneous materials
 
Class 11 maths support material
Class 11 maths support materialClass 11 maths support material
Class 11 maths support material
 
Compact Monothetic C semirings
Compact Monothetic C semiringsCompact Monothetic C semirings
Compact Monothetic C semirings
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graph
 
A General Relativity Primer
A General Relativity PrimerA General Relativity Primer
A General Relativity Primer
 
Steven Duplij, "Polyadic analogs of direct product"
Steven Duplij, "Polyadic analogs of direct product"Steven Duplij, "Polyadic analogs of direct product"
Steven Duplij, "Polyadic analogs of direct product"
 
Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2
 
FDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdfFDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdf
 
Relations, functions, and their graphs
Relations, functions, and their graphsRelations, functions, and their graphs
Relations, functions, and their graphs
 
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
 
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
 
47032417.pdf
47032417.pdf47032417.pdf
47032417.pdf
 
Maths 12 supporting material by cbse
Maths 12 supporting material by cbseMaths 12 supporting material by cbse
Maths 12 supporting material by cbse
 
Numerical approach of riemann-liouville fractional derivative operator
Numerical approach of riemann-liouville fractional derivative operatorNumerical approach of riemann-liouville fractional derivative operator
Numerical approach of riemann-liouville fractional derivative operator
 

More from Steven Duplij (Stepan Douplii)

"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361Steven Duplij (Stepan Douplii)
 
"Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin...
"Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin..."Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin...
"Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin...Steven Duplij (Stepan Douplii)
 
S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...
S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...
S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...Steven Duplij (Stepan Douplii)
 
S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...
S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...
S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...Steven Duplij (Stepan Douplii)
 
Степан Дуплий, "Поэфизика души", проза 2022
Степан Дуплий, "Поэфизика души", проза 2022Степан Дуплий, "Поэфизика души", проза 2022
Степан Дуплий, "Поэфизика души", проза 2022Steven Duplij (Stepan Douplii)
 
Степан Дуплий, "Гравитация страсти", стихотворения 2022.
Степан Дуплий, "Гравитация страсти", стихотворения 2022.Степан Дуплий, "Гравитация страсти", стихотворения 2022.
Степан Дуплий, "Гравитация страсти", стихотворения 2022.Steven Duplij (Stepan Douplii)
 
Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782
Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782
Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782Steven Duplij (Stepan Douplii)
 
Steven Duplij, "Polyadization of algebraic structures"
Steven Duplij, "Polyadization of algebraic structures"Steven Duplij, "Polyadization of algebraic structures"
Steven Duplij, "Polyadization of algebraic structures"Steven Duplij (Stepan Douplii)
 
Steven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdf
Steven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdfSteven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdf
Steven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdfSteven Duplij (Stepan Douplii)
 
Steven Duplij, "Polyadic Algebraic Structures", book Front matter
Steven Duplij, "Polyadic Algebraic Structures", book Front matterSteven Duplij, "Polyadic Algebraic Structures", book Front matter
Steven Duplij, "Polyadic Algebraic Structures", book Front matterSteven Duplij (Stepan Douplii)
 
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...Steven Duplij (Stepan Douplii)
 
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...Steven Duplij (Stepan Douplii)
 
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...Steven Duplij (Stepan Douplii)
 
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...Steven Duplij (Stepan Douplii)
 
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...Steven Duplij (Stepan Douplii)
 
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...Steven Duplij (Stepan Douplii)
 
Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...
Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...
Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...Steven Duplij (Stepan Douplii)
 
S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...
S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...
S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...Steven Duplij (Stepan Douplii)
 

More from Steven Duplij (Stepan Douplii) (20)

"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361
 
"Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin...
"Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin..."Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin...
"Innovative Quantum Computing" IOP Pubby S. Duplij and R. Vogl, IOP Publishin...
 
S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...
S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...
S. Duplij, M.L. Walker, "Selected Topics in Gravity Field Theory and Quantum ...
 
S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...
S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...
S. Duplij, W. Werner, "Extensions of special 3-fields", https://arxiv.org/abs...
 
Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"Steven Duplij, "Polyadic rings of p-adic integers"
Steven Duplij, "Polyadic rings of p-adic integers"
 
Степан Дуплий, "Поэфизика души", проза 2022
Степан Дуплий, "Поэфизика души", проза 2022Степан Дуплий, "Поэфизика души", проза 2022
Степан Дуплий, "Поэфизика души", проза 2022
 
Степан Дуплий, "Гравитация страсти", стихотворения 2022.
Степан Дуплий, "Гравитация страсти", стихотворения 2022.Степан Дуплий, "Гравитация страсти", стихотворения 2022.
Степан Дуплий, "Гравитация страсти", стихотворения 2022.
 
Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782
Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782
Steven Duplij, Polyadization of Algebraic Structures, Symmetry 2022, 14(9), 1782
 
Steven Duplij, "Polyadization of algebraic structures"
Steven Duplij, "Polyadization of algebraic structures"Steven Duplij, "Polyadization of algebraic structures"
Steven Duplij, "Polyadization of algebraic structures"
 
Steven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdf
Steven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdfSteven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdf
Steven Duplij, "Polyadic analog of Grothendieck group", arxiv: 2206.14840.pdf
 
Steven Duplij, "Polyadic Algebraic Structures", book Front matter
Steven Duplij, "Polyadic Algebraic Structures", book Front matterSteven Duplij, "Polyadic Algebraic Structures", book Front matter
Steven Duplij, "Polyadic Algebraic Structures", book Front matter
 
Steven Duplij, "Polyadic analogs of direct product"
Steven Duplij, "Polyadic analogs of direct product"Steven Duplij, "Polyadic analogs of direct product"
Steven Duplij, "Polyadic analogs of direct product"
 
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
 
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Universe...
 
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
 
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
Steven Duplij, "Higher regularity, inverse and polyadic semigroups", Preprint...
 
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
 
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...
 
Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...
Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...
Steven Duplij, "Higher braid groups and regular semigroups from polyadic bina...
 
S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...
S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...
S. Duplij, "Higher braid groups and regular semigroups from polyadic binary c...
 

Recently uploaded

BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx023NiWayanAnggiSriWa
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxSimeonChristian
 

Recently uploaded (20)

BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
 

S.Duplij, Arity shape of polyadic algebraic structures (version 2)

  • 1. arXiv:1703.10132v2[math.RA]1May2017 ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES STEVEN DUPLIJ ABSTRACT. Concrete two-set (module-like and algebra-like) algebraic structures are investigated from the viewpoint that the initial arities of all operations are arbitrary. The relations between operations appearing from the structure definitions lead to restrictions, which determine their arity shape and lead to the partial arity freedom principle. In this manner, polyadic vector spaces and algebras, dual vector spaces, direct sums, tensor products and inner pairing spaces are reconsidered. As one application, elements of polyadic operator theory are outlined: multistars and polyadic analogs of adjoints, oper- ator norms, isometries and projections, as well as polyadic C∗ -algebras, Toeplitz algebras and Cuntz algebras represented by polyadic operators are introduced. Another application is connected with num- ber theory, and it is shown that the congruence classes are polyadic rings of a special kind. Polyadic numbers are introduced, see Definition 6.16. Diophantine equations over these polyadic rings are then considered. Polyadic analogs of the Lander-Parkin-Selfridge conjecture and Fermat’s last theorem are formulated. For the nonderived polyadic ring operations (polyadic numbers) neither of these holds, and counterexamples are given. A procedure for obtaining new solutions to the equal sums of like powers equation over polyadic rings by applying Frolov’s theorem for the Tarry-Escott problem is presented. CONTENTS INTRODUCTION 2 1. ONE SET POLYADIC “LINEAR” STRUCTURES 3 1.1. POLYADIC DISTRIBUTIVITY 3 1.2. POLYADIC RINGS AND FIELDS 4 2. TWO SET POLYADIC STRUCTURES 5 2.1. POLYADIC VECTOR SPACES 5 2.2. ONE-SET POLYADIC VECTOR SPACE 8 2.3. POLYADIC ALGEBRAS 9 3. MAPPINGS BETWEEN POLYADIC ALGEBRAIC STRUCTURES 12 3.1. POLYADIC FUNCTIONALS AND DUAL POLYADIC VECTOR SPACES 13 3.2. POLYADIC DIRECT SUM AND TENSOR PRODUCT 15 4. POLYADIC INNER PAIRING SPACES AND NORMS 19 APPLICATIONS 21 5. ELEMENTS OF POLYADIC OPERATOR THEORY 21 5.1. MULTISTARS AND POLYADIC ADJOINTS 23 5.2. POLYADIC ISOMETRY AND PROJECTION 27 5.3. TOWARDS POLYADIC ANALOG OF C∗-ALGEBRAS 28 6. CONGRUENCE CLASSES AS POLYADIC RINGS 30 6.1. POLYADIC RING ON INTEGERS 31 6.2. LIMITING CASES 33 7. EQUAL SUMS OF LIKE POWERS DIOPHANTINE EQUATION OVER POLYADIC INTEGERS 35 7.1. POLYADIC ANALOG OF THE LANDER-PARKIN-SELFRIDGE CONJECTURE 36 7.2. FROLOV’S THEOREM AND THE TARRY-ESCOTT PROBLEM 40 ACKNOWLEDGMENTS 41 REFERENCES 42 LIST OF TABLES 43 Date: March 29, 2017. 2010 Mathematics Subject Classification. 11D41, 11R04, 11R06, 17A42, 20N15, 47A05, 47L30, 47L70, 47L80.
  • 2. 2 STEVEN DUPLIJ INTRODUCTION The study of polyadic (higher arity) algebraic structures has a two-century long history, start- ing with works by Cayley, Sylvester, Kasner, Pr¨ufer, D¨ornte, Lehmer, Post, etc. They took a sin- gle set, closed under one (main) binary operation having special properties (the so called group- like structure), and “generalized” it by increasing the arity of that operation, which can then be called a polyadic operation and the corresponding algebraic structure polyadic as well1 . An “ab- stract way” to study polyadic algebraic structures is via the use of universal algebras defined as sets with different axioms (equational laws) for polyadic operations COHN [1965], GR ¨ATSER [1968], BERGMAN [2012]. However, in this language some important algebraic structures cannot be de- scribed, e.g. ordered groups, fields, etc. DENECKE AND WISMATH [2009]. Therefore, another “concrete approach” is to study examples of binary algebraic structures and then to “polyadize” them properly. This initiated the development of a corresponding theory of n-ary quasigroups BELOUSOV [1972], n-ary semigroups MONK AND SIOSON [1966], ZUPNIK [1967] and n-ary groups GAL’MAK [2003], RUSAKOV [1998] (for a more recent review, see, e.g., DUPLIJ [2012] and comprehensive list of references therein). The binary algebraic structures with two operations (addition and multiplication) on one set (the so-called ring-like structures) were later on generalized to (m, n)-rings CELAKOSKI [1977], CROMBEZ [1972], LEESON AND BUTSON [1980] and (m, n)- fields IANCU AND POP [1997], while these were investigated mostly in a more restrictive manner by considering particular cases: ternary rings (or (2, 3)-rings) LISTER [1971], (m, 2)-rings BOCCIONI [1965], POP AND POP [2002], as well as (3, 2)-fields DUPLIJ AND WERNER [2015]. In the case of one set, speaking informally, the “polyadization” of two operations’ “interaction” is straightforward, giving only polyadic distributivity which does not connect or restrict their arities. However, when the number of sets becomes greater than one, the “polyadization” turns out to be non- trivial, leading to special relations between the operation arities, and introduces additional (to arities) parameters, which allows us to classify them. We call the selection of such relations an arity shape and formulate the arity partial freedom principle that not all arities of operations during “polyadization” of binary operations are possible. In this paper we consider two-set algebraic structures in the “concrete way” and provide the con- sequent “polyadization” of binary operations on them for the so-called module-like structures (vector spaces) and algebra-like structures (algebras and inner product spaces). The “polyadization” of the binary scalar multiplication is made in terms of multiactions introduced in DUPLIJ [2012], having special arity shapes parametrized by the number of intact elements (ℓid) in the corresponding multi- actions. Then we “polyadize” the related constructions, as dual vector spaces and direct sums, and also tensor products, and show that, as opposed to the binary case, they can be implemented in spaces of different arity signatures. The “polyadization” of inner product spaces and related norms gives additional arity shapes and restrictions. In the resulting TABLE 2 we present the arity signatures and shapes of the polyadic algebraic structures under consideration. In the application part we note some starting points for polyadic operator theory by introducing multistars and polyadic analogs of adjoints, operator norms, isometries and projections. It is proved (Theorem 5.7) that, if the polyadic inner pairing (the analog of the inner product) is symmetric, then all multistars coincide and all polyadic operators are self-adjoint (as opposed to the binary case). The polyadic analogs of C∗ -algebras, Toeplitz algebras and Cuntz algebras are presented in terms of the polyadic operators introduced here, and the ternary example is given. Another application is connected with number theory: we show that the internal structure of the congruence classes is described by a polyadic ring having a special arity signature (TABLE 3), and we call them polyadic integers (numbers) Z(m,n) (Definition 6.17). They are classified by polyadic shape invariants, and the relations between them giving the same arity signature are established. Also the 1 We use the term “polyadic” in this sense only, while there are other uses in the literature (see, e.g., HALMOS [1962]).
  • 3. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 3 limiting cases are analyzed, and it is shown that in one such a case the polyadic rings can be embedded into polyadic fields with binary multiplication, which leads to the so-called polyadic rational num- bers CROMBEZ AND TIMM [1972]. Then we consider the Diophantine equations over these polyadic rings in a straightforward manner: we change only arities of operations (“additions” and “multipli- cations”), but save their mutual “interaction”. In this way we try to “polyadize” the equal sums of like powers equation and formulate the polyadic analogs of the Lander-Parkin-Selfridge conjecture and Fermat’s last theorem LANDER ET AL. [1967]. It is shown, that in the simplest case, when the polyadic “addition” and “multiplication” are nonderived (e.g., polyadic numbers), neither conjecture is valid, and counterexamples are presented. Finally, we apply Frolov’s theorem for the Tarry-Escott problem DORWART AND BROWN [1937], NGUYEN [2016] over polyadic rings to obtain new solu- tions to the equal sums of like powers equation for a fixed congruence classes. 1. ONE SET POLYADIC “LINEAR” STRUCTURES We use concise notations from our previous work on polyadic structures DUPLIJ [2012, 2016]. Take a non-empty set A, then n-tuple (or polyad) consisting of the elements (a1, . . . , an), ai ∈ A, is denoted by bold letter (a) taking it values in the Cartesian product A×n . If the number of elements in the n-tuple is important, we denote it manifestly a(n) , and an n-tuple with equal elements is denoted by (an ). On the Cartesian product A×n one can define a polyadic operation µn : A×n → A, and use the notation µn [a]. A polyadic structure A is a set A which is closed under polyadic operations, and a polyadic signature is the selection of their arities. For formal definitions, see, e.g., COHN [1965]. 1.1. Polyadic distributivity. Let us consider a polyadic structure with two operations on the same set A: the “chief” (multiplication) n-ary operation µn : An → A and the additional m-ary operation νm : Am → A, that is A | µn, νm . If there are no relations between µn and νm, then nothing new, as compared with the polyadic structures having a single operation A | µn or A | νm , can be said. Informally, the “interaction” between operations can be described using the important relation of distributivity (an analog of a · (b + c) = a · b + a · c, a, b, c ∈ A in the binary case). Definition 1.1. The polyadic distributivity for the operations µn and νm (no additional properties are implied for now) consists of n relations µn [νm [a1, . . . am] , b2, b3, . . . bn] = νm [µn [a1, b2, b3, . . . bn] , µn [a2, b2, b3, . . . bn] , . . . µn [am, b2, b3, . . . bn]] (1.1) µn [b1, νm [a1, . . . am] , b3, . . . bn] = νm [µn [b1, a1, b3, . . . bn] , µn [b1, a2, b3, . . . bn] , . . . µn [b1, am, b3, . . . bn]] (1.2) ... µn [b1, b2, . . . bn−1, νm [a1, . . . am]] = νm [µn [b1, b2, . . . bn−1, a1] , µn [b1, b2, . . . bn−1, a2] , . . . µn [b1, b2, . . . bn−1, am]] , (1.3) where ai, bj ∈ A. It is seen that the operations µn and νm enter into (1.1)-(1.3) in a non-symmetric way, which allows us to distinguish them: one of them (µn, the n-ary multiplication) “distributes” over the other one νm, and therefore νm is called the addition. If only some of the relations (1.1)-(1.3) hold, then such distributivity is partial (the analog of left and right distributivity in the binary case). Obviously, the operations µn and νm need have nothing to do with ordinary multiplication (in the binary case denoted by µ2 =⇒ (·)) and addition (in the binary case denoted by ν2 =⇒ (+)), as in the below example.
  • 4. 4 STEVEN DUPLIJ Example 1.2. Let A = R, n = 2, m = 3, and µ2 [b1, b2] = bb2 1 , ν3 [a1, a2, a3] = a1a2a3 (product in R). The partial distributivity now is (a1a2a3)b2 = ab2 1 ab2 2 ab2 3 (only the first relation (1.1) holds). 1.2. Polyadic rings and fields. Here we briefly remind the reader of one-set (ring-like) polyadic structures (informally). Let both operations µn and νm be (totally) associative, which (in our defi- nition DUPLIJ [2012]) means independence of the composition of two operations under placement of the internal operations (there are n and m such placements and therefore (n + m) corresponding relations) µn [a, µn [b] , c] = invariant, (1.4) νm [d, νm [e] , f] = invariant, (1.5) where the polyads a, b, c, d, e, f have corresponding length, and then both A | µn | assoc and A | νm | assoc are polyadic semigroups Sn and Sm. A commutative semigroup A | νm | assoc, comm is defined by νm [a] = νm [σ ◦ a], for all σ ∈ Sn, where Sn is the symmetry group. If the equation νm [a, x, b] = c is solvable for any place of x, then A | νm | assoc, solv is a polyadic group Gm, and such x = ˜c is called a (additive) querelement for c, which defines the (additive) unary queroperation ˜ν1 by ˜ν1 [c] = ˜c. Definition 1.3. A polyadic (m, n)-ring Rm,n is a set A with two operations µn : An → A and νm : Am → A, such that: 1) they are distributive (1.1)-(1.3); 2) A | µn | assoc is a polyadic semigroup; 3) A | νm | assoc, comm, solv is a commutative polyadic group. It is obvious that a (2, 2)-ring R2,2 is an ordinary (binary) ring. Polyadic rings have much richer structure and can have unusual properties CELAKOSKI [1977], CROMBEZ [1972], ˇCUPONA [1965], LEESON AND BUTSON [1980]. If the multiplicative semigroup A | µn | assoc is commutative, µn [a] = µn [σ ◦ a], for all σ ∈ Sn, then Rm,n is called a commutative polyadic ring, and if it contains the identity, then Rm,n is a (polyadic) (m, n)-semiring. If the distributivity is only partial, then Rm,n is called a polyadic near-ring. Introduce in Rm,n additive and multiplicative idempotent elements by νm [am ] = a and µn [bn ] = b, respectively. A zero z of Rm,n is defined by µn [z, a] = z for any a ∈ An−1 , where z can be on any place. Evidently, a zero (if exists) is a multiplicative idempotent and is unique, and, if a polyadic ring has an additive idempotent, it is a zero LEESON AND BUTSON [1980]. Due to the distributivity (1.1)-(1.3), there can be at most one zero in a polyadic ring. If a zero z exists, denote A∗ = A {z}, and observe that (in distinction to binary rings) A∗ | µn | assoc is not a polyadic group, in general. In the case where A∗ | µn | assoc is a commutative n-ary group, such a polyadic ring is called a (polyadic) (m, n)-field and Km,n (“polyadic scalars”) (see LEESON AND BUTSON [1980], IANCU AND POP [1997]). A multiplicative identity e in Rm,n is a distinguished element e such that µn a, en−1 = a, (1.6) for any a ∈ A and where a can be on any place. In binary rings the identity is the only neutral element, while in polyadic rings there can exist many neutral (n − 1)-polyads e satisfying µn [a, e] = a, (1.7) for any a ∈ A which can also be on any place. The neutral polyads e are not determined uniquely. Obviously, the polyad (en−1 ) is neutral. There exist exotic polyadic rings which have no zero, no identity, and no additive idempotents at all (see, e.g., CROMBEZ [1972]), but, if m = 2, then a zero always exists LEESON AND BUTSON [1980].
  • 5. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 5 Example 1.4. Let us consider a polyadic ring R3,4 generated by 2 elements a, b and the relations µ4 a4 = a, µ4 a3 , b = b, µ4 a2 , b2 = a, µ4 a, b3 = b, µ4 b4 = a, (1.8) ν3 a3 = b, ν3 a2 , b = a, ν3 a, b2 = b, ν3 b3 = a, (1.9) which has a multiplicative idempotent a only, but has no zero and no identity. Proposition 1.5. In the case of polyadic structures with two operations on one set there are no con- ditions between arities of operations which could follow from distributivity (1.1)-(1.3) or the other relations above, and therefore they have no arity shape. Such conditions will appear below, when we consider more complicated universal algebraic struc- tures with two or more sets with operations and relations. 2. TWO SET POLYADIC STRUCTURES 2.1. Polyadic vector spaces. Let us consider a polyadic field KmK ,nK = K | σmK , κnK (“polyadic scalars”), having mK-ary addition σmK : KmK → K and nK-ary multiplication κnK : KnK → K, and the identity eK ∈ K, a neutral element with respect to multiplication κnK enK −1 K , λ = λ, for all λ ∈ K. In polyadic structures, one can introduce a neutral (nK − 1)-polyad (identity polyad for “scalars”) eK ∈ KnK−1 by κnK [eK, λ] = λ. (2.1) where λ ∈ K can be on any place. Next, take a mV -ary commutative (abelian) group V | νmV , which can be treated as “polyadic vectors” with mV -ary addition νmV : VmV → V. Define in V | νmV an additive neutral element (zero) zV ∈ V by νmV zmV −1 V , v = v (2.2) for any v ∈ V, and a “negative vector” ¯v ∈ V as its querelement νmV [aV , ¯v, bV ] = v, (2.3) where ¯v can be on any place in the l.h.s., and aV , bV are polyads in V. Here, instead of one neutral element we can also introduce the (mV − 1)-polyad zV (which may not be unique), and so, for a zero polyad (for “vectors”) we have νmV [zV , v] = v, ∀v ∈ V, (2.4) where v ∈ V can be on any place. The “interaction” between “polyadic scalars” and “polyadic vectors” (the analog of binary multiplication by a scalar λv) can be defined as a multiaction (kρ-place action) introduced in DUPLIJ [2012] ρkρ : Kkρ × V −→ V. (2.5) The set of all multiactions form a nρ-ary semigroup Sρ under composition. We can “normalize” the multiactions in a similar way, as multiplace representations DUPLIJ [2012], by (an analog of 1v = v, v ∈ V, 1 ∈ K) ρkρ    eK ... eK v    = v, (2.6) for all v ∈ V, where eK is the identity of KmK ,nK . In the case of an (ordinary) 1-place (left) action (as an external binary operation) ρ1 : K × V → V, its consistency with the polyadic field multiplication κnK under composition of the binary operations ρ1 {λ|a} gives a product of the same arity nρ = nK, (2.7)
  • 6. 6 STEVEN DUPLIJ that is (a polyadic analog of λ (µv) = (λµ) v, v ∈ V, λ, µ ∈ K) ρ1 {λ1|ρ1 {λ2| . . . |ρ1 {λnK |v}} . . .} = ρ1 {κnK [λ1, λ2, . . . λnK ] |v} , λ1, . . . , λn ∈ K, v ∈ V. (2.8) In the general case of kρ-place actions, the multiplication in the nρ-ary semigroup Sρ can be defined by the changing arity formula DUPLIJ [2012] (schematically) ρkρ nρ    λ1 ... λkρ . . . ρkρ    λkρ(nρ−1) ... λkρnρ v    . . .    = ρkρ    κnK [λ1, . . . λnK ] , ... κnK λnK(ℓµ−1), . . . λnKℓµ    ℓµ λnKℓµ+1, ... λnKℓµ+ℓid    ℓid v    , (2.9) where ℓµ and ℓid are both integers. The associativity of (2.9) in each concrete case can be achieved by applying the associativity quiver concept from DUPLIJ [2012]. Definition 2.1. The ℓ-shape is a pair (ℓµ, ℓid) , where ℓµ is the number of multiplications and ℓid is the number of intact elements in the composition of operations. It follows from (2.9), Proposition 2.2. The arities of the polyadic field KmK ,nK , the arity nρ of the multiaction semigroup Sρ and the ℓ-shape of the composition satisfy kρnρ = nKℓµ + ℓid, (2.10) kρ = ℓµ + ℓid. (2.11) We can exclude ℓµ or ℓid and obtain nρ = nK − nK − 1 kρ ℓid, nρ = nK − 1 kρ ℓµ + 1, (2.12) respectively, where nK−1 kρ ℓid ≥ 1 and nK−1 kρ ℓµ ≥ 1 are integers. The following inequalities hold 1 ≤ ℓµ ≤ kρ, 0 ≤ ℓid ≤ kρ − 1, ℓµ ≤ kρ ≤ (nK − 1) ℓµ, 2 ≤ nρ ≤ nK. (2.13) Remark 2.3. The formulas (2.12) coincide with the arity changing formulas for heteromorphisms DUPLIJ [2012] applied to (2.9). It follows from (2.10), that the ℓ-shape is determined by the arities and number of places kρ by ℓµ = kρ (nρ − 1) nK − 1 , ℓid = kρ (nK − nρ) nK − 1 . (2.14) Because we have two polyadic “additions” νmV and σmK , we need to consider, how the multiaction ρkρ “distributes” between each of them. First, consider distributivity of the multiaction ρkρ with respect to “vector addition” νmV (a polyadic analog of the binary λ (v + u) = λv + λu, v, u ∈ V, λ, µ ∈ K) ρkρ    λ1 ... λkρ νmV [v1, . . . , vmV ]    = νmV  ρkρ    λ1 ... λkρ v1    , . . . , ρkρ    λ1 ... λkρ vmV      . (2.15) Observe that here, in distinction to (2.9), there is no connection between the arities mV and kρ.
  • 7. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 7 Secondly, the distributivity of the multiaction ρkρ (“multiplication by scalar”) with respect to the “field addition” (a polyadic analog of (λ + µ) v = λv + µv, v ∈ A, λ, µ ∈ K) has a form similar to (2.9) (which can be obtained from the changing arity formula DUPLIJ [2012]) ρkρ nρ    λ1 ... λkρ . . . ρkρ    λkρ(nρ−1) ... λkρnρ v    . . .    = ρkρ    σmK [λ1, . . . λmK ] , ... σmK λmK (ℓ′ µ−1), . . . λmK ℓ′ µ    ℓ′ µ λmK ℓ′ µ+1, ... λmK ℓ′ µ+ℓid    ℓ′ id v    , (2.16) where ℓ′ ρ and ℓ′ id are the numbers of multiplications and intact elements in the resulting multiaction, respectively. Here the arities are not independent as in (2.15), and so we have Proposition 2.4. The arities of the polyadic field KmK ,nK , the arity nρ of the multiaction semigroup Sρ and the ℓ-shape of the distributivity satisfy kρnρ = mKℓ′ µ + ℓ′ id, (2.17) kρ = ℓ′ µ + ℓ′ id. (2.18) It follows from (2.17)–(2.18) nρ = mK − mK − 1 kρ ℓ′ id, nρ = mK − 1 kρ ℓ′ µ + 1. (2.19) Here mK −1 kρ ℓ′ id ≥ 1 and mK −1 kρ ℓ′ µ ≥ 1 are integers, and we have the inequalities 1 ≤ ℓ′ µ ≤ kρ, 0 ≤ ℓ′ id ≤ kρ − 1, ℓ′ µ ≤ kρ ≤ (mK − 1) ℓ′ µ, 2 ≤ nρ ≤ mK. (2.20) Now, the ℓ-shape of the distributivity is fully determined from the arities and number of places kρ by the arity shape formulas ℓ′ ρ = kρ (nρ − 1) mK − 1 , ℓ′ id = kρ (mK − nρ) mK − 1 . (2.21) It follows from (2.20) that: Corollary 2.5. The arity nρ of the multiaction semigroup Sρ is less than or equal to the arity of the field addition mK. Definition 2.6. A polyadic (K)-vector (“linear”) space over a polyadic field is the 2-set 4-operation algebraic structure VmK ,nK,mV ,kρ = K; V | σmK , κnK ; νmV | ρkρ , (2.22) such that the following axioms hold: 1) K | σmK , κnK is a polyadic (mK, nK)-field KmK ,nK ; 2) A | νmV is a commutative mV -ary group; 3) ρkρ | composition is a nρ-ary semigroup Sρ; 4) Distributivity of the multiaction ρkρ with respect to the “vector addition” νmV (2.15); 5) Distributivity of ρkρ with respect to the “scalar addition” σmK (2.16); 6) Compatibility of ρkρ with the “scalar multiplication” κnK (2.9); 7) Normalization of the multiaction ρkρ (2.6).
  • 8. 8 STEVEN DUPLIJ All of the arities in (2.22) are independent and can be chosen arbitrarily, but they fix the ℓ-shape of the multiaction composition (2.9) and the distributivity (2.16) by (2.14) and (2.21), respectively. Note that the main distinction from the binary case is the possibility for the arity nρ of the multiaction semigroup Sρ to be arbitrary. Definition 2.7. A polyadic K-vector subspace is Vsub mK ,nK,mV ,kρ = K; Vsub | σmK , κnK ; νmV | ρkρ , (2.23) where the subset Vsub ⊂ V is closed under all operations σmK , κnK , νmV , ρkρ and the axioms 1)-7). Let us consider a subset S = {v1, . . . , vdV } ⊆ V (of dV “vectors”), then a polyadic span of S is (a “linear combination”) Spanλ pol (v1, . . . , vdV ) = {w} , (2.24) w = νℓν mV  ρkρ    λ1 ... λkρ v1    , . . . , ρkρ    λ(dV −1)kρ ... λdV kρ vs      , (2.25) where (dV · kρ) “scalars” play the role of coefficients (or coordinates as columns consisting of kρ elements from the polyadic field KmK ,nK ), and the number of “vectors” s is connected with the “number of mV -ary additions” ℓν by dV = ℓν (mV − 1) + 1, (2.26) while Spanλ pol S is the set of all “vectors” of this form (2.24) (we consider here finite “sums” only). Definition 2.8. A polyadic span S = {v1, . . . , vdV } ⊆ V is nontrivial, if at least one multiaction ρkρ in (2.24) is nonzero. Since polyadic fields and groups may not contain zeroes, we need to redefine the basic notions of equivalences. Let us take two different spans of the same set S. Definition 2.9. A set {v1, . . . , vdV } is called “linear” polyadic independent, if from the equality of nontrivial spans, as Spanλ pol (v1, . . . , vdV ) = Spanλ′ pol (v1, . . . , vdV ), it follows that all λi = λ′ i, i = 1, . . . , dV kρ. Definition 2.10. A set {v1, . . . , vdV } is called a polyadic basis of a polyadic vector space VmK nK mV kρ , if it spans the whole space Spanλ pol (v1, . . . , vdV ) = V. In other words, any element of V can be uniquely presented in the form of the polyadic “linear combination” (2.24). If a polyadic vector space VmK nK mV kρ has a finite basis {v1, . . . , vdV }, then any another basis v′ 1, . . . , v′ dV has the same number of elements. Definition 2.11. The number of elements in the polyadic basis {v1, . . . , vdV } is called the polyadic dimension of VmK ,nK ,mV ,kρ. Remark 2.12. The so-called 3-vector space introduced and studied in DUPLIJ AND WERNER [2015], corresponds to VmK =3,nK=2,mV =3,kρ=1. 2.2. One-set polyadic vector space. A particular polyadic vector space is important: consider V = K, νmV = σmK and mV = mK, which gives the following one-set “linear” algebraic structure (we call it a one-set polyadic vector space) KmK ,nK,kρ = K | σmK , κnK | ρλ kρ , (2.27)
  • 9. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 9 where now the multiaction ρλ kρ    λ1 ... λkρ λ    , λ, λi ∈ K, (2.28) acts on K itself (in some special way), and therefore can be called a regular multiaction. In the binary case nK = mK = 2, the only possibility for the regular action is the multiplication (by “scalars”) in the field ρλ 1 {λ1| λ} = κ2 [λ1λ] (≡ λ1λ), which obviously satisfies the axioms 4)-7) of a vector space in Definition 2.6. In this way we arrive at the definition of the binary field K ≡ K2,2 = K | σ2, κ2 , and so a one-set binary vector space coincides with the underlying field KmK =2,nK=2,kρ=1 = K, or as it is said “a field is a (one-dimensional) vector space over itself”. Remark 2.13. In the polyadic case, the regular multiaction ρλ kρ can be chosen, as any (additional to σmK , κnK ) function satisfying axioms 4)-7) of a polyadic vector space and the number of places kρ and the arity of the semigroup of multiactions Sρ can be arbitrary, in general. Also, ρλ kρ can be taken as a some nontrivial combination of σmK , κnK satisfying axioms 4)-7) (which admits a nontrivial “multiplication by scalars”). In the simplest regular (similar to the binary) case, ρλ kρ    λ1 ... λkρ λ    = κℓκ nK λ1, . . . , λkρ, λ , (2.29) where ℓκ is the number of multiplications κnK , and the number of places kρ is now fixed by kρ = ℓκ (nK − 1) , (2.30) while λ in (2.29) can be on any place due the commutativity of the field multiplication κnK . Remark 2.14. In general, the one-set polyadic vector space need not coincide with the underlying polyadic field, KmK ,nK ,kρ = KnK mK (as opposed to the binary case), but can have a more complicated structure which is determined by an additional multiplace function, the multiaction ρλ kρ . 2.3. Polyadic algebras. By analogy with the binary case, introducing an additional operation on vectors, a multiplication which is distributive and “linear” with respect to “scalars”, leads to a polyadic generalization of the (associative) algebra notion CARLSSON [1980]. Here, we denote the second (except for the ’scalars’ K) set by A (instead of V above), on which we define two operations: mA-ary “addition” νmA : A×mA → A and nA-ary “multiplication” µnA : A×nA → A. To interpret the nA-ary operation as a true multiplication, the operations µnA and νmA should satisfy polyadic distributivity (1.1)–(1.3) (an analog of (a + b) · c = a · c + b · c, with a, b, c ∈ A). Then we should consider the “interaction” of this new operation µnA with the multiaction ρkρ (an analog of the “compatibility with scalars” (λa) · (µb) = (λµ) a · b, a, b ∈ A, λ, µ ∈ K). In the most general case, when all arities are
  • 10. 10 STEVEN DUPLIJ arbitrary, we have the polyadic compatibility of µnA with the field multiplication κnK as follows µnA  ρkρ    λ1 ... λkρ a1    , . . . , ρkρ    λkρ(nA−1) ... λkρnA anA      = ρkρ    κnK [λ1, . . . , λnK ] , ... κnK λnK (ℓ′′ µ−1), . . . , λnKℓ′′ µ    ℓ′′ µ λnKℓ′′ µ+1, ... λnKℓ′′ µ+ℓ′′ id    ℓ′′ id µnA [a1 . . . anA ]    , (2.31) where ℓ′′ µ and ℓ′′ id are the numbers of multiplications and intact elements in the resulting multiaction, respectively. Proposition 2.15. The arities of the polyadic field KmK ,nK , the arity nρ of the multiaction semigroup Sρ and the ℓ-shape of the polyadic compatibility (2.31) satisfy kρnA = nKℓ′′ µ + ℓ′′ id, kρ = ℓ′′ µ + ℓ′′ id. (2.32) We can exclude from (2.32) ℓ′′ ρ or ℓ′′ id and obtain nA = nK − nK − 1 kρ ℓ′′ id, nA = nK − 1 kρ ℓ′′ µ + 1, (2.33) where nK −1 kρ ℓ′′ id ≥ 1 and nK−1 kρ ℓ′′ µ ≥ 1 are integer, and the inequalities hold 1 ≤ ℓ′′ µ ≤ kρ, 0 ≤ ℓ′′ id ≤ kρ − 1, ℓ′′ µ ≤ kρ ≤ (nK − 1) ℓ′′ µ, 2 ≤ nA ≤ nK. (2.34) It follows from (2.32), that the ℓ-shape is determined by the arities and number of places kρ as ℓ′′ µ = kρ (nA − 1) nK − 1 , ℓ′′ id = kρ (nK − nA) nK − 1 . (2.35) Definition 2.16. A polyadic (“linear”) algebra over a polyadic field is the 2-set 5-operation algebraic structure AmK ,nK,mA,nA,kρ = K; A | σmK , κnK ; νmA , µnA | ρkρ , (2.36) such that the following axioms hold: 1) K; A | σmK , κnK ; νmA | ρkρ is a polyadic vector space over a polyadic field KmK ,nK ; 2) The algebra multiplication µnA and the algebra addition νmA satisfy the polyadic distributivity (1.1)–(1.3); 3) The multiplications in the algebra µnA and in the field κnK are compatible by (2.31). In the case where the algebra multiplication µnA is associative (1.4), then AmK,nK ,mA,nA,kρ is an associative polyadic algebra (for kρ = 1 see CARLSSON [1980]). If µnA is commutative, µnA [aA] = µnA [σ ◦ aA], for any polyad in algebra aA ∈ A×nA for all permutations σ ∈ Sn, where Sn is the symmetry group, then AmK ,nK,mA,nA,kρ is called a commutative polyadic algebra. As in the n-ary (semi)group theory, for polyadic algebras one can introduce special kinds of associativity and partial commutativity. If the multiplication µnA contains the identity eA (1.6) or a neutral polyad for any element, such a polyadic algebra is called unital or neutral-unital, respectively. It follows from (2.34) that: Corollary 2.17. In a polyadic (“linear”) algebra the arity of the algebra multiplication nA is less than or equal to the arity of the field multiplication nK.
  • 11. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 11 Proposition 2.18. It all the operation ℓ-shapes in (2.9), (2.16) and (2.31) coincide ℓ′′ µ = ℓ′ µ = ℓµ, ℓ′′ id = ℓ′ id = ℓid, (2.37) then, we obtain the conditions for the arities nK = mK, nρ = nA, (2.38) while mA and kρ are not connected. Proof. Use (2.14) and (2.35). Proposition 2.19. In the case of equal ℓ-shapes the multiplication and addition of the ground polyadic field (“scalars”) should coincide, while the arity nρ of the multiaction semigroup Sρ should be the same as of the algebra multiplication nA, while the arity of the algebra addition mA and number of places kρ remain arbitrary. Remark 2.20. The above ℓ-shapes (2.14), (2.21), and (2.35) are defined by a pair of integers, and therefore the arities in them are not arbitrary, but should be “quantized” in the same manner as the arities of heteromorphisms in DUPLIJ [2012]. Therefore, numerically the “quantization” rules for the ℓ-shapes (2.14), (2.21), and (2.35) coincide and given in TABLE 1. TABLE 1. “Quantization” of arity ℓ-shapes kρ ℓµ | ℓ′ µ | ℓ′′ µ ℓid | ℓ′ id | ℓ′′ id nK nρ | mK nρ | nK nA 2 1 1 3, 5, 7, . . . 2, 3, 4, . . . 3 1 2 4, 7, 10, . . . 2, 3, 4, . . . 3 2 1 4, 7, 10, . . . 3, 5, 7, . . . 4 1 3 5, 9, 13, . . . 2, 3, 4, . . . 4 2 2 3, 5, 7, . . . 2, 3, 4, . . . 4 3 1 5, 9, 13, . . . 4, 7, 10, . . . Thus, we arrive at the following Theorem 2.21 (The arity partial freedom principle). The basic two-set polyadic algebraic structures have non-free underlying operation arities which are “quantized” in such a way that their ℓ-shape is given by integers. The above definitions can be generalized, as in the binary case by considering a polyadic ring RmK ,nK instead of a polyadic field KmK ,nK . In this way a polyadic vector space becomes a polyadic module over a ring or polyadic R-module, while a polyadic algebra over a polyadic field becomes a polyadic algebra over a ring or polyadic R-algebra. All the axioms and relations between arities in the Definition 2.6 and Definition 2.16 remain the same. However, one should take into account that the ring multiplication κnK can be noncommutative, and therefore for polyadic R-modules and R- algebras it is necessary to consider many different kinds of multiactions ρkρ (all of them are described in (2.9)). For instance, in the ternary case this corresponds to left, right and central ternary modules, and tri-modules CARLSSON [1976], BAZUNOVA ET AL. [2004].
  • 12. 12 STEVEN DUPLIJ 3. MAPPINGS BETWEEN POLYADIC ALGEBRAIC STRUCTURES Let us consider DV different polyadic vector spaces over the same polyadic field KmK ,nK , as V (i) mK ,nK,m (i) V ,k (i) ρ = K; V(i) | σmK , κnK ; ν (i) m (i) V | ρ (i) k (i) ρ , i = 1, . . . , DV < ∞. (3.1) Here we define a polyadic analog of a “linear” mapping for polyadic vector spaces which “com- mutes“ with the “vector addition” and the “multiplication by scalar” (an analog of the additivity F (v + u) = F (v) + F (u), and the homogeneity of degree one F (λv) = λF (v), v, u ∈ V, λ ∈ K). Definition 3.1. A 1-place (“K-linear”) mapping between polyadic vector spaces VmK ,nK,mV ,kρ = K; V | σmK , κnK ; νmV | ρkρ and VmK ,nK,mV ,kρ = K; V′ | σmK , κnK ; ν′ mV | ρ′ kρ over the same polyadic field KmK ,nK = K | σmK , κnK is F1 : V → V′ , such that F1 (νmV [v1, . . . , vmV ]) = ν′ mV [F1 (v1) , . . . , F1 (vmV )] , (3.2) F1  ρkρ    λ1 ... λkρ v      = ρ′ kρ    λ1 ... λkρ F1 (v)    , (3.3) where v1, . . . , vmV , v ∈ V, λ1, . . . , λkρ ∈ K. If zV is a “zero vector” in V and zV ′ is a “zero vector” in V′ (see (2.2)), then it follows from (3.2)–(3.3), that F1 (zV ) = zV ′ . The initial and final arities of νmV (“vector addition”) and the multiaction ρkρ (“multiplication by scalar”) coincide, because F1 is a 1-place mapping (a linear homomorphism). In DUPLIJ [2012] multiplace mappings and corresponding heteromorphisms were introduced. The latter allow us to change arities (mV → m′ V , kρ → k′ ρ), which is the main difference between binary and polyadic mappings. Definition 3.2. A kF -place (“K-linear”) mapping between two polyadic vector spaces VmK ,nK,mV ,kρ = K; V | σmK , κnK ; νmV | ρkρ and VmK ,nK,mV ,kρ = K; V′ | σmK , κnK ; ν′ m′ V | ρ′ k′ ρ over the same polyadic field KmK ,nK = K | σmK , κnK is defined, if there exists FkF : V×kF → V′ , such that FkF            νmV [v1, . . . , vmV ] ... νmV vmV (ℓk µ−1), . . . vmV ℓk µ    ℓk µ vmV ℓk µ+1, ... vmV ℓk µ+ℓk id    ℓk id            = ν′ m′ V   FkF   v1 ... vkF   , . . . , FkF    vkF (m′ V −1) ... vkF m′ V       , (3.4)
  • 13. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 13 FkF                    ρkρ    λ1 ... λkρ v1    ... ρkρ    λkρ(ℓf µ−1) ... λkρℓf µ vℓf µ       ℓf µ vℓf µ+1 ... vkF    ℓf id                    = ρ′ k′ ρ    λ1 ... λk′ ρ FkF   v1 ... vkF      , (3.5) where v1, . . . , vmV , v ∈ V, λ1, . . . , λkρ ∈ K, and the four integers ℓk ρ, ℓk id, ℓf ρ, ℓf id define the ℓ-shape of the mapping. It follows from (3.4)–(3.5), that the arities satisfy kF m′ V = mV ℓk µ + ℓk id, kF = ℓk µ + ℓk id, kF = ℓf µ + ℓf id, k′ µ = kρℓf µ. (3.6) The following inequalities hold 1 ≤ ℓk µ ≤ kF , 0 ≤ ℓk id ≤ kF − 1, ℓk µ ≤ kF ≤ (mV − 1) ℓk µ, 2 ≤ m′ V ≤ mV , 2 ≤ kρ ≤ k′ ρ. (3.7) Thus, the ℓ-shape of the kF -place mapping between polyadic vector spaces is determined by ℓk µ = kF (mV − 1) mV − 1 , ℓk id = kF (mV − m′ V ) mV − 1 , ℓf µ = kρ k′ ρ , ℓf id = kF − kρ k′ ρ . (3.8) 3.1. Polyadic functionals and dual polyadic vector spaces. An important particular case of the kF - place mapping can be considered, where the final polyadic vector space coincides with the underlying field (analog of a “linear functional”). Definition 3.3. A “linear” polyadic functional (or polyadic dual vector, polyadic covector) is a kL- place mapping of a polyadic vector space VmK ,nK,mV ,kρ = K; V | σmK , κnK ; νmV | ρkρ into its polyadic field KmK ,nK = K | σmK , κnK , such that there exists LkL : V×kL → K, and LkL            νmV [v1, . . . , vmV ] ... νmV vmV (ℓk ν−1), . . . vmV ℓk ν    ℓk ν vmV ℓk ν+1, ... vnK ℓk ν+ℓν id    ℓν id            = σmK  LkL   v1 ... vkL   , . . . , LkL   vkL(mK −1) ... vkLmK     , (3.9)
  • 14. 14 STEVEN DUPLIJ LkL                    ρkρ    λ1 ... λkρ v1    ... ρkρ    λkρ(ℓL µ −1) ... λkρℓL µ vℓL µ       ℓL µ vℓL µ +1 ... vkL    ℓL id                    = κnK  λ1, . . . , λnK−1, LkL   v1 ... vkL     , (3.10) where v1, . . . , vmV , v ∈ V , λ1, . . . , λnK ∈ K, and the integers ℓk ν, ℓν id, ℓL µ, ℓL id define the ℓ-shape of LkL . It follows from (3.4)–(3.5), that the arities satisfy kLmK = mV ℓk ν + ℓν id, kL = ℓk ν + ℓν id, kL = ℓh µ + ℓh id, nK − 1 = kρℓh µ, (3.11) and for them 1 ≤ ℓk ν ≤ kL, 0 ≤ ℓν id ≤ kL −1, ℓk ν ≤ kL ≤ (mV − 1) ℓk ν, 2 ≤ mK ≤ mV , 2 ≤ kρ ≤ nK −1. (3.12) Thus, the ℓ-shape of the polyadic functional is determined by ℓk ν = kL (mK − 1) mV − 1 , ℓν id = kL (mV − mK) mV − 1 , ℓh µ = kρ nK − 1 , ℓh id = kL − kρ nK − 1 . (3.13) In the binary case, because the dual vectors (linear functionals) take their values in the underlying field, new operations between them, such that the dual vector “addition” (+∗ ) and the “multiplication by a scalar” (•∗ ) can be naturally introduced by L(1) +∗ L(2) (v) = L(1) (v)+L(2) (v), (λ •∗ L) (v) = λ•L (v), which leads to another vector space structure, called a dual vector space. Note that operations +∗ and +, •∗ and • are different, because + and • are the operations in the underlying field K. In the polyadic case, we have more complicated arity changing formulas, and here we consider finite- dimensional spaces only. The arities of operations between dual vectors can be different from ones in the underlying polyadic field KmK nK , in general. In this way, we arrive to the following Definition 3.4. A polyadic dual vector space over a polyadic field KmK ,nK is V∗ mK ,nK,m∗ V ,k∗ ρ = K; L (i) kL | σmK , κnK ; ν∗ mL | ρ∗ kL , (3.14) and the axioms are: 1) K | σmK , κnK is a polyadic (mK, nK)-field KmK ,nK ; 2) L (i) kL | ν∗ mL , i = 1, . . . , DL is a commutative mL-ary group (which is finite, if DL < ∞); 3) The “dual vector addition” ν∗ mL is compatible with the polyadic field addition σmK by ν∗ mL L (1) kL , . . . , L (mL) kL a(kL) = σmK L (1) kL a(kL) , . . . , L (mK ) kL v(kL) , (3.15) where v(kL) =   v1 ... vkL  , v1, . . . , vkL ∈ V, and it follows that mL = mK. (3.16)
  • 15. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 15 4) The compatibility of ρ∗ kL with the “multiplication by a scalar” in the underlying polyadic field ρ∗ kL    λ1 ... λkL LkL    v(kL) = κnK λ1, . . . , λnK−1, LkL v(kL) , (3.17) and then kL = nK − 1 (3.18) 5) ρ∗ kL | composition is a nL-ary semigroup SL (similar to (2.9)) ρ∗ kL nL    λ1 ... λkL . . . ρ∗ kL    λkL(nL−1) ... λkLnL LkL    . . .    v(kL) (3.19) = ρ∗ kL    κnK [λ1, . . . λnK ] , ... κnK λnK(ℓL µ −1), . . . λnK ℓL µ    ℓL µ λnK ℓL µ +1, ... λnKℓL µ +ℓL id    ℓL id LkL    v(kL) , (3.20) where the ℓ-shape is determined by the system kLnL = nKℓL µ + ℓL id, kL = ℓL µ + ℓL id. (3.21) Using (3.18) and (3.21), we obtain the ℓ-shape as ℓL µ = nL − 1, ℓL id = nK − nL. (3.22) Corollary 3.5. The arity nL of the semigroup SL is less than or equal to the arity nK of the underlying polyadic field nL ≤ nK. 3.2. Polyadic direct sum and tensor product. The Cartesian product of DV polyadic vector spaces ×ΠmV i=1V (i) mK nKm (i) V k (i) ρ (sometimes we use the concise notation ×ΠV(i) ), i = 1, . . . , DV is given by the DV -ples (an analog of the Cartesian pair (v, u), v ∈ V(1) , u ∈ V(2) )    v(1) ... v(DV )    ≡ v(DV ) ∈ V×DV . (3.23) We introduce a polyadic generalization of the direct sum and tensor product of vector spaces by considering “linear” operations on the DV -ples (3.23). In the first case, to endow ×ΠV(i) with the structure of a vector space we need to define a new operation between the DV -ples (3.23) (similar to vector addition, but between elements from different spaces) and a rule, specifying how they are “multiplied by scalars” (analogs of (v1, v2) + (u1, u2) = (v1 + u1, v2 + u2) and λ (v1, v2) = (λv1, λv2) ). In the binary case, a formal summation is used, but it can be different from the addition in the initial vector spaces. Therefore, we can define on the set of the DV -ples (3.23) new operations χmV (“addition of vectors from different spaces”) and “multiplication by a scalar” τkρ , which does not need to coincide with the corresponding operations ν (i) m (i) V and ρ (i) k (i) ρ of the initial polyadic vector spaces V (i) mK ,nK,m (i) V ,k (i) ρ .
  • 16. 16 STEVEN DUPLIJ If all DV -ples (3.23) are of fixed length, then we can define their “addition” χmV in the standard way, if all the arities m (i) V coincide and equal the arity of the resulting vector space mV = m (1) V = . . . = m (DV ) V , (3.24) while the operations (“additions”) themselves ν (i) mV between vectors in different spaces can be still different. Thus, a new commutative mV -ary operation (“addition”) χmV of the DV -ples of the same length is defined by χmV       v (1) 1 ... v (DV ) 1    , . . . ,    v (1) mV ... v (DV ) mV       =      ν (1) mV v (1) 1 , . . . , v (1) mV ... ν (DV ) mV v (DV ) 1 , . . . , v (DV ) mV      , (3.25) where DV = mV , in general. However, it is also possible to add DV -ples of different length such that the operation (3.25) is compatible with all arities m (i) V , i = 1, . . . , mV . For instance, if mV = 3, m (1) V = m (2) V = 3, m (3) V = 2, then χ3       v (1) 1 v (2) 1 v (3) 1    ,    v (1) 2 v (2) 2 v (3) 2    ,   v (1) 3 v (2) 3      =      ν (1) 3 v (1) 1 , v (1) 2 , v (1) 3 ν (2) 3 v (2) 1 , v (2) 2 , v (2) 3 ν (3) 2 v (3) 1 , v (3) 2      . (3.26) Assertion 3.6. In the polyadic case, a direct sum of polyadic vector spaces having different arities of “vector addition” m (i) V can be defined. Let us introduce the multiaction τkρ (“multiplication by a scalar”) acting on DV -ple v(mV ) , then ρkρ    λ1 ... λkρ    v(1) ... v(DV )       =               ρ (1) k (1) ρ    λ1 ... λk (1) ρ v(1)    ... ρ (mV ) k (DV ) ρ    λ k (1) ρ +...+k (DV −1) ρ +1 ... λ k (1) ρ +...+k (DV ) ρ v(DV )                  , (3.27) where k(1) ρ + . . . + k(DV ) ρ = kρ. (3.28) Definition 3.7. A polyadic direct sum of mV polyadic vector spaces is their Cartesian product equipped with the mV -ary addition χmV and the kρ-place multiaction τkρ , satisfying (3.25) and (3.27) respectively ⊕ ΠDV i=1V (i) mK ,nK,m (i) V ,k (i) ρ = ×ΠDV i=1V (i) mK ,nK,m (i) V ,k (i) ρ | χmV , τkρ . (3.29) Let us consider another way to define a vector space structure on the DV -ples from the Carte- sian product ×ΠV(i) . Remember that in the binary case, the concept of bilinearity is used, which means “distributivity” and “multiplicativity by scalars” on each place separately in the Cartesian pair
  • 17. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 17 (v1, v2) ∈ V(1) × V(2) (as opposed to the direct sum, where these relations hold on all places simulta- neously, see (3.25) and (3.27)) such that (v1 + u1, v2) = (v1, v2) + (u1, v2) , (v1, v2 + u2) = (v1, v2) + (v1, u2) , (3.30) λ (v1, v2) = (λv1, v2) = (v1, λv2) , (3.31) respectively. If we denote the ideal corresponding to the relations (3.30)–(3.31) by B2, then the binary tensor product of the vector spaces can be defined as their Cartesian product by factoring out this ideal, as V(1) ⊗V(2) def = V(1) ×V(2) B2. Note first, that the additions and multiplications by a scalar on both sides of (3.30)–(3.31) “work” in different spaces, which sometimes can be concealed by adding the word “formal” to them. Second, all these operations have the same arity (binary ones), which need not be the case when considering polyadic structures. As in the case of the polyadic direct sum, we first define a new operation ˜χmV (“addition”) of the DV -ples of fixed length (different from χmV in (3.25)), when all the arities m (i) V coincide and equal to mV (3.24). Then, a straightforward generalization of (3.30) can be defined for mV -ples similar to the polyadic distributivity (1.1)–(1.3), as in the following mV relations      ν (1) mV v (1) 1 , . . . , v (1) mV u2 ... uDV      = ˜χmV           v (1) 1 u2 ... uDV      , . . . ,      v (1) mV u2 ... uDV           , (3.32)      u1 ν (2) mV v (2) 1 , . . . , v (2) mV ... umV      = ˜χmV           u1 v (2) 1 ... umV      , . . . ,      u1 v (2) mV ... umV           , (3.33) ...      u1 u2 ... ν (mV ) mV v (DV ) 1 , . . . , v (DV ) mV      = ˜χmV           u1 u2 ... v (DV ) 1      , . . . ,      u1 u2 ... v (DV ) mV           . (3.34) By analogy, if all k (i) ρ are equal we can define a new multiaction ˜τkρ (different from τkρ (3.27)) with the same number of places kρ = k(1) ρ = . . . = k(DV ) ρ (3.35) as the DV relations (an analog of (3.31)) ρ′ kρ    λ1 ... λkρ    v(1) ... v(DV )       =          ρ (1) kρ    λ1 ... λkρ v(1)    v(2) ... v(DV )          (3.36)
  • 18. 18 STEVEN DUPLIJ =          v(1) ρ (2) kρ    λ1 ... λkρ v(2)    ... v(DV )          (3.37) ... =          v(1) v(2) ... ρ (DV ) kρ    λ1 ... λkρ v(DV )             . (3.38) Let us denote the ideal corresponding to the relations (3.32)–(3.34), (3.36)–(3.38) by BDV . Definition 3.8. A polyadic tensor product of DV polyadic vector spaces V (i) mK ,nK,m (i) V ,k (i) ρ is their Carte- sian product equipped with the mV -ary addition ˜χmV (of DV -ples) and the kρ-place multiaction ˜τkρ , satisfying (3.32)–(3.34) and (3.36)–(3.38), respectively, by factoring out the ideal BDV ⊗ ΠmV i=1V (i) mK ,nK,m (i) V ,k (i) ρ = ×ΠmV i=1V (i) mK ,nK,m (i) V ,k (i) ρ | ˜χmV , ˜τkρ BDV . (3.39) As in the case of the polyadic direct sum, we can consider the distributivity for DV -ples of different length. In a similar example (3.26), if mV = 3, m (1) V = m (2) V = 3, m (3) V = 2, we have    ν (1) 3 v (1) 1 , v (1) 2 , v (1) 3 u2 u3    = ˜χ3     v (1) 1 u2 u3   ,   v (1) 2 u2 u3   ,   v (1) 3 u2     , (3.40)    u1 ν (2) 3 v (2) 1 , v (2) 2 , v (2) 3 u3    = ˜χ3     u1 v (2) 1 u3   ,   u1 v (2) 2 u3   ,   u1 v (2) 3     , (3.41)    u1 u2 ν (3) 2 v (3) 1 , v (3) 2    = ˜χ3     u1 u2 v (3) 1   ,   u1 u2 v (3) 2   ,   u1 u2     . (3.42) Assertion 3.9. A tensor product of polyadic vector spaces having different arities of the “vector addition” m (i) V can be defined. In the case of modules over a polyadic ring, the formulas connecting arities and ℓ-shapes similar to those above hold, while concrete properties (noncommutativity, mediality, etc.) should be taken into account.
  • 19. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 19 4. POLYADIC INNER PAIRING SPACES AND NORMS Here we introduce the next important operation: a polyadic analog of the inner product for polyadic vector spaces - a polyadic inner pairing2 . Let VmK ,nK,mV ,kρ = K; V | σmK , κnK ; νmV | ρkρ be a polyadic vector space over the polyadic field KmK ,nK (2.22). By analogy with the binary inner product, we introduce its polyadic counterpart and study its arity shape. Definition 4.1. A polyadic N-place inner pairing (an analog of the inner product) is a mapping N •|•| . . . |• : V×N → K, (4.1) satisfying the following conditions: 1) Polyadic “linearity” (2.9) (for first argument): ρkρ    λ1 ... λkρ v1    |v2| . . . |vN = κnK λ1, . . . , λkρ , v1|v2| . . . |vN . (4.2) 2) Polyadic “distributivity” (1.1)–(1.3) (on each place): νmV [v1, u1, . . . umV −1] |v2| . . . |vN = σmK [ v1|v2| . . . |vN , u1|v2| . . . |vN . . . umV −1|v2| . . . |vN ] . (4.3) If the polyadic field KmK ,nK contains the zero zK and V | mV has the zero “vector” zV (which is not always the case in the polyadic case), we have the additional axiom: 3) The polyadic inner pairing vanishes v1|v2| . . . |vN = zK, iff any of the “vectors” vanishes, ∃i ∈ 1, . . . , N, such that vi = zV . If the standard binary ordering on KmK ,nK can be defined, then the polyadic inner pairing satisfies: 4) The positivity condition N v|v| . . . |v ≥ zK, (4.4) 5) The polyadic Cauchy-Schwarz inequality (“triangle” inequality) κnK       nK N v1|v1| . . . |v1 , N v2|v2| . . . |v2 . . . N vnK |vnK | . . . |vnK       ≥ κnK   nK v1|v2| . . . |vN , v1|v2| . . . |vN . . . , v1|v2| . . . |vN   . (4.5) To make the above relations consistent, the arity shapes should be fixed. Definition 4.2. If the inner pairing is fully symmetric under permutations it is called a polyadic inner product. Proposition 4.3. The number of places in the multiaction ρkρ differs by 1 from the multiplication arity of the polyadic field nK − kρ = 1. (4.6) Proof. It follows from the polyadic “linearity” (4.2). 2 Note that this concept is different from the n-inner product spaces considered in [Misiak, et al].
  • 20. 20 STEVEN DUPLIJ Proposition 4.4. The arities of “vector addition” and “field addition” coincide mV = mK. (4.7) Proof. Implied by the polyadic “distributivity” (4.3). Proposition 4.5. The arity of the “field multiplication” is equal to the arity of the polyadic inner pairing space nK = N. (4.8) Proof. This follows from the polyadic Cauchy-Schwarz inequality (4.5). Definition 4.6. The polyadic vector space VmK ,nK,mV ,kρ equipped with the polyadic inner pairing N •|•| . . . |• : V×N → K is called a polyadic inner pairing space HmK ,nK,mV ,kρ,N . A polyadic analog of the binary norm • : V → K can be induced by the inner pairing similarly to the binary case for the inner product (we use the form v 2 = v|v ). Definition 4.7. A polyadic norm of a “vector” v in the polyadic inner pairing space HmK ,nK,mV ,kρ,N is a mapping • N : V → K, such that κnK   nK v N , v N , . . . , v N   = N v|v| . . . |v , (4.9) nK = N, (4.10) and the following axioms apply: 1) The polyadic “linearity” ρkρ    λ1 ... λkρ v    N = κnK λ1, . . . , λkρ , v N , (4.11) nK − kρ = 1. (4.12) If the polyadic field KmK ,nK contains the zero zK and V | mV has a zero “vector” zV , then: 2) The polyadic norm vanishes v N = zK, iff v = zV . If the binary ordering on V | mV can be defined, then: 3) The polyadic norm is positive v N ≥ zK. 4) The polyadic“triangle” inequality holds σmK   mK v1 N , v2 N , . . . , vN N   ≥ νmV   mV v1 N , v2 N , . . . , vN N   , (4.13) mK = mV = N. (4.14) Definition 4.8. The polyadic inner pairing space HmK ,nK ,mV ,kρ,N equipped with the polyadic norm v N is called a polyadic normed space. Recall that in the binary vector space V over the field K equipped with the inner product •|• and the norm • , one can introduce the angle between vectors v1 · v2 · cos θ = v1|v2 , where on l.h.s. there are two binary multiplications (·). Definition 4.9. A polyadic angle between N vectors v1, v2, . . . , vnK of the polyadic inner pairing space HmK ,nK,mV ,kρ,N is defined as a set of angles ϑ = {{θi} | i = 1, 2, . . . , nK − 1} satisfying κ(2) nK [ v1 N , v2 N , . . . , vnK N , cos θ1, cos θ2, . . . , cos θnK −1] = v1|v2| . . . |vnK , (4.15)
  • 21. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 21 where κ (2) nK is a long product of two nK-ary multiplications, which consists of 2 (nK − 1) + 1 terms. We will not consider the completion with respect to the above norm (to obtain a polyadic analog of Hilbert space) and corresponding limits and boundedness questions, because it will not give additional arity shapes, in which we are mostly interested here. Instead, below we turn to some applications and new general constructions which appear from the above polyadic structures. TABLE 2. The arity signature and arity shape of polyadic algebraic structures. Structures Sets Operations and arities Arity N Name N Multiplications Additions Multiactions shape Group-like polyadic algebraic structures n-ary magma (or groupoid) 1 M 1 µn : Mn → M n-ary semigroup (and monoid) 1 S 1 µn : Sn → S n-ary quasigroup (and loop) 1 Q 1 µn : Qn → Q n-ary group 1 G 1 µn : Gn → G Ring-like polyadic algebraic structures (m, n)-ary ring 1 R 2 µn : Rn → R νm : Rm → R (m, n)-ary field 1 K 2 µn : Kn → K νm : Km → K Module-like polyadic algebraic structures Module over (m, n) -ring 2 R, M 4 σn : Rn → R κm : Rm → R νmM : MmM → M ρkρ : Rkρ × M → M Vector space over (mK , nK) -field 2 K, V 4 σnK : KnK → K κmK : KmK → K νmV : VmV → V ρkρ : Kkρ × V → V (2.14) (2.21) Algebra-like polyadic algebraic structures Inner pairing space over (mK , nK) -field 2 K, V 5 σnK : KnK → K N-Form •..• : VN → K κmK : KmK → K νmV : VmV → V ρkρ : Kkρ × V → V (4.6) (4.7) (4.8) (mA, nA) -algebra over (mK , nK) -field 2 K, A 5 σnK : KnK → K µnA : An → A κmK : KmK → K νmA : AmM → A ρkρ : Kkρ × A → A (2.35) To conclude, we present the resulting TABLE 2 in which the polyadic algebraic structures are listed together with their arity shapes. APPLICATIONS 5. ELEMENTS OF POLYADIC OPERATOR THEORY Here we consider the 1-place polyadic operators T = FkF =1 (the case kF = 1 of the mapping FkF in Definition 3.2) on polyadic inner pairing spaces and structurally generalize the adjointness and involution concepts. Remark 5.1. A polyadic operator is a complicated mapping between polyadic vector spaces having nontrivial arity shape (3.4) which is actually an action on a set of “vectors”. However, only for kF = 1 it can be written in a formal way multiplicatively, as it is always done in the binary case. Recall (to fix notations and observe analogies) the informal standard introduction of the operator algebra and the adjoint operator on a binary pre-Hilbert space H (≡ HmK =2,nK=2,mV =2,kρ=1,N=2) over a binary field K (≡ KmK =2,nK=2) (having the underlying set {K; V}). For the operator norm • T : {T } → K we use (among many others) the following definition T T = inf {M ∈ K | T v ≤ M v , ∀v ∈ V} , (5.1)
  • 22. 22 STEVEN DUPLIJ which is convenient for further polyadic generalization. Bounded operators have M < ∞. If on the set of operators {T } (as 1-place mappings V → V) one defines the addition (+T ), product (◦T ) and scalar multiplication (·T ) in the standard way (T1 +T T2) (v) = T1v + T2v, (5.2) (T1 ◦T T2) (v) = T1 (T2v) , (5.3) (λ ·T T ) (v) = λ (T v) , λ ∈ K, v ∈ V, (5.4) then {T } | +T , ◦T |·T becomes an operator algebra AT (associativity and distributivity are obvious). The unity I and zero Z of AT (if they exist), satisfy Iv = v, (5.5) Zv = zV , ∀v ∈ V, (5.6) respectively, where zV ∈ V is the polyadic “zero-vector”. The connection between operators, linear functionals and inner products is given by the Riesz rep- resentation theorem. Informally, it states that in a binary pre-Hilbert space H = {K; V} a (bounded) linear functional (sesquilinear form) L : V × V → K can be uniquely represented as L (v1, v2) = T v1|v2 sym , ∀v1, v2 ∈ V, (5.7) where •|• sym : V × V → K is a (binary) inner product with standard properties and T : V → V is a bounded linear operator, such that the norms of L and T coincide. Because the linear functionals form a dual space (see Subsection 3.1), the relation (5.7) fixes the shape of its elements. The main consequence of the Riesz representation theorem is the existence of the adjoint: for any (bounded) linear operator T : V → V there exists a (unique bounded) adjoint operator T ∗ : V → V satisfying L (v1, v2) = T v1|v2 sym = v1|T ∗ v2 sym , ∀v1, v2 ∈ V, (5.8) and the norms of T and T ∗ are equal. It follows from the conjugation symmetry of the standard binary inner product, that (5.8) coincides with v1|T v2 sym = T ∗ v1|v2 sym , ∀v1, v2 ∈ V. (5.9) However, when •|• has no symmetry (permutation, conjugation, etc., see, e.g. MIGNOT [1976]), it becomes the binary (N = 2) inner pairing (4.1), the binary adjoint consists of 2 opera- tors (T ⋆12 ) = (T ⋆21 ), T ⋆ij : V → V, which should be defined by 2 equations T v1|v2 = v1|T ⋆12 v2 , (5.10) v1|T v2 = T ⋆21 v1|v2 , (5.11) where (⋆12) = (⋆21) are 2 different star operations satisfying 2 relations T ⋆12⋆21 = T , (5.12) T ⋆21⋆12 = T. (5.13) If •|• = •|• sym is symmetric, it becomes the inner product in the pre-Hilbert space H and the equations (5.12)–(5.13) coincide, while the operation (∗) = (⋆12) = (⋆21) stands for the standard involution T ∗∗ = T . (5.14)
  • 23. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 23 5.1. Multistars and polyadic adjoints. Consider now a special case of the polyadic inner pairing space (see Definition 4.6) HmK ,nK,mV ,kρ=1,N = K; V | σmK , κnK ; νmV | ρkρ=1 | N •| . . . |• (5.15) with 1-place multiaction ρkρ=1. Definition 5.2. The set of 1-place operators T : V → V together with the set of “scalars” K be- come a polyadic operator algebra AT = K; {T } | σmK , κnK ; ηmT , ωnT | θkF =1 , if the operations ηmT , ωnT , θkF =1 to define by ηmT [T1, T2, . . . , TmT ] (v) = νmV [T1v, T2v, . . . , TmT v] , (5.16) ωnT [T1, T2, . . . , TnT ] (v) = T1 (T2 . . . (TnT v)) , (5.17) θkF =1 {λ | T } (v) = ρkρ=1 {λ | T v} , ∀λ ∈ K, ∀v ∈ V. (5.18) The arity shape is fixed by Proposition 5.3. In the polyadic algebra AT the arity of the operator addition mT coincides with the “vector” addition of the inner pairing space mV , i.e. mT = mV . (5.19) Proof. This follows from (5.16). To get relations between operators we assume (as in the binary case) uniqueness: for any T1, T2 : V → V it follows from v1|v2| . . . |T1vi| . . . vN−1|vN = v1|v2| . . . |T2vi| . . . vN−1|vN , (5.20) that T1 = T2 on any place i = 1, . . . , N. First, by analogy with the binary adjoint (5.8) we define N different adjoints for each operator T . Definition 5.4. Given a polyadic operator T : V → V on the polyadic inner pairing space HmK ,nK,mV ,kρ=1,N we define a polyadic adjoint as the set {T ⋆ij } of N operators T ⋆ij satisfying the following N equations T v1|v2|v3| . . . |vN = v1|T ⋆12 v2|v3| . . . |vN , v1|T v2|v3| . . . |vN = v1|v2|T ⋆23 v3| . . . |vN , ... v1|v2|v3| . . . T vN−1|vN = v1|v2|v3| . . . |T ⋆N−1,N vN , v1|v2|v3| . . . vN−1|T vN = T ⋆N,1 v1|v2|v3| . . . |vN , vi ∈ V. (5.21) In what follows, for the composition we will use the notation (T ⋆ij )⋆kl... ≡ T ⋆ij ⋆kl... . We have from (5.21) the N relations T ⋆12⋆23⋆34...⋆N−1,N ⋆N,1 = T, T ⋆23⋆34...⋆N−1,N ⋆N,1⋆12 = T, ... T ⋆N,1⋆12⋆23⋆34...⋆N−1,N = T, (5.22) which are called multistar cycles. Definition 5.5. We call the set of adjoint mappings (•⋆ij ) : T → T ⋆ij a polyadic involution, if they satisfy the multistar cycles (5.22).
  • 24. 24 STEVEN DUPLIJ If the inner pairing •| . . . |• has more than two places N ≥ 3, we have some additional structural issues, which do not exist in the binary case. First, we observe that the set of the adjointness relations (5.21) can be described in the framework of the associativity quiver approach introduced in DUPLIJ [2012] for polyadic representations. That is, for general N ≥ 3 in addition to (5.21) which corresponds to the so called Post-like associativity quiver (they will be called the Post-like adjointness relations), there also exist other sets. It is cum- bersome to write additional general formulas like (5.21) for other non-Post-like cases, while instead we give a clear example for N = 4. Example 5.6. The polyadic adjointness relations for N = 4 consist of the sets corresponding to different associativity quivers 1) Post-like adjointness relations T v1|v2|v3|v4 = v1|T ⋆12 v2|v3|v4 , v1|T v2|v3|v4 = v1|v2|T ⋆23 v3|v4 , v1|v2|T v3|v4 = v1|v2|v3|T ⋆34 v4 , v1|v2|v3|T v4 = T ⋆41 v1|v2|v3|v4 , 2) Non-Post-like adjointness relations T v1|v2|v3|v4 = v1|v2|v3|T ⋆14 v4 , v1|v2|v3|T v4 = v1|v2|T ⋆43 v3|v4 , v1|v2|T v3|v4 = v1|T ⋆32 v2|v3|v4 , v1|T v2|v3|v4 = T ⋆21 v1|v2|v3|v4 , (5.23) and the corresponding multistar cycles 1) Post-like multistar cycles T ⋆12⋆23⋆34⋆41 = T , T ⋆23⋆34⋆41⋆12 = T , T ⋆34⋆41⋆12⋆23 = T , T ⋆41⋆12⋆23⋆34 = T , 2) Non-Post-like multistar cycles T ⋆14⋆43⋆32⋆21 = T, T ⋆43⋆32⋆21⋆14 = T, T ⋆32⋆21⋆14⋆43 = T, T ⋆21⋆14⋆43⋆32 = T. (5.24) Thus, if the inner pairing has no symmetry, then both the Post-like and non-Post-like adjoints and corresponding multistar involutions are different. Second, in the case N ≥ 3 any symmetry of the multiplace inner pairing restricts the polyadic adjoint sets and multistar involutions considerably. Theorem 5.7. If the inner pairing with N ≥ 3 has the full permutation symmetry v1|v2| . . . |vN = σv1|σv2| . . . |σvN , ∀σ ∈ SN , (5.25) where SN is the symmetric group of N elements, then: 1) All the multistars coincide (⋆ij) = (⋆kl) := (∗) for any allowed i, j, k, l = 1, . . . , N; 2) All the operators are self-adjoint T = T ∗ . Proof. 1) In each adjointness relation from (5.21) we place the operator T on the l.h.s. to the first position and its multistar adjoint T ⋆ij to the second position, using the full permutation symmetry, which together with (5.20) gives the equality of all multistar operations. 2) We place the operator T on the l.h.s. to the first position and apply the derivation of the involution in the binary case to increasing cycles of size i ≤ N recursively, that is: For i = 2 T v1|v2|v3| . . . |vN = v1|T ∗ v2|v3| . . . |vN = T ∗ v2|v1|v3| . . . |vN = v2|T ∗∗ v1|v3| . . . |vN = T ∗∗ v1|v2|v3| . . . |vN , (5.26) then, using (5.20) we get T = T ∗∗ , (5.27) as in the standard binary case. However, for N ≥ 3 we have N higher cycles in addition.
  • 25. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 25 For i = 3 T v1|v2|v3| . . . |vN = v1|T ∗ v2|v3| . . . |vN = T ∗ v2|v3|v1| . . . |vN = v2|T ∗∗ v3|v1| . . . |vN = T ∗∗ v3|v1|v2| . . . |vN = v3|T ∗∗∗ v1|v2| . . . |vN = T ∗∗∗ v1|v2|v3| . . . |vN , (5.28) which together with (5.20) gives T = T ∗∗∗ , (5.29) and after using (5.27) T = T ∗ . (5.30) Similarly, for an arbitrary length of the cycle i we obtain T = T i ∗ ∗ . . . ∗, which should be valid for each cycle recursively with i = 2, 3, . . . , N. Therefore, for any N ≥ 3 all the operators T are self-adjoint (5.30), while N = 2 is an exceptional case, when we have T = T ∗∗ (5.27) only. Now we show that imposing a partial symmetry on the polyadic inner pairing will give more inter- esting properties to the adjoint operators. Recall, that one of possible binary commutativity general- izations of (semi)groups to the polyadic case is the semicommutativity concept, when in the multipli- cation only the first and last elements are exchanged. Similarly, we introduce Definition 5.8. The polyadic inner pairing is called semicommutative, if v1|v2|v3| . . . |vN = vN |v2|v3| . . . |v1 , vi ∈ V. (5.31) Proposition 5.9. If the polyadic inner pairing is semicommutative, then for any operator T (satis- fying Post-like adjointness (5.21)) the last multistar operation (⋆N,1) is a binary involution and is a composition of all the previous multistars T ⋆N,1 = T ⋆12⋆23⋆34...⋆N−1,N , (5.32) T ⋆N,1⋆N,1 = T . (5.33) Proof. It follows from (5.21) and (5.31), that v1|v2|v3| . . . |T vN = T vN |v2|v3| . . . |v1 = vN |v2|v3| . . . |T ⋆12⋆23⋆34...⋆N−1,N v1 (5.34) = T ⋆12⋆23⋆34...⋆N−1,N v1|v2|v3| . . . |vN = T ⋆N,1 v1|v2|v3| . . . |vN , (5.35) which using (5.20) gives (5.32), (5.33) follows from the first multistar cocycle in (5.22). The adjointness relations (5.21) (of all kinds) together with (5.18) and (5.19) allows us to fix the arity shape of the polyadic operator algebra AT . We will assume that the arity of the operator multi- plication in AT coincides with the number of places of the inner pairing N (4.1) nT = N, (5.36) because it is in agreement with (5.21). Thus, the arity shape of the polyadic operator algebra becomes AT = K; {T } | σmK , κnK ; ηmT =mV , ωnT =N | θkF =kρ=1 , (5.37) Definition 5.10. We call the operator algebra AT which has the arity nT = N a nonderived polyadic operator algebra. Let us investigate some structural properties of AT and types of polyadic operators.
  • 26. 26 STEVEN DUPLIJ Remark 5.11. We can only define, but not derive, as in the binary case, the action of any multistar (⋆ij) on the product of operators, because in the nonderived nT -ary algebra we have a fixed number of operators in a product and sum, that is ℓ′ (nT − 1)+1 and ℓ′′ (mT − 1)+1, correspondingly, where ℓ′ is the number of nT -ary multiplications and ℓ′ is the number of mT -ary additions. Therefore, we cannot transfer (one at a time) all the polyadic operators from one place in the inner pairing to another place, as is done in the standard proof in the binary case. Taking this into account, as well as consistency under the multistar cycles (5.22), we arrive at Definition 5.12. The fixed multistar operation acts on the ℓ = 1 product of nT polyadic operators, depending on the sequential number of the multistar (⋆ij) (for the Post-like adjointness relations (5.21)) sij := i + j − 1 2 , if 3 ≤ i + j ≤ 2N − 1 N, if i j = N, sij = 1, 2, . . . , N − 1, N, (5.38) in the following way (ωnT [T1, T2, . . . , TnT −1, TnT ])⋆ij = ωnT T ⋆ij nT , T ⋆ij nT −1, . . . , T ⋆ij 2 , T ⋆ij 1 , if sij is odd, ωnT T ⋆ij 1 , T ⋆ij 2 , . . . , T ⋆ij nT −1, T ⋆ij nT , if sij is even. (5.39) A rule similar to (5.39) holds also for non-Post-like adjointness relations, but their concrete form depends of the corresponding non-Post-like associative quiver. Sometimes, to shorten notation, it will be more convenient to mark a multistar by the sequential number (5.38), such that (⋆ij) ⇒ ⋆sij , e.g. (⋆23) ⇒ (⋆2), (⋆N,1) ⇒ (⋆N ), etc. Also, in examples, for the ternary multiplication we will use the square brackets without the name of operation, if it is clear from the context, e.g. ω3 [T1, T2, T3] ⇒ [T1, T2, T3], etc. Example 5.13. In the lowest ternary case N = 3 we have 1) Post-like adjointness relations T v1|v2|v3 = v1|T ⋆1 v2|v3 , v1|T v2|v3 = v1|v2|T ⋆2 v3 , v1|v2|T v3 = T ⋆3 v1|v2|v3 , 2) Non-Post-like adjointness relations T v1|v2|v3 = v1|v2|T ⋆3 v3 , v1|v2|T v3 = v1|T ⋆2 v2|v3 , v1|T v2|v3 = T ⋆1 v1|v2|v3 , (5.40) and the corresponding multistar cycles 1) Post-like multistar cycles T ⋆1⋆2⋆3 = T , T ⋆2⋆3⋆1 = T , T ⋆3⋆1⋆2 = T , 2) Non-Post-like multistar cycles T ⋆3⋆2⋆1 = T, T ⋆2⋆1⋆3 = T, T ⋆1⋆3⋆2 = T. (5.41) Using (5.39) we obtain the following ternary conjugation rules ([T1, T2, T3])⋆1 = [T ⋆1 3 , T ⋆1 2 , T ⋆1 1 ] , (5.42) ([T1, T2, T3])⋆2 = [T ⋆2 1 , T ⋆2 2 , T ⋆2 3 ] , (5.43) ([T1, T2, T3])⋆3 = [T ⋆3 3 , T ⋆3 2 , T ⋆3 1 ] , (5.44) which are common for both Post-like and non-Post-like adjointness relations (5.40). Definition 5.14. A polyadic operator T is called self-adjoint, if all multistar operations are identities, i.e. (⋆ij) = id, ∀i, j.
  • 27. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 27 5.2. Polyadic isometry and projection. Now we introduce polyadic analogs for the important types of operators: isometry, unitary, and (orthogonal) projection. Taking into account Remark 5.11, we again cannot move operators singly, and instead of proving the operator relations, as it is usually done in the binary case, we can only exploit some mnemonic rules to define the corresponding relations between polyadic operators. If the polyadic operator algebra AT contains a unit I and zero Z (see (5.5)–(5.6)) we define the conditions of polyadic isometry and orthogonality: Definition 5.15. A polyadic operator T is called a polyadic isometry, if it preserves the polyadic inner pairing T v1|T v2|T v3| . . . |T vN = v1|v2|v3| . . . |vN , (5.45) and satisfies ωnT [T ⋆N−1,N , T ⋆N−2,N−1⋆N−1,N , . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ] = I, + (N − 1) cycle permutations of multistars in the first (N − 1) terms. (5.46) Remark 5.16. If the multiplication in AT is derived and all multistars are equal, then the polyadic isometry operators satisfy some kind of N-regularity DUPLIJ AND MARCINEK [2002] or regular N-cocycle condition DUPLIJ AND MARCINEK [2001]. Proposition 5.17. The polyadic isometry operator T preserves the polyadic norm T v N = v N , ∀v ∈ V. (5.47) Proof. It follows from (4.9) and (5.45), that κnK   nK T v N , T v N , . . . , T v N   = κnK   nK v N , v N , . . . , v N   , (5.48) which gives (5.47), when nK = N. Definition 5.18. If for N polyadic operators Ti we have T1v1|T2v2|T3v3| . . . |TN vN = zK, ∀vi ∈ V, (5.49) where zK ∈ V is the zero of the underlying polyadic field KmK ,nK , then we say that Ti are (polyadi- cally) orthogonal, and they satisfy ωnT T ⋆N−1,N 1 , T ⋆N−2,N−1⋆N−1,N 2 , . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N 3 , T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N N−1 , TN = Z, (5.50) + (N − 1) cycle permutations of multistars in the first (N − 1) terms. (5.51) The polyadic analog of projection is given by Definition 5.19. If a polyadic operator P ∈ AT satisfies the polyadic idempotency condition ωnT   nT P , P , . . . P   = P, (5.52) then it is called a polyadic projection. By analogy with the binary case, polyadic projections can be constructed from polyadic isometry operators in a natural way.
  • 28. 28 STEVEN DUPLIJ Proposition 5.20. If T ∈ AT is a polyadic isometry, then P (1) T = ωnT [T , T ⋆N−1,N , T ⋆N−2,N−1⋆N−1,N , . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N ] , + (N − 1) cycle permutations of multistars in the last (N − 1) terms. (5.53) are the corresponding polyadic projections P (k) T , k = 1, . . . , N, satisfying (5.52). Definition 5.21. A polyadic operator T ∈ AT is called normal, if ωnT [T ⋆N−1,N , T ⋆N−2,N−1⋆N−1,N , . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ] = ωnT [T , T ⋆N−1,N , T ⋆N−2,N−1⋆N−1,N , . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N ] , + (N − 1) cycle permutations of multistars in the (N − 1) terms. (5.54) Proof. Insert (5.53) into (5.52) and use (5.46) together with nT -ary associativity. Definition 5.22. If all the polyadic projections (5.53) are equal to unity P (k) T = I, then the corre- sponding polyadic isometry operator T is called a polyadic unitary operator. It can be shown, that each polyadic unitary operator is querable (“polyadically invertible”), such that it has a querelement in AT . 5.3. Towards polyadic analog of C∗ -algebras. Let us, first, generalize the operator binary norm (5.1) to the polyadic case. This can be done, provided that a binary ordering on the underlying polyadic field KmK ,nK can be introduced. Definition 5.23. The polyadic operator norm • T : {T } → K is defined by T T = inf    M ∈ K | T v N ≤ µnK   nK −1 M, . . . , M, v N   , ∀v ∈ V    , (5.55) where • N is the polyadic norm in the inner pairing space HmK ,nK,mV ,kρ=1,N and µnK is the nK-ary multiplication in KmK ,nK . Definition 5.24. The polyadic operator norm is called submultiplicative, if ωnT [T1, T2, . . . , TnT ] T ≤ µnK [ T1 T , T2 T , . . . , TnK T ] , (5.56) nT = nK. (5.57) Definition 5.25. The polyadic operator norm is called subadditive, if ηmT [T1, T2, . . . , TnT ] T ≤ νmK [ T1 T , T2 T , . . . , TmK T ] , (5.58) mT = mK. (5.59) By analogy with the binary case, we have Definition 5.26. The polyadic operator algebra AT equipped with the submultiplicative norm • T a polyadic Banach algebra of operators BT . The connection between the polyadic norms of operators and their polyadic adjoints is given by Proposition 5.27. For polyadic operators in the inner pairing space HmK ,nK,mV ,kρ=1,N
  • 29. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 29 1) The following N multi-C∗ -relations ωnT [T ⋆N−1,N , T ⋆N−2,N−1⋆N−1,N , . . . T ⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ⋆12⋆23⋆34...⋆N−2,N−1⋆N−1,N , T ] N = µnK   nK T T , T T , . . . , T T   , + (N − 1) cycle permutations of (N − 1) terms with multistars, (5.60) take place, if nT = nK. 2) The polyadic norms of operator and its all adjoints coincide T ⋆i,j T = T T , ∀i, j ∈ 1, . . . , N. (5.61) Proof. Both statements follow from (5.21) and the definition of the polyadic operator norm (5.55). Therefore, we arrive to Definition 5.28. The operator Banach algebra BT satisfying the multi-C∗ -relations is called a polyadic operator multi-C∗ -algebra. The first example of a multi-C∗ -algebra (as in the binary case) can be constructed from one isometry operator (see Definition 5.15). Definition 5.29. A polyadic algebra generated by one isometry operator T satisfying (5.46) on the inner pairing space HmK ,nK ,mV ,kρ=1,N represents a polyadic Toeplitz algebra TmT ,nT and has the arity shape mT = mV , nT = N. Example 5.30. The ternary Toeplitz algebra T3,3 is represented by the operator T and relations [T ⋆1 , T ⋆3⋆1 , T ] = I, [T ⋆2 , T ⋆1⋆2 , T ] = I, [T ⋆3 , T ⋆2⋆3 , T ] = I. (5.62) Example 5.31. If the inner pairing is semicommutative (5.31), then (⋆3) can be eliminated by T ⋆3 = T ⋆1⋆2 , (5.63) T ⋆3⋆3 = T, (5.64) and the corresponding relations representing T3,3 become [T ⋆1 , T ⋆1 , T ] = I, [T ⋆2 , T ⋆1⋆2 , T ] = I, [T ⋆1⋆2 , T ⋆2 , T ] = I. (5.65) Let us consider M polyadic operators T1T2 . . . TM ∈ BT and the related partial (in the usual sense) isometries (5.52) which are mutually orthogonal (5.50). In the binary case, the algebra generated by M operators, such that the sum of the related orthogonal partial projections is unity, represents the Cuntz algebra OM CUNTZ [1977]. Definition 5.32. A polyadic algebra generated by M polyadic isometric operators T1T2 . . . TM ∈ BT satisfying η(ℓa) mT P (k) T1 , P (k) T2 . . . P (k) TM = I, k = 1, . . . , N, (5.66) where P (k) Ti are given by (5.53)and η (ℓa) mT is a “long polyadic addition” (5.16), represents a polyadic Cuntz algebra pOM|mT ,nT , which has the arity shape M = ℓa (mT − 1) + 1, (5.67)
  • 30. 30 STEVEN DUPLIJ where ℓa is number of “mT -ary additions”. Below we use the same notations, as in Example 5.13, also the ternary addition will be denoted by (+3) as follows: η3 [T1, T2, T3] ≡ T1 +3 T2 +3 T3. Example 5.33. In the ternary case mT = nT = 3 and one ternary addition ℓa = 1, we have M = 3 mutually orthogonal isometries T1, T2, T3 ∈ BT and N = 3 multistars (⋆i). In case of the Post-like multistar cocycles (5.41) they satisfy Isometry conditions [T ⋆1 i , T ⋆3⋆1 i , Ti] = I, [T ⋆2 i , T ⋆1⋆2 i , Ti] = I, [T ⋆3 i , T ⋆2⋆3 i , Ti] = I, i = 1, 2, 3, Orthogonality conditions T ⋆1 i , T ⋆3⋆1 j , Tk = Z, T ⋆2 i , T ⋆1⋆2 j , Tk = Z, T ⋆3 i , T ⋆2⋆3 j , Tk = Z, i, j, k = 1, 2, 3, i = j = k, (5.68) and the (sum of projections) relations [T1, T ⋆1 1 , T ⋆3⋆1 1 ] +3 [T2, T ⋆1 2 , T ⋆3⋆1 2 ] +3 [T3, T ⋆1 3 , T ⋆3⋆1 3 ] = I, (5.69) [T1, T ⋆2 1 , T ⋆1⋆2 1 ] +3 [T2, T ⋆2 2 , T ⋆1⋆2 2 ] +3 [T3, T ⋆2 3 , T ⋆1⋆2 3 ] = I, (5.70) [T1, T ⋆3 1 , T ⋆2⋆3 1 ] +3 [T2, T ⋆3 2 , T ⋆2⋆3 2 ] +3 [T3, T ⋆3 3 , T ⋆2⋆3 3 ] = I, (5.71) which represent the ternary Cuntz algebra pO3|3,3. Example 5.34. In the case where the inner pairing is semicommutative (5.31), we can eliminate the multistar (⋆3) by (5.63) and represent the two-multistar ternary analog of the Cuntz algebra pO3|3,3 by [T ⋆1 i , T ⋆2 i , Ti] = I, [T ⋆2 i , T ⋆1⋆2 i , Ti] = I, [T ⋆1⋆2 i , T ⋆2 i , Ti] = I, i = 1, 2, 3, T ⋆1 i , T ⋆2 j , Tk = Z, T ⋆1 i , T ⋆1⋆2 j , Tk = Z, T ⋆1⋆2 i , T ⋆2 j , Tk = Z, i, j, k = 1, 2, 3, i = j = k, (5.72) [T1, T ⋆1 1 , T ⋆1 1 ] +3 [T2, T ⋆1 2 , T ⋆1 2 ] +3 [T3, T ⋆1 3 , T ⋆1 3 ] = I, (5.73) [T1, T ⋆2 1 , T ⋆1⋆2 1 ] +3 [T2, T ⋆2 2 , T ⋆1⋆2 2 ] +3 [T3, T ⋆2 3 , T ⋆1⋆2 3 ] = I, (5.74) [T1, T ⋆1⋆2 1 , T ⋆2 1 ] +3 [T2, T ⋆1⋆2 2 , T ⋆2 2 ] +3 [T3, T ⋆1⋆2 3 , T ⋆2 3 ] = I. (5.75) 6. CONGRUENCE CLASSES AS POLYADIC RINGS Here we will show that the inner structure of the residue classes (congruence classes) over integers is naturally described by polyadic rings CELAKOSKI [1977], CROMBEZ [1972], LEESON AND BUTSON [1980], and then study some special properties of them. Denote a residue class (congruence class) of an integer a, modulo b by3 [[a]]b = {{a + bk} | k ∈ Z, a ∈ Z+, b ∈ N, 0 ≤ a ≤ b − 1} . (6.1) A representative element of the class [[a]]b will be denoted by xk = x (a,b) k = a + bk. Here we do not consider the addition and multiplication of the residue classes (congruence classes). Instead, we consider the fixed congruence class [[a]]b, and note that, for arbitrary a and b, it is not closed under binary operations. However, it can be closed with respect to polyadic operations. 3 We use for the residue class the notation [[a]]b , because the standard notations by one square bracket [a]b or ¯ab are busy by the n-ary operations and querelements, respectively.
  • 31. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 31 6.1. Polyadic ring on integers. Let us introduce the m-ary addition and n-ary multiplication of representatives of the fixed congruence class [[a]]b by νm [xk1 , xk2 , . . . , xkm ] = xk1 + xk2 + . . . + xkm , (6.2) µn [xk1 , xk2 , . . . , xkn ] = xk1 xk2 . . . xkn , xki ∈ [[a]]b , ki ∈ Z, (6.3) where on the r.h.s. the operations are the ordinary binary addition and binary multiplication in Z. Remark 6.1. The polyadic operations (6.2)–(6.3) are not derived (see, e.g., GŁAZEK AND MICHALSKI [1984], MICHALSKI [1988]), because on the set {xki } one cannot define the binary semigroup struc- ture with respect to ordinary addition and multiplication. Derived polyadic rings which consist of the repeated binary sums and binary products were considered in LEESON AND BUTSON [1980]. Lemma 6.2. In case (m − 1) a b = I(m) (a, b) = I = integer (6.4) the algebraic structure [[a]]b | νm is a commutative m-ary group. Proof. The closure of the operation (6.2) can be written as xk1 + xk2 + . . . + xkm = xk0 , or ma + b (k1 + k2 + . . . + km) = a+bk0, and then k0 = (m − 1) a/b+(k1 + k2 + . . . + km), from (6.4). The (total) associativity and commutativity of νm follows from those of the addition in the binary Z. Each element xk has its unique querelement ˜x = x˜k determined by the equation (m − 1) xk + x˜k = xk, which (uniquely, for any k ∈ Z) gives ˜k = bk (2 − m) − (m − 1) a b . (6.5) Thus, each element is “querable” (polyadic invertible), and so [[a]]b | νm is a m-ary group. Example 6.3. For a = 2, b = 7 we have 8-ary group, and the querelement of xk is ˜x = x(−2−12k). Proposition 6.4. The m-ary commutative group [[a]]b | νm : 1) has an infinite number of neutral sequences for each element; 2) if a = 0, it has no “unit” (which is actually zero, because νm plays the role of “addition”); 3) in case of the zero congruence class [[0]]b the zero is xk = 0. Proof. 1) The (additive) neutral sequence ˜nm−1 of the length (m − 1) is defined by νm [˜nm−1, xk] = xk. Using (6.2), we take ˜nm−1 = xk1 + xk2 + . . . + xkm−1 = 0 and obtain the equation (m − 1) a + b (k1 + k2 + . . . + km−1) = 0. (6.6) Because of (6.4), we obtain k1 + k2 + . . . + km−1 = −I(m) (a, b) , (6.7) and so there is an infinite number of sums satisfying this condition. 2) The polyadic “unit”/zero z = xk0 = a + bk0 satisfies νm m−1 z, z, . . . , z, xk = xk for all xk ∈ [[a]]b (the neutral sequence ˜nm−1 consists of one element z only), which gives (m − 1) (a + bk0) = 0 having no solutions with a = 0, since a < b. 3) In the case a = 0, the only solution is z = xk=0 = 0. Example 6.5. In case a = 1, b = 2 we have m = 3 and I(3) (1, 2) = 1, and so from (6.6) we get k1 + k2 = −1, thus the infinite number of neutral sequences consists of 2 elements ˜n2 = xk + x−1−k, with arbitrary k ∈ Z.
  • 32. 32 STEVEN DUPLIJ Lemma 6.6. If an − a b = J(n) (a, b) = J = integer, (6.8) then [[a]]b | µn is a commutative n-ary semigroup. Proof. It follows from (6.3), that the closeness of the operation µn is xk1 xk2 . . . xkn = xk0 , which can be written as an + b (integer) = a + bk0 leading to (6.8). The (total) associativity and commutativity of µn follows from those of the multiplication in Z. Definition 6.7. A unique pair of integers (I, J) is called a (polyadic) shape invariants of the congru- ence class [[a]]b. Theorem 6.8. The algebraic structure of the fixed congruence class [[a]]b is a polyadic (m, n)-ring R[a,b] m,n = [[a]]b | νm, µn , (6.9) where the arities m and n are minimal positive integers (more or equal 2), for which the congruences ma ≡ a (mod b) , (6.10) an ≡ a (mod b) (6.11) take place simultaneously, fixating its polyadic shape invariants (I, J). Proof. By Lemma 6.2, 6.6 the set [[a]]b is a m-ary group with respect to “m-ary addition” νm and a n- ary semigroup with respect to “n-ary multiplication” µn, while the polyadic distributivity (1.1)–(1.3) follows from (6.2) and (6.3) and the binary distributivity in Z. Remark 6.9. For a fixed b ≥ 2 there are b congruence classes [[a]]b, 0 ≤ a ≤ b − 1, and therefore exactly b corresponding polyadic (m, n)-rings R [a,b] m,n, each of them is infinite-dimensional. Corollary 6.10. In case gcd (a, b) = 1 and b is prime, there exists the solution n = b. Proof. Follows from (6.11) and Fermat’s little theorem. Remark 6.11. We exclude from consideration the zero congruence class [[0]]b, because the arities of operations νm and µn cannot be fixed up by (6.10)–(6.11) becoming identities for any m and n. Since the arities are uncertain, their minimal values can be chosen m = n = 2, and therefore, it follows from (6.2) and (6.3), R [0,b] 2,2 = Z. Thus, in what follows we always imply that a = 0 (without using a special notation, e.g. R∗ , etc.). In TABLE 3 we present the allowed (by (6.10)–(6.11)) arities of the polyadic ring R [a,b] m,n and the corresponding polyadic shape invariants (I, J) for b ≤ 10. Let us investigate the properties of R [a,b] m,n in more detail. First, we consider equal arity polyadic rings and find the relation between the corresponding congruence classes. Proposition 6.12. The residue (congruence) classes [[a]]b and [[a′ ]]b′ which are described by the polyadic rings of the same arities R [a,b] m,n and R [a′,b′] m,n are related by b′ I′ a′ = bI a , (6.12) a′ + b′ J′ = (a + bJ)loga a′ . (6.13) Proof. Follows from (6.4) and (6.8). For instance, in TABLE 3 the congruence classes [[2]]5, [[3]]5, [[2]]10, and [[8]]10 are (6, 5)-rings. If, in addition, a = a′ , then the polyadic shapes satisfy I J = I′ J′ . (6.14)
  • 33. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 33 6.2. Limiting cases. The limiting cases a ≡ ±1 (mod b) are described by Corollary 6.13. The polyadic ring of the fixed congruence class [[a]]b is: 1) multiplicative binary, if a = 1; 2) multiplicative ternary, if a = b − 1; 3) additive (b + 1)-ary in both cases. That is, the limiting cases contain the rings R [1,b] b+1,2 and R [b−1,b] b+1,3 , respectively. They correspond to the first row and the main diagonal of TABLE 3. Their intersection consists of the (3, 2)-ring R [1,2] 3,2 . Definition 6.14. The congruence classes [[1]]b and [[b − 1]]b are called the limiting classes, and the corresponding polyadic rings are named the limiting polyadic rings of a fixed congruence class. Proposition 6.15. In the limiting cases a = 1 and a = b − 1 the n-ary semigroup [[a]]b | µn : 1) has the neutral sequences of the form ¯nn−1 = xk1 xk2 . . . xkn−1 = 1, where xki = ±1; 2) has a) the unit e = xk=1 = 1, for the limiting class [[1]]b, b) the unit e− = xk=−1 = −1, if n is odd, for [[b − 1]]b, c) the class [[1]]2 contains both polyadic units e and e− ; 3) has the set of “querable” (polyadic invertible) elements which consist of ¯x = x¯k = ±1; 4) has in the “intersecting” case a = 1, b = 2 and n = 2 the binary subgroup Z2 = {1, −1}, while other elements have no inverses. Proof. 1) The (multiplicative) neutral sequence ¯nn−1 of length (n − 1) is defined by µn [¯nn−1, xk] = xk. It follows from (6.3) and cancellativity in Z, that ¯nn−1 = xk1 xk2 . . . xkn−1 = 1 which is (a + bk1) (a + bk2) . . . (a + bkn−1) = 1. (6.15) The solution of this equation in integers is the following: a) all multipliers are a + bki = 1, i = 1, . . . , n − 1; b) an even number of multipliers can be a + bki = −1, while the others are 1. 2) If the polyadic unit e = xk1 = a + bk1 exists, it should satisfy µm n−1 e, e, . . . , e, xk = xk ∀xk ∈ [[a]]b | µn , such that the neutral sequence ¯nn−1 consists of one element e only, and this leads to (a + bk1)n−1 = 1. For any n this equation has the solution a + bk1 = 1, which uniquely gives a = 1 and k1 = 0, thus e = xk1=0 = 1. If n is odd, then there exists a “negative unit” e− = xk1=−1 = −1, such that a + bk1 = −1, which can be uniquely solved by k1 = −1 and a = b − 1. The neutral sequence becomes ¯nn−1 = n−1 e− , e− , . . . , e− = 1, as a product of an even number of e− = −1. The intersection of limiting classes consists of one class [[1]]2, and therefore it contains both polyadic units e and e− . 3) An element xk in [[a]]b | µn is “querable”, if there exists its querelement ¯x = x¯k such that µn n−1 xk, xk, . . . , xk, ¯x = xk. Using (6.3) and the cancellativity in Z, we obtain the equa- tion (a + bk)n−2 a + b¯k = 1, which in integers has 2 solutions: a) (a + bk)n−2 = 1 and a + b¯k = 1, the last relation fixes up the class [[1]]b, and the arity of multiplication n = 2, and therefore the first relation is valid for all elements in the class, each of them has the same querelement ¯x = 1. This means that all elements in [[1]]b are “querable”, but only one element x = 1 has an inverse, which is also 1; b) (a + bk)n−2 = −1 and a + b¯k = −1. The second relation fixes the class [[b − 1]]b, and from the first relation we conclude that the arity n should be odd. In this case only one element −1 is “querable”, which has ¯x = −1, as a querelement. 4) The “intersecting” class [[1]]2 contains 2 “querable” elements ±1 which coincide with their inverses, which means that {+1, −1} is a binary subgroup (that is Z2) of the binary semigroup [[1]]2 | µ2 .
  • 34. 34 STEVEN DUPLIJ Corollary 6.16. In the non-limiting cases a = 1, b − 1, the n-ary semigroup [[a]]b | µn contains no “querable” (polyadic invertible) elements at all. Proof. It follows from (a + bk) = ±1 for any k ∈ Z or a = ±1 (mod b). TABLE 3. The polyadic ring R Z(a,b) m,n of the fixed residue class [[a]]b: arity shape. a b 2 3 4 5 6 7 8 9 10 1 m = 3 n = 2 I = 1 J = 0 m = 4 n = 2 I = 1 J = 0 m = 5 n = 2 I = 1 J = 0 m = 6 n = 2 I = 1 J = 0 m = 7 n = 2 I = 1 J = 0 m = 8 n = 2 I = 1 J = 0 m = 9 n = 2 I = 1 J = 0 m = 10 n = 2 I = 1 J = 0 m = 11 n = 2 I = 1 J = 0 2 m = 4 n = 3 I = 2 J = 2 m = 6 n = 5 I = 2 J = 6 m = 4 n = 3 I = 1 J = 1 m = 8 n = 4 I = 2 J = 2 m = 10 n = 7 I = 2 J = 14 m = 6 n = 5 I = 1 J = 3 3 m = 5 n = 3 I = 3 J = 6 m = 6 n = 5 I = 3 J = 48 m = 3 n = 2 I = 1 J = 1 m = 8 n = 7 I = 3 J = 312 m = 9 n = 3 I = 3 J = 3 m = 11 n = 5 I = 3 J = 24 4 m = 6 n = 3 I = 4 J = 12 m = 4 n = 2 I = 2 J = 2 m = 8 n = 4 I = 4 J = 36 m = 10 n = 4 I = 4 J = 28 m = 6 n = 3 I = 2 J = 6 5 m = 7 n = 3 I = 5 J = 20 m = 8 n = 7 I = 5 J = 11160 m = 9 n = 3 I = 5 J = 15 m = 10 n = 7 I = 5 J = 8680 m = 3 n = 2 I = 1 J = 2 6 m = 8 n = 3 I = 6 J = 30 m = 6 n = 2 I = 3 J = 3 7 m = 9 n = 3 I = 7 J = 42 m = 10 n = 4 I = 7 J = 266 m = 11 n = 5 I = 7 J = 1680 8 m = 10 n = 3 I = 8 J = 56 m = 6 n = 5 I = 4 J = 3276 9 m = 11 n = 3 I = 9 J = 72 Based on the above statements, consider in the properties of the polyadic rings R [a,b] m,n (a = 0) describing non-zero congruence classes (see Remark 6.11). Definition 6.17. The infinite set of representatives of the congruence (residue) class [[a]]b having fixed arities and form the (m, n)-ring R [a,b] m,n is called the set of (polyadic) (m, n)-integers (numbers) and denoted Z(m,n). Just obviously, for ordinary integers Z = Z(2,2), and they form the binary ring R [0,1] 2,2 . Proposition 6.18. The polyadic ring R [a,b] m,n is a (m, n)-integral domain. Proof. It follows from the definitions (6.2)–(6.3), the condition a = 0, and commutativity and can- cellativity in Z.
  • 35. ARITY SHAPE OF POLYADIC ALGEBRAIC STRUCTURES 35 Lemma 6.19. There are no such congruence classes which can be described by polyadic (m, n)-field. Proof. Follows from Proposition 6.15 and Corollary 6.16. This statement for the limiting case [[1]]2 appeared in DUPLIJ AND WERNER [2015], while study- ing the ideal structure of the corresponding (3, 2)-ring. Proposition 6.20. In the limiting case a = 1 the polyadic ring R [1,b] b+1,2 can be embedded into a (b + 1, 2)-ary field. Proof. Because the polyadic ring R [1,b] b+1,2 of the congruence class [[1]]b is an (b + 1, 2)-integral domain by Proposition 6.18, we can construct in a standard way the correspondent (b + 1, 2)-quotient ring which is a (b + 1, 2)-ary field up to isomorphism, as was shown in CROMBEZ AND TIMM [1972]. By analogy, it can be called the field of polyadic rational numbers which have the form x = 1 + bk1 1 + bk2 , ki ∈ Z. (6.16) Indeed, they form a (b + 1, 2)-field, because each element has its inverse under multiplication (which is obvious) and additively “querable”, such that the equation for the querelement ¯x becomes νb+1 b x, x, . . . , x, ¯x = x which can be solved for any x, giving uniquely ¯x = − (b − 1) 1 + bk1 1 + bk2 . The introduced polyadic inner structure of the residue (congruence) classes allows us to extend various number theory problems by considering the polyadic (m, n)-integers Z(m,n) instead of Z. 7. EQUAL SUMS OF LIKE POWERS DIOPHANTINE EQUATION OVER POLYADIC INTEGERS First, recall the standard binary version of the equal sums of like powers Diophantine equation LANDER ET AL. [1967], EKL [1998]. Take the fixed non-negative integers p, q, l ∈ N0 , p ≤ q, and the positive integer unknowns ui, vj ∈ Z+, i = 1, . . . p + 1, j = 1, 1, . . . q + 1, then the Diophantine equation is p+1 i=1 ul+1 i = q+1 j=1 vl+1 j . (7.1) The trivial case, when ui = 0, vj = 0, for all i, j is not considered. We mark the solutions of (7.1) by the triple (l | p, q)r showing quantity of operations4 , where r (if it is used) is the order of the solution (ranked by the value of the sum) and the unknowns ui, vj are placed in ascending order ui ≤ ui+1, vj ≤ vj+1. Let us recall the Tarry-Escott problem (or multigrades problem) DORWART AND BROWN [1937]: to find the solutions to (7.1) for an equal number of summands on both sides of p = q and s equations simultaneously, such that l = 0, . . . , s. Known solutions exist for powers until s = 10, which are bounded such that s ≤ p (in our notations), see, also, NGUYEN [2016]. The solutions with highest powers s = p are the most interesting and called the ideal solutions BORWEIN [2002]. Theorem 7.1 (Frolov FROLOV [1889]). If the set of s Diophantine equations (7.1) with p = q for l = 0, . . . , s has a solution {ui, vi, i = 1, . . . p + 1}, then it has the solution {a + bui, a + bvi, i = 1, . . . p + 1}, where a, b ∈ Z are arbitrary and fixed. 4 In the binary case, the solutions of (7.1) are usually denoted by (l + 1 | p + 1, q + 1)r, which shows the number of summands on both sides and powers of elements LANDER ET AL. [1967]. But in the polyadic case (see below), the number of summands and powers do not coincide with l + 1, p + 1, q + 1, at all.
  • 36. 36 STEVEN DUPLIJ In the simplest case (1 | 0, 1), one term in l.h.s., one addition on the r.h.s. and one multiplication, the (coprime) positive numbers satisfying (7.1) are called a (primitive) Pythagorean triple. For the Fermat’s triple (l | 0, 1) with one addition on the r.h.s. and more than one multiplication l ≥ 2, there are no solutions of (7.1) , which is known as Fermat’s last theorem proved in WILES [1995]. There are many solutions known with more than one addition on both sides, where the highest number of multiplications till now is 31 (S. Chase, 2012). Before generalizing (7.1) for polyadic case we note the following. Remark 7.2. The notations in (7.1) are chosen in such a way that p and q are numbers of binary additions on both sides, while l is the number of binary multiplications in each term, which is natural for using polyadic powers DUPLIJ [2012]. 7.1. Polyadic analog of the Lander-Parkin-Selfridge conjecture. In LANDER ET AL. [1967], a generalization of Fermat’s last theorem was conjectured, that the solutions of (7.1) exist for small powers only, which can be formulated in terms of the numbers of operations as Conjecture 7.3 (Lander-Parkin-Selfridge LANDER ET AL. [1967]). There exist solutions of (7.1) in positive integers, if the number of multiplications is less than or equal than the total number of additions plus one 3 ≤ l ≤ lLSP = p + q + 1, (7.2) where p + q ≥ 2. Remark 7.4. If the equation (7.1) is considered over the binary ring of integers Z, such that ui, vj ∈ Z, it leads to a straightforward reformulation: for even powers it is obvious, but for odd powers all negative terms can be rearranged and placed on the other side. Let us consider the Diophantine equation (7.1) over polyadic integers Z(m,n) (i.e. over the polyadic (m, n)-ary ring RZ m,n) such that ui, vj ∈ RZ m,n. We use the “long products” µ (l) n and ν (l) m containing l operations, and also the “polyadic power” for an element x ∈ RZ m,n with respect to n-ary multiplica- tion DUPLIJ [2012] x l n = µ(l) n   l(n−1)+1 x, x, . . . , x   . (7.3) In the binary case, n = 2, the polyadic power coincides with (l + 1) power of an element x l 2 = xl+1 , which explains REMARK 7.2. In this notation the polyadic analog of the equal sums of like powers Diophantine equation has the form ν(p) m u l n 1 , u l n 2 , . . . , u l n p(m−1)+1 = ν(q) m v l n 1 , v l n 2 , . . . , v l n q(m−1)+1 , (7.4) where p and q are number of m-ary additions in l.h.s. and r.h.s. correspondingly. The solutions of (7.4) will be denoted by u1, u2, . . . , up(m−1)+1; v1, v2, . . . , vq(m−1)+1 . In the binary case m = 2, n = 2, (7.4) reduces to (7.1). Analogously, we mark the solutions of (7.4) by the polyadic triple (l | p, q)(m,n) r . Now the polyadic Pythagorean triple (1 | 0, 1)(m,n) , having one term on the l.h.s., one m-ary addition on the r.h.s. and one n-ary multiplication (elements are in the first polyadic power 1 n), becomes u 1 n 1 = νm v 1 n 1 , v 1 n 2 , . . . , v 1 n m . (7.5) Definition 7.5. The equation (7.5) solved by minimal u1, vi ∈ Z, i = 1, . . . , m can be named the polyadic Pythagorean theorem.