SlideShare a Scribd company logo
1 of 28
Download to read offline
SCCER EIP WP4
Synergies and optimal investments in large scale industrial
steam networks.
Stéphane Bungener
Energy efficiency and integration in the petrochemical and refining industry
in collaboration with INEOS Technologies
2012-2016
5th May 2015
IPESEIndustrial Process and
Energy Systems Engineering
1
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Plan
Data reconciliation
Steam network
optimisation
Energy integration
Industrial synergies
2
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Energy efficiency in industry
3
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Plan
Data reconciliation
Steam network
optimisation
Energy integration
Industrial synergies
4
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Data reconciliation
. Increase quality of measurements
. Calculate unmeasured properties
. Close mass and energy balances
5
Aim
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
2014-1-2 2014-2-2 2014-3-6 2014-4-6 2014-5-8 2014-6-8
Letdown1
0
10
20
Reconciledσ
Reconciledvalue
2014-1-2 2014-2-2 2014-3-6 2014-4-6 2014-5-8 2014-6-8
Letdown2[t/d]
0
10
20
30
Data processing methodology
6
[1] Modelling of a steam network using data reconciliation as a management tool, Energy Systems Conference, London, 2015
2014-1-2 2014-2-2 2014-3-6 2014-4-6 2014-5-8 2014-6-8
Efficiency[-]
0
0.5
1
Estimatedvalue
Reconciledσ
Reconciledvalue
Steam losses
Turbine efficiency follow-up
minX,Y
nmesX
i=1
(
yi y⇤
i
i
)2
s.t. MassBalance(X, Y ) = 0
EnergyBalance(X, Y ) = 0
Thermodynamic(X, Y ) = 0
ConstituveEquations(X, Y ) = 0
Performance(X, Y, ⇡) = 0
Inequalities(X, Y ) 0
min
Θ, xj,i j=1
nvar
∑
xi, j − xi, j
*
( )2
σi, j
2
i=1
nexp
∑
Soumis à h(xi, j,Θ) = 0 modèle
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Plan
Data reconciliation
Steam network
optimisation
Energy integration
Industrial synergies
7
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Energy integration
. Calculate
. energy bill
. minimum energy requirement
. Identify
. heat exchanger modifications
. infrastructure investments
8
Aim
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Energy integration
9
Method
the possibility of improving the system configuration. The ut
shown in Table 5; note that only the electricity used as hot uti
Heat load [kw]
Temperature[C]
vaporisation
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Energy integration
. Total site analysis
10
Method
Industrial industry pollution ,http://wall4all.me/walls/sports/industrial-industry-pollution-754852-1965x1080.jpg
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
. Total site analysis - energy bill
CC Loads [MW]
0 200 400 600 800 1000
Temperature[C]
-100
0
100
200
300
400
500
600
700
800
900
1000
Process hot streams
Utilities cold streams
Utilities hot streams
Process cold streams
GCC Loads [MW]
0 200 400 600
Utilities GCC
Process GCC
Utiltiy Cooling Demand: 633.7 MW
Utility Heating Demand: 123.8 MW
Minimum Energy Requirement (Hot): 0 MW
Minimum Energy Requirement (Cold): 508.6 MW
Energy integration
11
Method
[3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015
124 MW
634 MW
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
. Total site analysis - optimised
CC Loads [MW]
0 200 400 600 800 1000
Temperature[C]
-100
0
100
200
300
400
500
600
700
800
900
1000
Process hot streams
Utilities cold streams
Utilities hot streams
Process cold streams
GCC Loads [MW]
0 200 400 600
Utilities GCC
Process GCC
Utility Heating Demand: 0 MW
Minimum Energy Requirement (Hot): 0 MW
Utiltiy Cooling Demand: 509.9 MW
Minimum Energy Requirement (Cold): 508.6 MW
Energy integration
12
Method
[3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015
0 MW
510 MW
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Energy integration
. Multi-period
13
Method
100 200 300
UnitE[-]
0
0.5
1
100 200 300
UnitC2[-]
0
0.5
1
1.5
100 200 300
UnitC1[-]
0
0.5
1
1.5
Time [d]
100 200 300
UnitD[-]
0
0.5
1
Original profile
Multi-period profile
[3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Energy integration
. Multi-period
14
Method
Time [d]
50 100 150 200 250 300 350
Heatingrequirement[MW]
0
50
100
150
Time [d]
50 100 150 200 250 300 350
Coolingrequirement[MW]
300
400
500
600
700
MER
Energy Bill
[3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Plan
Data reconciliation
Steam network
optimisation
Energy integration
Industrial synergies
15
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Steam Network Optimisation Tool (SNOT)
. Optimise operations of steam network(s)
. meet demand
. minimise fuel consumption
. maximise turbine use
. overcome boiler failures
16
Operations optimisation - Aim
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Steam Network Optimisation Tool (SNOT)
17
Operations optimisation - Complexity
17
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Steam Network Optimisation Tool (SNOT)
18
Operations optimisation - Complexity
18
2000 4000 6000 8000
0
50
100
150
200
250
300
350
400
450
500
01.01.2014 −31.12.2014
SteamdemandSite1[t/h]
2000 4000 6000 8000
0
50
100
150
200
250
300
350
400
450
500
01.01.2014 −31.12.2014
SteamdemandSite2[t/h]
5 bar: 51/72
20 bar: 111/140
90 bar: 1/19
5 bar: 74/160
30 bar: 151/256
90 bar: 114/258
mean/max
Site 2Site 1
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Steam Network Optimisation Tool (SNOT)
. Optimise operations of a steam network
. meet demand
. minimise fuel consumption
. maximise turbine use
. overcome boiler failures
19
self regulating but not trivial!
Operations optimisation - Aim
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Steam Network Optimisation Tool (SNOT)
20
Operations optimisation - Method
. SNOT
. simple model definition
. multi-period by nature
. milp formulation
. Meet demand
. Minimise operational costs
. load shedding
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
0
100
200
300
400
500
600
700
800
900
SteamProduction[t/h]
Max production: 766 t/h
(a)
S1 Units: 30/51
S1 Desuperheat: 7/23
S1 Boilers: 178/180
S2 Units: 126/203
S2 Desuperheat: 12/36
S2 Boilers : 307/320
100
200
300
400
ainingcapacity[t/h]
Minimum remaining: 0 t/h
S1 Boilers: 2/41
S2 Boilers : 13/120
mean/max
Steam Network Optimisation Tool (SNOT)
21
Operations optimisation - Example
load shedding
ax production: 766 t/h
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Steam Network Optimisation Tool (SNOT)
22
Infrastructure optimisation - Aim
. Identify infrastructure investments
. operational optimisation
. resilience
long term stability through
supply chain management
concepts
[4] Optimisation of unit investment and load shedding in a steam network facing undercapacity. S. Bungener, F. Maréchal, G. Van Eetvelde, B. Descales, ECOS, 2015.
[5] Resilient decision making in steam network investments. S. Bungener, F. Maréchal, G. Van Eetvelde, B. Descales, PRES, 2015.
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Plan
Data reconciliation
Steam network
optimisation
Energy integration
Industrial synergies
23
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Industrial synergies
24
. Resilient investments
. Optimal operational strategies
Aim
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Industrial synergies
25
Aim
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Industrial synergies
26
Aim
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Energy efficiency and integration in the
petrochemical and refining industry.
27
Thank you for your attention
questions please
SCCER EIP May 2015 - Stéphane Bungener
IPESEIndustrial Process and
Energy Systems Engineering
Data reconciliation
. Flowsheeting tool + Optimiser





. p: penalty to minimise
. X: measurement/estimation
. X’: reconciled value
. σ: certitude of measurement X
28
Method
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
ethodology!
⟶ Construct physical model.
⟶ Associate weight/certitude (σ) to each measurement/estimation (X) 

⟶ X’ is the reconciled value of X.
⟶ Objective function (1) is to create a physical solution, while minimising
asthe penalty (p) associated with reconciling X.
ase Study!
⟶ Study carried out on major refinery and its utility system.
⟶ Process and utility modelled via flow sheeting tool with data
ssreconciliation engine using PIDs and surveys.
⟶ 435 online measures and 78 estimations were modelled.
ble: Weights and modelling technique for each type of measurements
min p =
X (X X0
)2
(1)
[2] Heyen, Georges, Eric Maréchal, and Boris Kalitventzeff. "Sensitivity calculations and variance analysis in plant measurement reconciliation." Computers & chemical
engineering 20 (1996): S539-S544.
[2]

More Related Content

What's hot

Clearfleau introduction - nextgen may2013 (rev1)
Clearfleau   introduction - nextgen may2013 (rev1)Clearfleau   introduction - nextgen may2013 (rev1)
Clearfleau introduction - nextgen may2013 (rev1)
squalt
 
CS GROUP BROCHURE 2015
CS GROUP BROCHURE 2015CS GROUP BROCHURE 2015
CS GROUP BROCHURE 2015
Faye Savill
 
April2003_Sue_salmon_AuSec Mention
April2003_Sue_salmon_AuSec Mention April2003_Sue_salmon_AuSec Mention
April2003_Sue_salmon_AuSec Mention
Martin Venier
 
Aggreko Corporate Presentation 2014_Global Version
Aggreko Corporate Presentation 2014_Global VersionAggreko Corporate Presentation 2014_Global Version
Aggreko Corporate Presentation 2014_Global Version
Kelly Phashion Andre
 

What's hot (13)

Clearfleau introduction - nextgen may2013 (rev1)
Clearfleau   introduction - nextgen may2013 (rev1)Clearfleau   introduction - nextgen may2013 (rev1)
Clearfleau introduction - nextgen may2013 (rev1)
 
CS GROUP BROCHURE 2015
CS GROUP BROCHURE 2015CS GROUP BROCHURE 2015
CS GROUP BROCHURE 2015
 
April2003_Sue_salmon_AuSec Mention
April2003_Sue_salmon_AuSec Mention April2003_Sue_salmon_AuSec Mention
April2003_Sue_salmon_AuSec Mention
 
Proof energy@work midih oc2-demo_day
Proof energy@work midih oc2-demo_dayProof energy@work midih oc2-demo_day
Proof energy@work midih oc2-demo_day
 
4th generation district heating
4th generation district heating4th generation district heating
4th generation district heating
 
Energy saving ideas
Energy saving ideasEnergy saving ideas
Energy saving ideas
 
Oberbeton-Invest
Oberbeton-InvestOberbeton-Invest
Oberbeton-Invest
 
IRJET- Wind Energy Storage Prediction using Machine Learning
IRJET- Wind Energy Storage Prediction using Machine LearningIRJET- Wind Energy Storage Prediction using Machine Learning
IRJET- Wind Energy Storage Prediction using Machine Learning
 
Risk mitigation strategies for retrofits
Risk mitigation strategies for retrofitsRisk mitigation strategies for retrofits
Risk mitigation strategies for retrofits
 
TESSOL's PlugNchill Refrigeration
TESSOL's PlugNchill RefrigerationTESSOL's PlugNchill Refrigeration
TESSOL's PlugNchill Refrigeration
 
Delivering a nearly zero energy commercial building
Delivering a nearly zero energy commercial buildingDelivering a nearly zero energy commercial building
Delivering a nearly zero energy commercial building
 
Why should we care about ductwork airtightness?
Why should we care about ductwork airtightness? Why should we care about ductwork airtightness?
Why should we care about ductwork airtightness?
 
Aggreko Corporate Presentation 2014_Global Version
Aggreko Corporate Presentation 2014_Global VersionAggreko Corporate Presentation 2014_Global Version
Aggreko Corporate Presentation 2014_Global Version
 

Viewers also liked

Core curriculum for digital library education programme - by Eric Boamah
Core curriculum for digital library education programme - by Eric BoamahCore curriculum for digital library education programme - by Eric Boamah
Core curriculum for digital library education programme - by Eric Boamah
DILL Digital Library Learning
 

Viewers also liked (11)

2003 TECH OUTLOOK
2003 TECH OUTLOOK2003 TECH OUTLOOK
2003 TECH OUTLOOK
 
Niños de la calle
Niños de la calleNiños de la calle
Niños de la calle
 
Commercial - Industrial mechanical aspects
Commercial - Industrial mechanical aspectsCommercial - Industrial mechanical aspects
Commercial - Industrial mechanical aspects
 
Servicio de guardamuebles en una mudanza
Servicio de guardamuebles en una mudanzaServicio de guardamuebles en una mudanza
Servicio de guardamuebles en una mudanza
 
Итоги работы Минэнерго России в 2015 году
Итоги работы Минэнерго России в 2015 годуИтоги работы Минэнерго России в 2015 году
Итоги работы Минэнерго России в 2015 году
 
Dermatoglyphics Multiple Intelligence Test
Dermatoglyphics Multiple Intelligence TestDermatoglyphics Multiple Intelligence Test
Dermatoglyphics Multiple Intelligence Test
 
Education of librarians and the challenges of the new library world - by Klau...
Education of librarians and the challenges of the new library world - by Klau...Education of librarians and the challenges of the new library world - by Klau...
Education of librarians and the challenges of the new library world - by Klau...
 
Core curriculum for digital library education programme - by Eric Boamah
Core curriculum for digital library education programme - by Eric BoamahCore curriculum for digital library education programme - by Eric Boamah
Core curriculum for digital library education programme - by Eric Boamah
 
PV systems
PV systemsPV systems
PV systems
 
Geografia del país vasco
Geografia del país vascoGeografia del país vasco
Geografia del país vasco
 
Program rio 2016
Program rio 2016Program rio 2016
Program rio 2016
 

Similar to SCCER-Conference

Using Information Technology to Meet the Carbon Challenge
Using Information Technology to Meet the Carbon Challenge Using Information Technology to Meet the Carbon Challenge
Using Information Technology to Meet the Carbon Challenge
Videoguy
 
KIC Coal and Gas Technologies Report
KIC Coal and Gas Technologies ReportKIC Coal and Gas Technologies Report
KIC Coal and Gas Technologies Report
Marcin Lewenstein
 
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
Gianmarco Rossi
 
ECD Monthly Report Aug 2015 (2)
ECD Monthly Report Aug 2015 (2)ECD Monthly Report Aug 2015 (2)
ECD Monthly Report Aug 2015 (2)
sfact
 

Similar to SCCER-Conference (20)

ENVOGUE - Energy Trending!
ENVOGUE - Energy Trending!ENVOGUE - Energy Trending!
ENVOGUE - Energy Trending!
 
sEEnergies – modelling approach linking different efficiency potentials
sEEnergies – modelling approach linking different efficiency potentials sEEnergies – modelling approach linking different efficiency potentials
sEEnergies – modelling approach linking different efficiency potentials
 
Solwatt Energy Performance Contract
Solwatt Energy Performance ContractSolwatt Energy Performance Contract
Solwatt Energy Performance Contract
 
Solwatt Energy Performance Contract
Solwatt Energy Performance ContractSolwatt Energy Performance Contract
Solwatt Energy Performance Contract
 
EnVogue July'14 Edition #EnergyEfficiency #EETPL #India
EnVogue July'14 Edition #EnergyEfficiency #EETPL #IndiaEnVogue July'14 Edition #EnergyEfficiency #EETPL #India
EnVogue July'14 Edition #EnergyEfficiency #EETPL #India
 
Electric Motor Systems: targeting and implementing efficiency improvements
Electric Motor Systems: targeting and implementing efficiency improvementsElectric Motor Systems: targeting and implementing efficiency improvements
Electric Motor Systems: targeting and implementing efficiency improvements
 
Using Information Technology to Meet the Carbon Challenge
Using Information Technology to Meet the Carbon Challenge Using Information Technology to Meet the Carbon Challenge
Using Information Technology to Meet the Carbon Challenge
 
KIC Coal and Gas Technologies Report
KIC Coal and Gas Technologies ReportKIC Coal and Gas Technologies Report
KIC Coal and Gas Technologies Report
 
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
 
MilenaSaenz
MilenaSaenzMilenaSaenz
MilenaSaenz
 
Measuring energy efficiency savings
Measuring energy efficiency savingsMeasuring energy efficiency savings
Measuring energy efficiency savings
 
Bringing Energy Cost Control Back to the User
Bringing Energy Cost Control Back to the UserBringing Energy Cost Control Back to the User
Bringing Energy Cost Control Back to the User
 
Patrick riakos jeremy tarbox ara hvacr energy efficiency seminar 2016 - oeh v1 6
Patrick riakos jeremy tarbox ara hvacr energy efficiency seminar 2016 - oeh v1 6Patrick riakos jeremy tarbox ara hvacr energy efficiency seminar 2016 - oeh v1 6
Patrick riakos jeremy tarbox ara hvacr energy efficiency seminar 2016 - oeh v1 6
 
ECD Monthly Report Aug 2015 (2)
ECD Monthly Report Aug 2015 (2)ECD Monthly Report Aug 2015 (2)
ECD Monthly Report Aug 2015 (2)
 
ARC's Larry O'Brien Process Automation Presentation @ ARC Industry Forum 2010
ARC's Larry O'Brien Process Automation Presentation @ ARC Industry Forum 2010ARC's Larry O'Brien Process Automation Presentation @ ARC Industry Forum 2010
ARC's Larry O'Brien Process Automation Presentation @ ARC Industry Forum 2010
 
Digital Lime trasformation
Digital Lime trasformationDigital Lime trasformation
Digital Lime trasformation
 
Digital Lime trasformation
Digital Lime trasformationDigital Lime trasformation
Digital Lime trasformation
 
Company Deck E-Cube Energy #EnergyAnalytics #EnergyEfficiency
Company Deck E-Cube Energy #EnergyAnalytics #EnergyEfficiencyCompany Deck E-Cube Energy #EnergyAnalytics #EnergyEfficiency
Company Deck E-Cube Energy #EnergyAnalytics #EnergyEfficiency
 
Technologie - Wasserkraft für den Strommarkt der Zukunft
Technologie - Wasserkraft für den Strommarkt der ZukunftTechnologie - Wasserkraft für den Strommarkt der Zukunft
Technologie - Wasserkraft für den Strommarkt der Zukunft
 
The Digital Utility Plant: Unlocking value from the digitization of production
The Digital Utility Plant: Unlocking value from the digitization of productionThe Digital Utility Plant: Unlocking value from the digitization of production
The Digital Utility Plant: Unlocking value from the digitization of production
 

SCCER-Conference

  • 1. SCCER EIP WP4 Synergies and optimal investments in large scale industrial steam networks. Stéphane Bungener Energy efficiency and integration in the petrochemical and refining industry in collaboration with INEOS Technologies 2012-2016 5th May 2015 IPESEIndustrial Process and Energy Systems Engineering 1
  • 2. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Plan Data reconciliation Steam network optimisation Energy integration Industrial synergies 2
  • 3. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Energy efficiency in industry 3
  • 4. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Plan Data reconciliation Steam network optimisation Energy integration Industrial synergies 4
  • 5. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Data reconciliation . Increase quality of measurements . Calculate unmeasured properties . Close mass and energy balances 5 Aim
  • 6. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering 2014-1-2 2014-2-2 2014-3-6 2014-4-6 2014-5-8 2014-6-8 Letdown1 0 10 20 Reconciledσ Reconciledvalue 2014-1-2 2014-2-2 2014-3-6 2014-4-6 2014-5-8 2014-6-8 Letdown2[t/d] 0 10 20 30 Data processing methodology 6 [1] Modelling of a steam network using data reconciliation as a management tool, Energy Systems Conference, London, 2015 2014-1-2 2014-2-2 2014-3-6 2014-4-6 2014-5-8 2014-6-8 Efficiency[-] 0 0.5 1 Estimatedvalue Reconciledσ Reconciledvalue Steam losses Turbine efficiency follow-up minX,Y nmesX i=1 ( yi y⇤ i i )2 s.t. MassBalance(X, Y ) = 0 EnergyBalance(X, Y ) = 0 Thermodynamic(X, Y ) = 0 ConstituveEquations(X, Y ) = 0 Performance(X, Y, ⇡) = 0 Inequalities(X, Y ) 0 min Θ, xj,i j=1 nvar ∑ xi, j − xi, j * ( )2 σi, j 2 i=1 nexp ∑ Soumis à h(xi, j,Θ) = 0 modèle
  • 7. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Plan Data reconciliation Steam network optimisation Energy integration Industrial synergies 7
  • 8. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Energy integration . Calculate . energy bill . minimum energy requirement . Identify . heat exchanger modifications . infrastructure investments 8 Aim
  • 9. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Energy integration 9 Method the possibility of improving the system configuration. The ut shown in Table 5; note that only the electricity used as hot uti Heat load [kw] Temperature[C] vaporisation
  • 10. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Energy integration . Total site analysis 10 Method Industrial industry pollution ,http://wall4all.me/walls/sports/industrial-industry-pollution-754852-1965x1080.jpg
  • 11. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering . Total site analysis - energy bill CC Loads [MW] 0 200 400 600 800 1000 Temperature[C] -100 0 100 200 300 400 500 600 700 800 900 1000 Process hot streams Utilities cold streams Utilities hot streams Process cold streams GCC Loads [MW] 0 200 400 600 Utilities GCC Process GCC Utiltiy Cooling Demand: 633.7 MW Utility Heating Demand: 123.8 MW Minimum Energy Requirement (Hot): 0 MW Minimum Energy Requirement (Cold): 508.6 MW Energy integration 11 Method [3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015 124 MW 634 MW
  • 12. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering . Total site analysis - optimised CC Loads [MW] 0 200 400 600 800 1000 Temperature[C] -100 0 100 200 300 400 500 600 700 800 900 1000 Process hot streams Utilities cold streams Utilities hot streams Process cold streams GCC Loads [MW] 0 200 400 600 Utilities GCC Process GCC Utility Heating Demand: 0 MW Minimum Energy Requirement (Hot): 0 MW Utiltiy Cooling Demand: 509.9 MW Minimum Energy Requirement (Cold): 508.6 MW Energy integration 12 Method [3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015 0 MW 510 MW
  • 13. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Energy integration . Multi-period 13 Method 100 200 300 UnitE[-] 0 0.5 1 100 200 300 UnitC2[-] 0 0.5 1 1.5 100 200 300 UnitC1[-] 0 0.5 1 1.5 Time [d] 100 200 300 UnitD[-] 0 0.5 1 Original profile Multi-period profile [3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015
  • 14. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Energy integration . Multi-period 14 Method Time [d] 50 100 150 200 250 300 350 Heatingrequirement[MW] 0 50 100 150 Time [d] 50 100 150 200 250 300 350 Coolingrequirement[MW] 300 400 500 600 700 MER Energy Bill [3] Multi-period analysis of heat integration measures in industrial clusters, S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Maréchal. Energy (submitted), 2015
  • 15. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Plan Data reconciliation Steam network optimisation Energy integration Industrial synergies 15
  • 16. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Steam Network Optimisation Tool (SNOT) . Optimise operations of steam network(s) . meet demand . minimise fuel consumption . maximise turbine use . overcome boiler failures 16 Operations optimisation - Aim
  • 17. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Steam Network Optimisation Tool (SNOT) 17 Operations optimisation - Complexity 17
  • 18. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Steam Network Optimisation Tool (SNOT) 18 Operations optimisation - Complexity 18 2000 4000 6000 8000 0 50 100 150 200 250 300 350 400 450 500 01.01.2014 −31.12.2014 SteamdemandSite1[t/h] 2000 4000 6000 8000 0 50 100 150 200 250 300 350 400 450 500 01.01.2014 −31.12.2014 SteamdemandSite2[t/h] 5 bar: 51/72 20 bar: 111/140 90 bar: 1/19 5 bar: 74/160 30 bar: 151/256 90 bar: 114/258 mean/max Site 2Site 1
  • 19. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Steam Network Optimisation Tool (SNOT) . Optimise operations of a steam network . meet demand . minimise fuel consumption . maximise turbine use . overcome boiler failures 19 self regulating but not trivial! Operations optimisation - Aim
  • 20. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Steam Network Optimisation Tool (SNOT) 20 Operations optimisation - Method . SNOT . simple model definition . multi-period by nature . milp formulation . Meet demand . Minimise operational costs . load shedding
  • 21. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 0 100 200 300 400 500 600 700 800 900 SteamProduction[t/h] Max production: 766 t/h (a) S1 Units: 30/51 S1 Desuperheat: 7/23 S1 Boilers: 178/180 S2 Units: 126/203 S2 Desuperheat: 12/36 S2 Boilers : 307/320 100 200 300 400 ainingcapacity[t/h] Minimum remaining: 0 t/h S1 Boilers: 2/41 S2 Boilers : 13/120 mean/max Steam Network Optimisation Tool (SNOT) 21 Operations optimisation - Example load shedding ax production: 766 t/h
  • 22. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Steam Network Optimisation Tool (SNOT) 22 Infrastructure optimisation - Aim . Identify infrastructure investments . operational optimisation . resilience long term stability through supply chain management concepts [4] Optimisation of unit investment and load shedding in a steam network facing undercapacity. S. Bungener, F. Maréchal, G. Van Eetvelde, B. Descales, ECOS, 2015. [5] Resilient decision making in steam network investments. S. Bungener, F. Maréchal, G. Van Eetvelde, B. Descales, PRES, 2015.
  • 23. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Plan Data reconciliation Steam network optimisation Energy integration Industrial synergies 23
  • 24. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Industrial synergies 24 . Resilient investments . Optimal operational strategies Aim
  • 25. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Industrial synergies 25 Aim
  • 26. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Industrial synergies 26 Aim
  • 27. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Energy efficiency and integration in the petrochemical and refining industry. 27 Thank you for your attention questions please
  • 28. SCCER EIP May 2015 - Stéphane Bungener IPESEIndustrial Process and Energy Systems Engineering Data reconciliation . Flowsheeting tool + Optimiser
 
 
 . p: penalty to minimise . X: measurement/estimation . X’: reconciled value . σ: certitude of measurement X 28 Method ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ethodology! ⟶ Construct physical model. ⟶ Associate weight/certitude (σ) to each measurement/estimation (X) 
 ⟶ X’ is the reconciled value of X. ⟶ Objective function (1) is to create a physical solution, while minimising asthe penalty (p) associated with reconciling X. ase Study! ⟶ Study carried out on major refinery and its utility system. ⟶ Process and utility modelled via flow sheeting tool with data ssreconciliation engine using PIDs and surveys. ⟶ 435 online measures and 78 estimations were modelled. ble: Weights and modelling technique for each type of measurements min p = X (X X0 )2 (1) [2] Heyen, Georges, Eric Maréchal, and Boris Kalitventzeff. "Sensitivity calculations and variance analysis in plant measurement reconciliation." Computers & chemical engineering 20 (1996): S539-S544. [2]