Sample and Sampling
By Vikramjit Singh
Population:
Definition: The population is the entire group or collection of
individuals, objects, or data points about which you want to draw
conclusions. It includes every possible element of interest within a
given study or analysis.
Characteristics:
The population is typically large, and in many cases, it may be
impractical or impossible to collect data from the entire population.
Parameters, which are descriptive measures of the population,
such as the population mean, population standard deviation, and
population proportions, are used to describe population
characteristics.
Example: If you want to know the average height of all adults in a
country, the entire population of adults in that country would be
your population.
Universal Population:
Definition: The universal population, also known as the
"universe" or "theoretical population," refers to the entire group or
collection of all possible individuals, elements, or data points that
theoretically exist and are relevant to a particular research question
or study. It represents the most comprehensive and inclusive
concept.
Characteristics: The universal population includes all potential
members, even those that may be difficult or impossible to access or
study in practice.
Use: While the universal population provides a theoretical
foundation for a study, it is rarely, if ever, feasible to study every
element within it due to practical constraints. Researchers typically
focus on subsets of the universal population for their studies.
Example: If you're studying the income levels of all individuals in
a country, the universal population would include every person
residing in that country, regardless of their age, income, or any
other characteristics.
Target Population:
The target population is a specific subgroup or segment within the
universal population that is the primary focus of a researcher's
study. It is a more refined and well-defined subset of the universal
population.
Characteristics: The target population is typically defined based on
specific criteria or characteristics that are relevant to the research
question. Researchers aim to make inferences about this subgroup.
Use: The target population guides the selection of samples and the
research's overall scope. Findings and conclusions drawn from the
study are intended to be applied to the target population.
Example: If you're interested in understanding the income levels of
working-age adults (ages 25 to 65) in a specific city, this working-age
population within that city is your target population.
Accessible Population:
- Definition: The accessible population, also known as the "study
population," is the subset of the target population that is realistically
available and accessible for the researcher to study. It takes into
account practical limitations such as budget, time, and the ability to
reach and collect data from the desired individuals or elements.
Characteristics: The accessible population may not include all
members of the target population due to constraints in data
collection.
Use: Researchers often work with the accessible population
because it is more feasible to study. Findings from the accessible
population can still be used to make inferences about the target
population if the accessible population is a representative subset.
Example: If you plan to conduct interviews about workplace
satisfaction among working-age adults in a city, but you can only
access individuals who work in a particular industry within that city
due to budget constraints, then the individuals in that specific
industry constitute your accessible population.
In practice, researchers need to carefully define and delineate these
populations to ensure the relevance and generalizability of their
findings. While the universal population represents an idealized
concept, the target population is the group of primary interest, and
the accessible population is the subset that can be practically studied
within the constraints of the research project. Researchers aim to
draw valid conclusions about the target population based on their
findings from the accessible population.
Sample:
Definition: A sample is a subset or a smaller, manageable group
selected from the population. The goal of sampling is to collect data
from this subset and use it to make inferences or draw conclusions
about the entire population.
Characteristics:
A sample should be carefully selected to be representative of
the population it is drawn from. This means that the sample should
mirror the important characteristics of the population.
Statistics, which are numerical measures calculated from the
sample data, are used to estimate or infer population parameters.
Example: Instead of measuring the height of every adult in a
country, you could select a random sample of 1,000 adults and use
their heights to estimate the average height of the entire population.
3. Parameter:
Definition: A parameter is a numerical value that summarizes a
characteristic or feature of a population. Parameters are fixed
values that describe the population's properties.
Usage: Parameters are typically denoted using Greek letters.
For example, μ (mu) is used to represent the population mean, σ
(sigma) represents the population standard deviation, and p
represents population proportions.
Example: If you are studying the IQ scores of a population, the
parameter of interest might be the population mean IQ score (μ).
4. Statistic:
Definition: A statistic is a numerical value that summarizes a
characteristic or feature of a sample. Statistics are calculated from
the data collected in a sample and are used to estimate or infer
population parameters.
Usage: Statistics are typically denoted using Roman letters. For
example, x
̄ (xbar) represents the sample mean, s represents the
sample standard deviation, and p
̂ (phat) represents sample
proportions.
Example: If you calculate the average IQ score of a sample of
individuals, that calculated value is a statistic (x
̄ ).
In summary, the key differences are:
Population is the entire group you're interested in studying, while a
sample is a subset of the population used to make inferences about
the population.
Parameters are characteristics of the population, while statistics are
characteristics of the sample. Parameters are usually unknown and
estimated using statistics.
Sampling is a critical process in statistics because it allows us to
make inferences about populations without having to collect data
from every single element in the population, which is often
impractical or impossible.
Selecting a sample from a population is a critical step in many
statistical studies and surveys. The process of selecting a sample
aims to ensure that the sample is representative of the population,
which allows for valid and reliable statistical inferences. Here are
the typical steps followed in the selection of a sample from a
population:
Sampling is a critical process in research and statistics, involving
several key steps to ensure that the sample accurately represents the
population of interest. Here's a description of each step in the
sampling process:
1. Define the Population:
Population: The population is the entire group or collection of
individuals, elements, or data points about which you want to draw
conclusions. It's crucial to clearly define the population you're
interested in studying.
In research and sampling, the concepts of universal population,
target population, and accessible population are used to describe
different groups of individuals or elements, each with specific
characteristics and implications for the research process. Here's an
explanation of each:
Target Population: The target population is a specific subgroup
within the larger population that is the primary focus of your
research. It's a more refined and specific definition of the
population.
Example: If you are studying the income levels of residents in a
city, the population is all residents of that city. Your target
population might be residents aged 25 to 65 with a certain income
range.
2. Determine the Sampling Frame:
The sampling frame is a list or representation of all the
elements or individuals in the population or target population. It
serves as the basis for selecting the actual sample.
Ensure that the sampling frame is comprehensive and uptodate
to minimize the risk of excluding relevant elements.
Example: If your population is all registered voters in a state, the
sampling frame could be the official voter registration list for that
state.
3. Determine the Sample Size:
Calculate or decide on the appropriate sample size for your study.
This decision should consider factors like the desired level of
confidence, margin of error, and the variability in the population.
A larger sample size generally provides more accurate
estimates but may require more resources.
Example: If you're conducting a survey to estimate the proportion
of a specific opinion in a city's population with a margin of error of
5%, you may need a sample size of at least a few hundred
respondents.
4. Choose the Sampling Method:
Select an appropriate sampling method based on your research
objectives and available resources. The choice of method should aim
to achieve a representative sample.
Probability Sampling: In this method, each element in the
population has a known, non-zero probability of being selected.
Common probability sampling methods include simple random
sampling, stratified sampling, systematic sampling, and cluster
sampling. Probability sampling methods are preferred when you
want to ensure that your sample is representative of the population
Non – Probability Sampling: In this method, elements are selected
without a known probability of selection. Non-probability sampling
methods include convenience sampling, judgmental sampling, and
quota sampling. Non-probability sampling is often used when it is
difficult or impractical to use probability sampling methods.
Common sampling methods include simple random sampling,
stratified sampling, systematic sampling, cluster sampling,
convenience sampling, judgmental sampling, and snowball
sampling.
Example: If you are interested in understanding the political
preferences of voters in a state, you might use stratified sampling,
dividing the population into strata based on regions (urban,
suburban, rural) and then sampling randomly from each stratum.
5. Select the Sample:
Use the chosen sampling method to select the sample elements
from the sampling frame. Ensure that the selection process is
conducted without bias and adheres to the selected method.
Example: If you're using simple random sampling, you might use
a random number generator to select a random set of voter IDs
from the voter registration list.
6. Collect Data:
Once you've selected the sample, collect data from the selected
individuals or elements using an appropriate data collection method,
such as surveys, interviews, observations, or experiments.
7. Data Analysis and Inference:
Analyze the data collected from the sample using appropriate
statistical techniques. Use the results to make inferences about the
population or target population.
8. Report and Interpret Results:
Present your findings in a clear and meaningful manner,
including details about the sample, the methods used, and any
limitations of your study. Interpret the results in the context of your
research objectives.
9. Draw Implications:
Discuss the implications of your findings and how they relate to
your research question or hypothesis. Identify any practical or
policy implications.
10. Consider Ethical and Practical Concerns:
Throughout the sampling process, consider ethical
considerations, such as informed consent, privacy, and
confidentiality, especially when dealing with human subjects. Also,
account for practical constraints, including budget and time
limitations.
Each of these steps is critical in ensuring that your sample is
representative and that your study's results can be meaningfully
generalized to the larger population or target population you're
interested in studying. Careful planning and documentation are
essential for the validity and credibility of your research.
Importance of Sample and Sampling
Sample and sampling are crucial concepts in research, and they play
a pivotal role in ensuring the validity and reliability of research
findings. Here's an overview of their importance:
1. Representativeness: One of the primary goals of sampling is to
select a subset (sample) of a population that accurately represents
the entire population. In most cases, it's impractical or impossible to
study an entire population, so researchers rely on samples to draw
conclusions about the larger group. A well-chosen sample increases
the likelihood that findings can be generalized to the population.
2. Cost and Time Efficiency: Conducting research on an entire
population can be prohibitively expensive and time-consuming.
Sampling allows researchers to collect data from a smaller,
manageable subset of the population, which can save resources and
expedite the research process.
3. Reducing Bias: Random sampling techniques help minimize bias
in research. Bias can occur if certain groups within a population are
overrepresented or underrepresented in the sample. Random
sampling methods, such as simple random sampling or stratified
sampling, help ensure that each member of the population has an
equal chance of being included in the sample, reducing the potential
for bias.
4. Generalizability: When researchers carefully select a
representative sample, the findings from their study can often be
generalized to the larger population. This generalizability is critical
for making meaningful inferences and drawing conclusions that
apply beyond the specific sample studied.
5. Practicality: In some cases, the entire population may be too vast,
dispersed, or inaccessible to study comprehensively. Sampling allows
researchers to gather data efficiently and effectively, even when
studying populations that are geographically widespread or
otherwise challenging to access.
6. Ethical Considerations: In research involving humans or animals,
there are ethical constraints and considerations. Sampling can help
limit the number of individuals exposed to research procedures,
ensuring that research is conducted ethically and responsibly.
7. Statistical Analysis: Sampling provides a basis for conducting
statistical analyses. Researchers can use inferential statistics to make
inferences about the population based on the data collected from the
sample. Statistical techniques allow researchers to quantify
uncertainty and estimate population parameters with a degree of
confidence.
8. Resource Allocation: Sampling helps researchers allocate
resources efficiently. By focusing resources on the sample rather
than the entire population, researchers can gather more detailed
and high-quality data, increasing the chances of obtaining
meaningful results.
9. Manageability: Working with a smaller sample size makes data
collection, analysis, and interpretation more manageable.
Researchers can devote more attention to each data point, reducing
the risk of errors and oversights.
Hence, sample and sampling are essential components of research
methodology that enable researchers to draw meaningful
conclusions from a subset of a larger population. Properly designed
and executed sampling methods enhance the reliability, validity, and
practicality of research studies, making them valuable tools in the
research process.
Probability Sampling
Probability sampling is a sampling method in which every member
of the population has a known, non-zero chance of being selected as
part of the sample. This ensures that the sample is representative of
the population and allows for the application of statistical inference.
There are several types of probability sampling methods, each with
its own characteristics and applications. Here are some common
ones:
1. Simple Random Sampling:
- Method: In simple random sampling, each member of the
population has an equal chance of being selected. This is typically
achieved using random number generators or drawing lots.
- Use: It is suitable when the population is relatively small and
homogenous. It is the most basic form of probability sampling.
- Advantages: Unbiased, easy to implement.
- Disadvantages: May not be suitable for large or heterogeneous
populations.
2. Stratified Sampling:
- Method: The population is divided into subgroups or strata
based on certain characteristics (e.g., age, gender, income). Then,
random samples are selected from each stratum.
- Use: Ideal when the population is diverse, and you want to
ensure representation of different subgroups.
- Advantages: Ensures representation of subgroups, provides more
precision compared to simple random sampling.
- Disadvantages: Requires knowledge of population characteristics
to create strata.
3. Systematic Sampling:
- Method: Researchers select every nth individual from a list of the
population. The starting point is often randomly chosen.
- Use: Suitable for large populations when a complete list is
available.
- Advantages: Simpler and more practical than simple random
sampling for large populations.
- Disadvantages: May introduce bias if there is a hidden pattern in
the list.
4. Cluster Sampling:
- Method: The population is divided into clusters, and a random
sample of clusters is selected. Then, all members within the selected
clusters are included in the sample.
- Use: Useful when it is difficult to obtain a complete list of the
population, and the population naturally forms clusters.
- Advantages: Practical for large, geographically dispersed
populations.
- Disadvantages: May lead to less precision compared to other
methods if clusters are not truly representative.
5. Multi-Stage Sampling:
- Method: This method combines several sampling techniques. It
often involves a combination of cluster sampling, stratified
sampling, and simple random sampling in multiple stages.
- Use: Useful for very large and complex populations when a single
sampling method is not practical.
- Advantages: Can provide a balance between representativeness
and efficiency.
- Disadvantages: Complex to plan and implement.
6. Proportional Sampling:
- Description: Proportional sampling is a variation of stratified
sampling where the size of each stratum in the sample is
proportional to its size in the population. This ensures that larger
strata contribute more to the sample.
- Example: If you are conducting a political poll in a state with
three counties of varying populations, you might use proportional
sampling to ensure that each county's representation in the sample
reflects its population size.
Each type of probability sampling has its own strengths and
weaknesses, and the choice of method depends on the research
objectives, the characteristics of the population, and practical
considerations. Researchers must carefully select the most
appropriate sampling method to ensure the validity and reliability of
their study results.
Probability sampling is a sampling method in which each member of
the population has a known, non-zero chance of being selected as
part of the sample. It ensures that the sample is representative of the
population, which allows for more accurate generalizations and
statistical analysis. There are several different types of probability
sampling methods, each with its unique characteristics.
Non-Probability Sampling
Non-probability sampling methods are sampling techniques where
the probability of any member of the population being selected as
part of the sample is not known. Unlike probability sampling, these
methods do not rely on random selection and may introduce bias
into the sample. Non-probability sampling can be useful in certain
research situations but is generally considered less reliable for
making population inferences. Here are some common types of
non-probability sampling methods:
1. Convenience Sampling:
- Description: Convenience sampling involves selecting individuals
who are readily accessible or convenient to the researcher. This
method is quick, easy, and does not require a structured sampling
frame.
- Example: Surveying people who happen to be passing by a street
corner or interviewing friends and family members for research.
2. Judgmental or Purposive Sampling:
- Description: Judgmental sampling is based on the researcher's
judgment and expertise in selecting specific individuals or cases that
are believed to be most relevant to the research question. It's often
used in qualitative research.
- Example: A researcher studying a specific medical condition
might purposefully select patients from a particular clinic who have
the condition.
3. Snowball Sampling:
- Description: Snowball sampling is used when it's challenging to
identify and access members of a hidden or hard-to-reach
population. The researcher starts with a few participants and asks
them to refer other potential participants.
- Example: Studying the social networks of drug users, where one
participant refers the researcher to others within the same network.
4. Quota Sampling:
- Description: Quota sampling involves dividing the population
into specific subgroups (quotas) based on certain characteristics and
then non-randomly selecting individuals from each subgroup until a
predetermined quota for each group is met. It's used to ensure
diversity in the sample.
- Example: If you want to survey people about a product, you
might set quotas for different age groups, genders, and income levels
and then select participants who meet these criteria.
5. Volunteer or Self-Selection Sampling:
- Description: Volunteer or self-selection sampling occurs when
individuals voluntarily choose to participate in a study. This method
often results in a biased sample because those who choose to
participate may differ systematically from those who do not.
- Example: Online surveys where respondents self-select to
participate by clicking a link shared on social media.
6. Consecutive Sampling:
- Description: Consecutive sampling involves selecting all
individuals who meet the criteria for inclusion in the sample as they
become available. This method is often used in clinical or medical
settings.
- Example: A hospital may consecutively sample all patients who
arrive at the emergency room during a specific time period.
7. Haphazard or Accidental Sampling:
- Description: Haphazard sampling involves selecting individuals
without a specific plan or pattern. Researchers choose participants
based on convenience, availability, or some other non-random
method.
- Example: A researcher conducting interviews at a shopping mall
might approach people who are shopping without following a
systematic selection process.
7. Quasi-random Sampling:
- Description: Quasi-random sampling involves methods that
appear random but do not meet the strict criteria of probability
sampling. For example, using the last two digits of telephone
numbers to select respondents.
- Example: Dialing phone numbers that have been assigned to
specific geographic regions and selecting the last two digits
randomly.
Non-probability sampling methods are often chosen out of necessity
due to budget constraints, time limit.
Non-probability sampling methods can be useful in exploratory
research or when probability sampling is impractical or impossible
to implement. However, they often lack the representativeness and
generalizability of probability sampling, making it important for
researchers to acknowledge the limitations and potential biases
inherent in these methods.
Non-probability sampling methods are sampling techniques where
the probability of any given member of the population being
selected for the sample is not known. These methods are often used
when it is difficult or impractical to obtain a truly random sample.
While they do not guarantee representativeness or statistical validity
in the same way as probability sampling methods, they can still be
useful in certain research contexts.
Characteristics of a good Sample and things to take care while doing
sampling
A good sample is essential for obtaining reliable and valid research
results. The characteristics of a good sample, as well as
considerations for conducting sampling, are as follows:
Characteristics of a Good Sample:
1. Representativeness: A good sample accurately reflects the
characteristics of the entire population being studied. It should
include individuals or units that are diverse and relevant to the
research objectives.
2. Randomness: In probability sampling, elements should be
selected randomly to ensure that each member of the population has
an equal and independent chance of being included in the sample.
This reduces bias and enhances generalizability.
3. Adequate Size: The sample size should be sufficient to provide
statistical power and precision. A larger sample size generally leads
to more reliable estimates and allows for subgroup analysis if
necessary.
4. Precision: A good sample minimizes sampling error, ensuring that
the results are as close as possible to the true population parameters.
This is achieved through proper sample size calculations and
selection methods.
5. Unbiased Selection: Avoiding selection bias is crucial. The process
should be free from intentional or unintentional biases that favor
certain groups or characteristics within the population.
6. Feasibility: The sample should be feasible to obtain within the
constraints of time, budget, and available resources. Complex
sampling methods may be challenging to implement in some
situations.
Considerations for Sampling:
1. Define the Population: Clearly define the target population that
your research aims to study. This definition should be precise and
well-defined to guide the sampling process.
2. Sampling Frame: Develop a sampling frame, which is a list or
source from which the sample will be drawn. Ensure that the
sampling frame is comprehensive and up-to-date.
3. Sampling Method: Choose an appropriate sampling method
based on the research objectives and available resources. Probability
sampling methods are preferred when possible, as they provide a
solid basis for inference.
4. Randomization: If using probability sampling, employ
randomization techniques to ensure that every element has an equal
chance of selection. Random number generators or lottery-style
methods are commonly used.
5. Sample Size Calculation: Determine the appropriate sample size
based on the desired level of confidence, margin of error, and
variability in the population. This prevents under-sampling or
over-sampling.
6. Stratification: If necessary, stratify the population into subgroups
based on relevant characteristics (e.g., age, gender) and then sample
proportionally from each stratum to ensure representation.
7. Sampling Bias Mitigation: Take steps to minimize potential
biases, such as non-response bias or self-selection bias, through
careful survey design and data collection techniques.
8. Data Collection Methods: Choose appropriate data collection
methods (e.g., surveys, interviews, observations) and ensure that
they are standardized and consistent across the sample.
9. Documentation: Maintain detailed records of the sampling
process, including the sampling frame, method used, sample size,
and any deviations from the original plan.
10. Sampling Validity: Regularly assess the validity of the sample
throughout the research process. Check for any unexpected biases
or changes that may affect the representativeness of the sample.
11. Ethical Considerations: Ensure that the sampling process
adheres to ethical standards, including informed consent, privacy,
and confidentiality, especially when dealing with human subjects.
12. Data Analysis and Reporting: Analyze the sample data
rigorously, using appropriate statistical techniques, and report the
results with transparency, including any limitations or potential
sources of bias.
13. Adequate Size: The sample size should be large enough to
provide sufficient statistical power for analysis. A larger sample size
generally leads to more accurate estimates and greater precision.
14. Inclusiveness: The sample should include all relevant subgroups
or strata from the population. If the population has distinct
subpopulations, such as different age groups or regions, the sample
should represent these subgroups in proportion to their size in the
population.
15. Independence: Each sample unit should be independent of
others in the sample. In other words, the inclusion of one unit should
not influence the inclusion of another. Independence is crucial for
statistical analysis.
16. Feasibility: The sample should be practical to obtain within the
constraints of the research project, including time, budget, and
available resources. Researchers should consider the feasibility of
reaching certain subpopulations or groups.
By adhering to these characteristics and considerations, researchers
can enhance the quality and reliability of their samples, leading to
more robust research outcomes and meaningful findings.
Things to Take Care While Doing Sampling:
1. Define the Population: Clearly define the population from which
you are drawing the sample. A well-defined population helps in
making sampling decisions.
2. Choose the Sampling Method: Select an appropriate sampling
method based on the research objectives and available resources.
Probability sampling methods are preferred when possible.
3. Randomization: Ensure that randomization is used when
appropriate. Random sampling methods help minimize bias and
increase the chances of a representative sample.
4. Sample Size Calculation: Calculate the required sample size based
on statistical power and the desired level of confidence.
Under-sampling or over-sampling can lead to biased results.
5. Sampling Frame: Ensure that the sampling frame (the list or
source from which the sample is drawn) is accurate and up-to-date.
An incomplete or outdated frame can lead to sampling errors.
6. Sampling Errors: Be aware of various types of sampling errors,
including non-response bias (when some selected units do not
participate), coverage bias (when some units are not included in the
frame), and selection bias (when the sampling method is flawed).
7. Data Collection Procedure: Develop a clear and standardized
procedure for data collection to ensure consistency and reliability in
gathering information from the sample.
8. Record Keeping: Maintain detailed records of the sampling
process, including the method used, sampling frame, sample size,
and any deviations from the original plan.
9. Validation: After obtaining the sample, assess its
representativeness by comparing key characteristics of the sample to
the known characteristics of the population.
10. Analysis and Interpretation: When analyzing the data, account
for the sampling method used and any potential biases in the
sample. Clearly communicate the limitations of the sample in the
research findings.
11. Reporting: In research reports and publications, provide a
thorough description of the sampling process, including the method
used, sample size, and any challenges encountered during sampling.
A well-constructed and well-executed sampling plan is essential for
obtaining meaningful and reliable research results. Researchers
should carefully consider these characteristics and precautions to
ensure that their samples are of high quality and fit for the purpose
of the study.
प्रतिदर्श एवं प्रतिदर्शकरण
विक्रमजीत सिंह
समष्टि:
परिभाषा: समष्टि व्यक्तियों, वस्तुओं या डेटा बिंदुओं का संपूर्ण समूह
या संग्रह है जिसक
े बारे में आप निष्कर्ष निकालना चाहते हैं। इसमें किसी
दिए गए अध्ययन या विश्लेषण में रुचि क
े हर संभावित तत्व शामिल हैं।
विशेषताएँ:
समष्टि आम तौर पर बड़ी है, और कई मामलों में, पूरी आबादी से डेटा
एकत्र करना अव्यावहारिक या असंभव हो सकता है।
पैरामीटर, जो समष्टि क
े वर्णनात्मक उपाय हैं, जैसे समष्टि माध्य,
समष्टि मानक विचलन और समष्टि अनुपात, का उपयोग समष्टि
विशेषताओं का वर्णन करने क
े लिए किया जाता है।
उदाहरण: यदि आप किसी देश क
े सभी वयस्कों की औसत ऊ
ं चाई
जानना चाहते हैं, तो उस देश में वयस्कों की पूरी समष्टि आपकी समष्टि
होगी।
सार्वभौमिक समष्टि:
परिभाषा: सार्वभौमिक समष्टि, जिसे "ब्रह्मांड" या "सैद्धांतिक समष्टि"
क
े रूप में भी जाना जाता है, सभी संभावित व्यक्तियों, तत्वों या डेटा
बिंदुओं क
े पूरे समूह या संग्रह को संदर्भित करता है जो सैद्धांतिक रूप से
मौजूद हैं और किसी विशेष शोध प्रश्न या अध्ययन क
े लिए प्रासंगिक हैं।
यह सबसे व्यापक और समावेशी अवधारणा का प्रतिनिधित्व करता है।
पहुंच योग्य समष्टि:
- परिभाषा: सुलभ समष्टि, जिसे "अध्ययन समष्टि" क
े रूप में भी जाना
जाता है, लक्ष्य समष्टि का उपसमूह है जो शोधकर्ता क
े अध्ययन क
े लिए
वास्तविक रूप से उपलब्ध और सुलभ है। यह बजट, समय और वांछित
व्यक्तियों या तत्वों तक डेटा तक पहुंचने और एकत्र करने की क्षमता जैसी
व्यावहारिक सीमाओं को ध्यान में रखता है।
विशेषताएँ: डेटा संग्रह में बाधाओं क
े कारण सुलभ समष्टि में लक्ष्य
समष्टि क
े सभी सदस्य शामिल नहीं हो सकते हैं।
उपयोग: शोधकर्ता अक्सर सुलभ आबादी क
े साथ काम करते हैं क्योंकि
अध्ययन करना अधिक संभव है। यदि सुलभ समष्टि एक प्रतिनिधि
उपसमूह है, तो सुलभ समष्टि क
े निष्कर्षों का उपयोग लक्ष्य समष्टि क
े
बारे में अनुमान लगाने क
े लिए अभी भी किया जा सकता है।
उदाहरण: यदि आप किसी शहर में कामकाजी उम्र क
े वयस्कों क
े बीच
कार्यस्थल की संतुष्टि क
े बारे में साक्षात्कार आयोजित करने की योजना
बना रहे हैं, लेकिन बजट की कमी क
े कारण आप क
े वल उन व्यक्तियों तक
ही पहुंच सकते हैं जो उस शहर क
े किसी विशेष उद्योग में काम करते हैं,
तो उस विशिष्ट उद्योग क
े व्यक्ति आपकी पहुंच का हिस्सा होंगे।
समष्टि।
व्यवहार में, शोधकर्ताओं को अपने निष्कर्षों की प्रासंगिकता और
सामान्यीकरण सुनिश्चित करने क
े लिए इन आबादी को सावधानीपूर्वक
परिभाषित और चित्रित करने की आवश्यकता है। जबकि सार्वभौमिक
समष्टि एक आदर्श अवधारणा का प्रतिनिधित्व करती है, लक्ष्य समष्टि
प्राथमिक हित का समूह है, और सुलभ समष्टि वह उपसमूह है जिसका
अनुसंधान परियोजना की बाधाओं क
े भीतर व्यावहारिक रूप से अध्ययन
किया जा सकता है। शोधकर्ताओं का लक्ष्य सुलभ आबादी से अपने
निष्कर्षों क
े आधार पर लक्षित आबादी क
े बारे में वैध निष्कर्ष निकालना
है।
प्रतिदर्श:
परिभाषा: एक प्रतिदर्श समष्टि से चुना गया एक उपसमूह या छोटा,
प्रबंधनीय समूह है। प्रतिदर्शकरण का लक्ष्य इस उपसमूह से डेटा एकत्र
करना और इसका उपयोग संपूर्ण समष्टि क
े बारे में अनुमान लगाने या
निष्कर्ष निकालने क
े लिए करना है।
विशेषताएँ:
किसी प्रतिदर्श का चयन सावधानीपूर्वक किया जाना चाहिए ताकि वह
उस समष्टि का प्रतिनिधि हो जिससे वह लिया गया है। इसका मतलब यह
है कि प्रतिदर्श को समष्टि की महत्वपूर्ण विशेषताओं को प्रतिबिंबित करना
चाहिए।
सांख्यिकी, जो प्रतिदर्श डेटा से गणना की गई संख्यात्मक माप हैं, का
उपयोग समष्टि मापदंडों का अनुमान लगाने या अनुमान लगाने क
े लिए
किया जाता है।
उदाहरण: किसी देश में प्रत्येक वयस्क की ऊ
ं चाई मापने क
े बजाय, आप
1,000 वयस्कों का एक यादृच्छिक प्रतिदर्श चुन सकते हैं और पूरी आबादी
की औसत ऊ
ं चाई का अनुमान लगाने क
े लिए उनकी ऊ
ं चाई का उपयोग
कर सकते हैं।
3. पैरामीटर:
परिभाषा: एक पैरामीटर एक संख्यात्मक मान है जो किसी समष्टि की
विशेषता या विशेषता का सारांश प्रस्तुत करता है। पैरामीटर निश्चित मान
हैं जो समष्टि क
े गुणों का वर्णन करते हैं।
उपयोग: पैरामीटर आमतौर पर ग्रीक अक्षरों का उपयोग करक
े दर्शाए जाते
हैं। उदाहरण क
े लिए, μ (mu) का उपयोग समष्टि माध्य को दर्शाने क
े
लिए किया जाता है, σ (सिग्मा) समष्टि मानक विचलन का प्रतिनिधित्व
करता है, और p समष्टि अनुपात का प्रतिनिधित्व करता है।
उदाहरण: यदि आप किसी समष्टि क
े आईक्यू स्कोर का अध्ययन कर
रहे हैं, तो रुचि का पैरामीटर समष्टि माध्य आईक्यू स्कोर (μ) हो सकता
है।
4. आँकड़ा:
परिभाषा: एक आँकड़ा एक संख्यात्मक मान है जो किसी प्रतिदर्श की
किसी विशेषता या विशेषता का सारांश प्रस्तुत करता है। आंकड़ों की
गणना एक प्रतिदर्श में एकत्र किए गए डेटा से की जाती है और इसका
उपयोग समष्टि मापदंडों का अनुमान लगाने या अनुमान लगाने क
े लिए
किया जाता है।
उपयोग: सांख्यिकी को आमतौर पर रोमन अक्षरों का उपयोग करक
े
दर्शाया जाता है। उदाहरण क
े लिए, x
̄ (xbar) प्रतिदर्श माध्य का
प्रतिनिधित्व करता है, s प्रतिदर्श मानक विचलन का प्रतिनिधित्व करता
है, और p
̂ (phat) प्रतिदर्श अनुपात का प्रतिनिधित्व करता है।
उदाहरण: यदि आप व्यक्तियों क
े प्रतिदर्श क
े औसत आईक्यू स्कोर की
गणना करते हैं, तो वह परिकलित मान एक आँकड़ा (x
̄ ) है।
संक्षेप में, मुख्य अंतर ये हैं:
समष्टि वह संपूर्ण समूह है जिसका अध्ययन करने में आपकी रुचि है,
जबकि प्रतिदर्श समष्टि का एक उपसमूह है जिसका उपयोग समष्टि क
े
बारे में अनुमान लगाने क
े लिए किया जाता है।
पैरामीटर समष्टि की विशेषताएँ हैं, जबकि आँकड़े प्रतिदर्श की विशेषताएँ
हैं। पैरामीटर आमतौर पर अज्ञात होते हैं और आंकड़ों का उपयोग करक
े
अनुमान लगाया जाता है।
सांख्यिकी में प्रतिदर्शकरण एक महत्वपूर्ण प्रक्रिया है क्योंकि यह हमें
आबादी क
े हर एक तत्व से डेटा एकत्र किए बिना आबादी क
े बारे में
अनुमान लगाने की अनुमति देता है, जो अक्सर अव्यावहारिक या असंभव
होता है।
कई सांख्यिकीय अध्ययनों और सर्वेक्षणों में समष्टि से एक प्रतिदर्श
चुनना एक महत्वपूर्ण कदम है। प्रतिदर्श चुनने की प्रक्रिया का उद्देश्य यह
सुनिश्चित करना है कि प्रतिदर्श समष्टि का प्रतिनिधि है, जो वैध और
विश्वसनीय सांख्यिकीय निष्कर्षों की अनुमति देता है। समष्टि से प्रतिदर्श
क
े चयन में अपनाए जाने वाले विशिष्ट चरण यहां दिए गए हैं:
प्रतिदर्शकरण अनुसंधान और सांख्यिकी में एक महत्वपूर्ण प्रक्रिया है,
जिसमें यह सुनिश्चित करने क
े लिए कई महत्वपूर्ण चरण शामिल हैं कि
प्रतिदर्श रुचि की आबादी का सटीक प्रतिनिधित्व करता है। प्रतिदर्शकरण
प्रक्रिया क
े प्रत्येक चरण का विवरण यहां दिया गया है:
1. समष्टि को परिभाषित करें:
समष्टि: समष्टि व्यक्तियों, तत्वों या डेटा बिंदुओं का संपूर्ण समूह या
संग्रह है जिसक
े बारे में आप निष्कर्ष निकालना चाहते हैं। आप जिस
समष्टि का अध्ययन करने में रुचि रखते हैं उसे स्पष्ट रूप से परिभाषित
करना महत्वपूर्ण है।
अनुसंधान और प्रतिदर्श में, सार्वभौमिक समष्टि, लक्ष्य समष्टि और
सुलभ समष्टि की अवधारणाओं का उपयोग व्यक्तियों या तत्वों क
े
विभिन्न समूहों का वर्णन करने क
े लिए किया जाता है, जिनमें से प्रत्येक
अनुसंधान प्रक्रिया क
े लिए विशिष्ट विशेषताओं और निहितार्थों क
े साथ
होता है। यहां प्रत्येक का स्पष्टीकरण दिया गया है:
लक्षित समष्टि: लक्षित समष्टि बड़ी समष्टि क
े भीतर एक विशिष्ट
उपसमूह है जो आपक
े शोध का प्राथमिक फोकस है। यह समष्टि की
अधिक परिष्कृ त और विशिष्ट परिभाषा है।
उदाहरण: यदि आप किसी शहर में निवासियों क
े आय स्तर का
अध्ययन कर रहे हैं, तो समष्टि उस शहर क
े सभी निवासी हैं। आपकी
लक्षित समष्टि एक निश्चित आय सीमा क
े साथ 25 से 65 वर्ष की आयु
क
े निवासी हो सकते हैं।
2. प्रतिदर्शकरण फ़्र
े म निर्धारित करें:
प्रतिदर्शकरण फ़्र
े म समष्टि या लक्षित समष्टि क
े सभी तत्वों या व्यक्तियों
की एक सूची या प्रतिनिधित्व है। यह वास्तविक प्रतिदर्श क
े चयन क
े लिए
आधार क
े रूप में कार्य करता है।
सुनिश्चित करें कि प्रासंगिक तत्वों को बाहर करने क
े जोखिम को कम
करने क
े लिए प्रतिदर्शकरण फ्र
े म व्यापक और अद्यतन है।
उदाहरण: यदि आपकी समष्टि किसी राज्य में पंजीकृ त सभी
मतदाताओं की है, तो प्रतिदर्श फ्र
े म उस राज्य क
े लिए आधिकारिक
मतदाता पंजीकरण सूची हो सकता है।
3. प्रतिदर्श आकार निर्धारित करें:
अपने अध्ययन क
े लिए उपयुक्त प्रतिदर्श आकार की गणना करें या
निर्णय लें। इस निर्णय में आत्मविश्वास क
े वांछित स्तर, त्रुटि की संभावना
और समष्टि में परिवर्तनशीलता जैसे कारकों पर विचार किया जाना
चाहिए।
एक बड़ा प्रतिदर्श आकार आम तौर पर अधिक सटीक अनुमान प्रदान
करता है लेकिन अधिक संसाधनों की आवश्यकता हो सकती है।
उदाहरण: यदि आप 5% की त्रुटि की संभावना क
े साथ किसी शहर की
आबादी में किसी विशिष्ट राय क
े अनुपात का अनुमान लगाने क
े लिए एक
सर्वेक्षण कर रहे हैं, तो आपको कम से कम क
ु छ सौ उत्तरदाताओं क
े
प्रतिदर्श आकार की आवश्यकता हो सकती है।
4. प्रतिदर्शकरण विधि चुनें:
अपने शोध उद्देश्यों और उपलब्ध संसाधनों क
े आधार पर एक उपयुक्त
प्रतिदर्शकरण विधि का चयन करें। विधि क
े चयन का लक्ष्य प्रतिनिधि
प्रतिदर्श प्राप्त करना होना चाहिए।
संभाव्यता प्रतिदर्शकरण: इस पद्धति में, समष्टि में प्रत्येक तत्व क
े चुने
जाने की ज्ञात, गैर-शून्य संभावना होती है। सामान्य संभाव्यता
प्रतिदर्शकरण विधियों में सरल यादृच्छिक प्रतिदर्शकरण, स्तरीकृ त
प्रतिदर्शकरण, व्यवस्थित प्रतिदर्शकरण और क्लस्टर प्रतिदर्शकरण
शामिल हैं। जब आप यह सुनिश्चित करना चाहते हैं कि आपका प्रतिदर्श
समष्टि का प्रतिनिधि है तो संभाव्यता प्रतिदर्शकरण विधियों को
प्राथमिकता दी जाती है
गैर-संभाव्यता प्रतिदर्शकरण: इस पद्धति में, चयन की ज्ञात संभावना क
े
बिना तत्वों का चयन किया जाता है। गैर-संभाव्यता प्रतिदर्शकरण विधियों
में सुविधा प्रतिदर्शकरण, निर्णयात्मक प्रतिदर्शकरण और कोटा
प्रतिदर्शकरण शामिल हैं। गैर-संभाव्यता प्रतिदर्शकरण का उपयोग अक्सर
तब किया जाता है जब संभाव्यता प्रतिदर्शकरण विधियों का उपयोग
करना कठिन या अव्यावहारिक होता है।
सामान्य प्रतिदर्शकरण विधियों में सरल यादृच्छिक प्रतिदर्शकरण,
स्तरीकृ त प्रतिदर्शकरण, व्यवस्थित प्रतिदर्शकरण, क्लस्टर प्रतिदर्शकरण,
सुविधा प्रतिदर्शकरण, निर्णयात्मक प्रतिदर्शकरण और स्नोबॉल
प्रतिदर्शकरण शामिल हैं।
उदाहरण: यदि आप किसी राज्य में मतदाताओं की राजनीतिक
प्राथमिकताओं को समझने में रुचि रखते हैं, तो आप स्तरीकृ त प्रतिदर्श का
उपयोग कर सकते हैं, समष्टि को क्षेत्रों (शहरी, उपनगरीय, ग्रामीण) क
े
आधार पर स्तरों में विभाजित कर सकते हैं और फिर प्रत्येक स्तर से
यादृच्छिक रूप से प्रतिदर्श ले सकते हैं।
5. प्रतिदर्श चुनें:
सैंपलिंग फ्र
े म से प्रतिदर्श तत्वों का चयन करने क
े लिए चुनी गई सैंपलिंग
विधि का उपयोग करें। सुनिश्चित करें कि चयन प्रक्रिया बिना पक्षपात क
े
आयोजित की जाए और चयनित पद्धति का पालन किया जाए।
उदाहरण: यदि आप सरल यादृच्छिक प्रतिदर्शकरण का उपयोग कर रहे
हैं, तो आप मतदाता पंजीकरण सूची से मतदाता पहचान पत्रों क
े एक
यादृच्छिक सेट का चयन करने क
े लिए एक यादृच्छिक संख्या जनरेटर का
उपयोग कर सकते हैं।
6. डेटा एकत्र करें:
एक बार जब आप प्रतिदर्श चुन लेते हैं, तो उपयुक्त डेटा संग्रह विधि, जैसे
सर्वेक्षण, साक्षात्कार, अवलोकन या प्रयोग का उपयोग करक
े चयनित
व्यक्तियों या तत्वों से डेटा एकत्र करें।
7. डेटा विश्लेषण और अनुमान:
उचित सांख्यिकीय तकनीकों का उपयोग करक
े प्रतिदर्श से एकत्र किए गए
डेटा का विश्लेषण करें। समष्टि या लक्षित समष्टि क
े बारे में अनुमान
लगाने क
े लिए परिणामों का उपयोग करें।
8. रिपोर्ट करें और परिणामों की व्याख्या करें:
अपने निष्कर्षों को स्पष्ट और सार्थक तरीक
े से प्रस्तुत करें, जिसमें
प्रतिदर्श, उपयोग की गई विधियों और आपक
े अध्ययन की सीमाओं क
े
बारे में विवरण शामिल हों। अपने शोध उद्देश्यों क
े संदर्भ में परिणामों की
व्याख्या करें।
9. निहितार्थ निकालें:
अपने निष्कर्षों क
े निहितार्थों पर चर्चा करें और वे आपक
े शोध प्रश्न या
परिकल्पना से क
ै से संबंधित हैं। किसी भी व्यावहारिक या नीतिगत
निहितार्थ की पहचान करें।
10. नैतिक और व्यावहारिक चिंताओं पर विचार करें:
प्रतिदर्शकरण प्रक्रिया क
े दौरान, नैतिक विचारों पर विचार करें, जैसे
कि सूचित सहमति, गोपनीयता और गोपनीयता, खासकर मानवीय
विषयों से निपटते समय। इसक
े अलावा, बजट और समय सीमा सहित
व्यावहारिक बाधाओं को भी ध्यान में रखें।
इनमें से प्रत्येक चरण यह सुनिश्चित करने क
े लिए महत्वपूर्ण है कि
आपका प्रतिदर्श प्रतिनिधि है और आपक
े अध्ययन क
े परिणामों को उस
बड़ी आबादी या लक्षित आबादी क
े लिए सार्थक रूप से सामान्यीकृ त किया
जा सकता है जिसका आप अध्ययन करने में रुचि रखते हैं। आपक
े शोध
की वैधता और विश्वसनीयता क
े लिए सावधानीपूर्वक योजना और
दस्तावेज़ीकरण आवश्यक है।
सैम्पल एवं सैम्पलिंग का महत्व
प्रतिदर्श और प्रतिदर्शकरण अनुसंधान में महत्वपूर्ण अवधारणाएं हैं, और वे
अनुसंधान निष्कर्षों की वैधता और विश्वसनीयता सुनिश्चित करने में
महत्वपूर्ण भूमिका निभाते हैं। यहां उनक
े महत्व का अवलोकन दिया गया
है:
1. प्रतिनिधित्वशीलता: प्रतिदर्श क
े प्राथमिक लक्ष्यों में से एक समष्टि क
े
एक उपसमूह (प्रतिदर्श) का चयन करना है जो पूरी आबादी का सटीक
प्रतिनिधित्व करता है। ज्यादातर मामलों में, पूरी आबादी का अध्ययन
करना अव्यावहारिक या असंभव है, इसलिए शोधकर्ता बड़े समूह क
े बारे में
निष्कर्ष निकालने क
े लिए नमूनों पर भरोसा करते हैं। एक अच्छी तरह से
चुने गए प्रतिदर्श से यह संभावना बढ़ जाती है कि निष्कर्षों को समष्टि क
े
लिए सामान्यीकृ त किया जा सकता है।
2. लागत और समय दक्षता: संपूर्ण समष्टि पर शोध करना बेहद महंगा
और समय लेने वाला हो सकता है। प्रतिदर्शकरण शोधकर्ताओं को आबादी
क
े एक छोटे, प्रबंधनीय उपसमूह से डेटा एकत्र करने की अनुमति देता है,
जो संसाधनों को बचा सकता है और अनुसंधान प्रक्रिया को तेज कर सकता
है।
3. पूर्वाग्रह को कम करना: यादृच्छिक प्रतिदर्शकरण तकनीक अनुसंधान
में पूर्वाग्रह को कम करने में मदद करती है। यदि किसी समष्टि क
े भीतर
क
ु छ समूहों को प्रतिदर्श में अधिक या कम प्रतिनिधित्व दिया जाता है तो
पूर्वाग्रह उत्पन्न हो सकता है। यादृच्छिक प्रतिदर्शकरण विधियाँ, जैसे कि
सरल यादृच्छिक प्रतिदर्शकरण या स्तरीकृ त प्रतिदर्शकरण, यह सुनिश्चित
करने में मदद करती हैं कि समष्टि क
े प्रत्येक सदस्य को प्रतिदर्श में
शामिल होने का समान मौका मिलता है, जिससे पूर्वाग्रह की संभावना कम
हो जाती है।
4. सामान्यीकरण: जब शोधकर्ता सावधानीपूर्वक एक प्रतिनिधि प्रतिदर्श
का चयन करते हैं, तो उनक
े अध्ययन क
े निष्कर्षों को अक्सर बड़ी आबादी
क
े लिए सामान्यीकृ त किया जा सकता है। यह सामान्यीकरण सार्थक
निष्कर्ष निकालने और अध्ययन किए गए विशिष्ट प्रतिदर्श से परे लागू
होने वाले निष्कर्ष निकालने क
े लिए महत्वपूर्ण है।
5. व्यावहारिकता: क
ु छ मामलों में, संपूर्ण समष्टि व्यापक रूप से अध्ययन
करने क
े लिए बहुत विशाल, बिखरी हुई या दुर्गम हो सकती है।
प्रतिदर्शकरण शोधकर्ताओं को डेटा को क
ु शलतापूर्वक और प्रभावी ढंग से
इकट्ठा करने की अनुमति देता है, यहां तक ​
​
​
​
कि उन आबादी का अध्ययन
करते समय भी जो भौगोलिक रूप से व्यापक हैं या अन्यथा उन तक पहुंच
चुनौतीपूर्ण है।
6. नैतिक विचार: मनुष्यों या जानवरों से जुड़े शोध में नैतिक बाधाएँ और
विचार होते हैं। प्रतिदर्शकरण अनुसंधान प्रक्रियाओं क
े संपर्क में आने वाले
व्यक्तियों की संख्या को सीमित करने में मदद कर सकता है, यह
सुनिश्चित करते हुए कि अनुसंधान नैतिक और जिम्मेदारी से आयोजित
किया जाता है।
7. सांख्यिकीय विश्लेषण: प्रतिदर्शकरण सांख्यिकीय विश्लेषण करने क
े
लिए एक आधार प्रदान करता है। प्रतिदर्श से एकत्र किए गए डेटा क
े
आधार पर समष्टि क
े बारे में अनुमान लगाने क
े लिए शोधकर्ता
अनुमानित आंकड़ों का उपयोग कर सकते हैं। सांख्यिकीय तकनीक
ें
शोधकर्ताओं को अनिश्चितता की मात्रा निर्धारित करने और आत्मविश्वास
की डिग्री क
े साथ समष्टि मापदंडों का अनुमान लगाने की अनुमति देती
हैं।
8. संसाधन आवंटन: प्रतिदर्शकरण शोधकर्ताओं को संसाधनों को
क
ु शलतापूर्वक आवंटित करने में मदद करता है। संपूर्ण समष्टि क
े बजाय
प्रतिदर्श पर संसाधनों को क
ें द्रित करक
े , शोधकर्ता अधिक विस्तृत और
उच्च गुणवत्ता वाले डेटा एकत्र कर सकते हैं, जिससे सार्थक परिणाम प्राप्त
करने की संभावना बढ़ जाती है।
9. प्रबंधनीयता: छोटे प्रतिदर्श आकार क
े साथ काम करना डेटा संग्रह,
विश्लेषण और व्याख्या को अधिक प्रबंधनीय बनाता है। शोधकर्ता प्रत्येक
डेटा बिंदु पर अधिक ध्यान दे सकते हैं, जिससे त्रुटियों और चूक का
जोखिम कम हो जाता है।
इसलिए, प्रतिदर्श और प्रतिदर्शकरण अनुसंधान पद्धति क
े आवश्यक
घटक हैं जो शोधकर्ताओं को बड़ी आबादी क
े एक उपसमूह से सार्थक
निष्कर्ष निकालने में सक्षम बनाते हैं। उचित रूप से डिजाइन और
निष्पादित प्रतिदर्शकरण विधियां अनुसंधान अध्ययनों की विश्वसनीयता,
वैधता और व्यावहारिकता को बढ़ाती हैं, जिससे वे अनुसंधान प्रक्रिया में
मूल्यवान उपकरण बन जाते हैं।
सम्भाव्यता प्रतिदर्शचयन
संभाव्यता प्रतिदर्शकरण एक प्रतिदर्शकरण विधि है जिसमें समष्टि क
े
प्रत्येक सदस्य क
े पास प्रतिदर्श क
े भाग क
े रूप में चुने जाने की ज्ञात,
गैर-शून्य संभावना होती है। यह सुनिश्चित करता है कि प्रतिदर्श समष्टि
का प्रतिनिधि है और सांख्यिकीय अनुमान क
े अनुप्रयोग की अनुमति देता
है। संभाव्यता प्रतिदर्शकरण विधियाँ कई प्रकार की होती हैं, जिनमें से
प्रत्येक की अपनी विशेषताएँ और अनुप्रयोग होते हैं। यहाँ क
ु छ सामान्य हैं:
1. सरल यादृच्छिक प्रतिदर्शकरण:
- विधि: सरल यादृच्छिक प्रतिदर्श में, समष्टि क
े प्रत्येक सदस्य क
े चुने
जाने की समान संभावना होती है। यह आमतौर पर यादृच्छिक संख्या
जनरेटर या ड्राइंग लॉट का उपयोग करक
े प्राप्त किया जाता है।
- उपयोग: यह तब उपयुक्त है जब समष्टि अपेक्षाकृ त छोटी और
समरूप हो। यह संभाव्यता प्रतिदर्श का सबसे बुनियादी रूप है।
- लाभ: निष्पक्ष, कार्यान्वयन में आसान।
- नुकसान: बड़ी या विषम आबादी क
े लिए उपयुक्त नहीं हो सकता है।
2. स्तरीकृ त प्रतिदर्शकरण:
- विधि: समष्टि को क
ु छ विशेषताओं (जैसे, आयु, लिंग, आय) क
े आधार
पर उपसमूहों या स्तरों में विभाजित किया जाता है। फिर, प्रत्येक स्तर से
यादृच्छिक प्रतिदर्श चुने जाते हैं।
- उपयोग: आदर्श तब जब समष्टि विविध हो, और आप विभिन्न
उपसमूहों का प्रतिनिधित्व सुनिश्चित करना चाहते हों।
- लाभ: उपसमूहों का प्रतिनिधित्व सुनिश्चित करता है, सरल यादृच्छिक
प्रतिदर्श की तुलना में अधिक सटीकता प्रदान करता है।
- नुकसान: स्तर बनाने क
े लिए समष्टि विशेषताओं क
े ज्ञान की
आवश्यकता होती है।
3. व्यवस्थित प्रतिदर्शकरण:
- विधि: शोधकर्ता समष्टि की सूची से प्रत्येक nवें व्यक्ति का चयन
करते हैं। शुरुआती बिंदु अक्सर यादृच्छिक रूप से चुना जाता है।
- उपयोग: पूरी सूची उपलब्ध होने पर बड़ी आबादी क
े लिए उपयुक्त।
- लाभ: बड़ी आबादी क
े लिए सरल यादृच्छिक प्रतिदर्श की तुलना में
सरल और अधिक व्यावहारिक।
- नुकसान: यदि सूची में कोई छिपा हुआ पैटर्न है तो पूर्वाग्रह का परिचय
हो सकता है।
4. क्लस्टर प्रतिदर्शकरण:
- विधि: समष्टि को समूहों में विभाजित किया जाता है, और समूहों का
एक यादृच्छिक प्रतिदर्श चुना जाता है। फिर, चयनित क्लस्टर क
े सभी
सदस्यों को प्रतिदर्श में शामिल किया जाता है।
- उपयोग: तब उपयोगी जब समष्टि की पूरी सूची प्राप्त करना कठिन
हो, और समष्टि स्वाभाविक रूप से समूह बनाती हो।
- लाभ: बड़ी, भौगोलिक रूप से बिखरी हुई आबादी क
े लिए व्यावहारिक।
- नुकसान: यदि क्लस्टर वास्तव में प्रतिनिधि नहीं हैं तो अन्य तरीकों
की तुलना में कम सटीकता हो सकती है।
5. मल्टी-स्टेज सैंपलिंग:
- विधि: यह विधि कई प्रतिदर्शकरण तकनीकों को जोड़ती है। इसमें
अक्सर कई चरणों में क्लस्टर सैंपलिंग, स्तरीकृ त सैंपलिंग और सरल
यादृच्छिक सैंपलिंग का संयोजन शामिल होता है।
- उपयोग: बहुत बड़ी और जटिल आबादी क
े लिए उपयोगी जब एकल
प्रतिदर्शकरण विधि व्यावहारिक नहीं होती है।
- लाभ: प्रतिनिधित्व और दक्षता क
े बीच संतुलन प्रदान कर सकता है।
- नुकसान: योजना बनाना और लागू करना जटिल।
6. आनुपातिक प्रतिदर्शकरण:
- विवरण: आनुपातिक प्रतिदर्शकरण स्तरीकृ त प्रतिदर्श का एक रूप है
जहां प्रतिदर्श में प्रत्येक स्तर का आकार समष्टि में उसक
े आकार क
े
समानुपाती होता है। इससे यह सुनिश्चित होता है कि बड़े स्तर प्रतिदर्श में
अधिक योगदान देते हैं।
- उदाहरण: यदि आप अलग-अलग आबादी वाले तीन काउंटियों वाले
राज्य में राजनीतिक मतदान कर रहे हैं, तो आप यह सुनिश्चित करने क
े
लिए आनुपातिक प्रतिदर्शकरण का उपयोग कर सकते हैं कि प्रतिदर्श में
प्रत्येक काउंटी का प्रतिनिधित्व उसकी समष्टि क
े आकार को दर्शाता है।
प्रत्येक प्रकार क
े संभाव्यता प्रतिदर्श की अपनी ताकत और कमजोरियां
होती हैं, और विधि का चुनाव अनुसंधान क
े उद्देश्यों, समष्टि की
विशेषताओं और व्यावहारिक विचारों पर निर्भर करता है। शोधकर्ताओं को
अपने अध्ययन क
े परिणामों की वैधता और विश्वसनीयता सुनिश्चित
करने क
े लिए सबसे उपयुक्त प्रतिदर्शकरण विधि का सावधानीपूर्वक चयन
करना चाहिए।
संभाव्यता प्रतिदर्शकरण एक प्रतिदर्शकरण विधि है जिसमें समष्टि क
े
प्रत्येक सदस्य क
े पास प्रतिदर्श क
े भाग क
े रूप में चुने जाने की ज्ञात,
गैर-शून्य संभावना होती है। यह सुनिश्चित करता है कि प्रतिदर्श समष्टि
का प्रतिनिधि है, जो अधिक सटीक सामान्यीकरण और सांख्यिकीय
विश्लेषण की अनुमति देता है। संभाव्यता प्रतिदर्शकरण विधियाँ कई
अलग-अलग प्रकार की होती हैं, जिनमें से प्रत्येक की अपनी विशिष्ट
विशेषताएँ होती हैं।
गैर संभावित प्रतिदर्श
गैर-संभाव्यता प्रतिदर्शकरण विधियां प्रतिदर्शकरण तकनीक
ें हैं जहां
समष्टि क
े किसी भी सदस्य को प्रतिदर्श क
े हिस्से क
े रूप में चुने जाने की
संभावना ज्ञात नहीं है। संभाव्यता प्रतिदर्श क
े विपरीत, ये विधियां
यादृच्छिक चयन पर निर्भर नहीं होती हैं और प्रतिदर्श में पूर्वाग्रह ला
सकती हैं। गैर-संभाव्यता प्रतिदर्शकरण क
ु छ शोध स्थितियों में उपयोगी हो
सकता है लेकिन आम तौर पर समष्टि अनुमान लगाने क
े लिए इसे कम
विश्वसनीय माना जाता है। यहां क
ु छ सामान्य प्रकार की गैर-संभाव्यता
प्रतिदर्शकरण विधियां दी गई हैं:
1. सुविधा प्रतिदर्शकरण:
- विवरण: सुविधा प्रतिदर्श में ऐसे व्यक्तियों का चयन करना शामिल है
जो शोधकर्ता क
े लिए आसानी से सुलभ या सुविधाजनक हों। यह विधि
त्वरित, आसान है और इसक
े लिए संरचित प्रतिदर्शकरण फ़्र
े म की
आवश्यकता नहीं होती है।
- उदाहरण: सड़क क
े किनारे से गुज़र रहे लोगों का सर्वेक्षण करना या
शोध क
े लिए दोस्तों और परिवार क
े सदस्यों का साक्षात्कार लेना।
2. निर्णयात्मक या उद्देश्यपूर्ण प्रतिदर्शकरण:
- विवरण: निर्णयात्मक प्रतिदर्शकरण शोधकर्ता क
े निर्णय और उन
विशिष्ट व्यक्तियों या मामलों को चुनने की विशेषज्ञता पर आधारित होता
है जिन्हें शोध प्रश्न क
े लिए सबसे अधिक प्रासंगिक माना जाता है। इसका
उपयोग अक्सर गुणात्मक अनुसंधान में किया जाता है।
- उदाहरण: एक विशिष्ट चिकित्सा स्थिति का अध्ययन करने वाला एक
शोधकर्ता जानबूझकर किसी विशेष क्लिनिक से उन रोगियों का चयन कर
सकता है जिनकी यह स्थिति है।
3. स्नोबॉल प्रतिदर्शकरण:
- विवरण: स्नोबॉल सैंपलिंग का उपयोग तब किया जाता है जब किसी
छिपी हुई या पहुंच से बाहर की आबादी क
े सदस्यों की पहचान करना और
उन तक पहुंचना चुनौतीपूर्ण होता है। शोधकर्ता क
ु छ प्रतिभागियों से
शुरुआत करता है और उनसे अन्य संभावित प्रतिभागियों को संदर्भित
करने क
े लिए कहता है।
- उदाहरण: नशीली दवाओं क
े उपयोगकर्ताओं क
े सामाजिक नेटवर्क का
अध्ययन, जहां एक प्रतिभागी शोधकर्ता को उसी नेटवर्क क
े अन्य लोगों क
े
पास भेजता है।
4. कोटा प्रतिदर्शकरण:
- विवरण: कोटा प्रतिदर्शकरण में समष्टि को क
ु छ विशेषताओं क
े आधार
पर विशिष्ट उपसमूहों (कोटा) में विभाजित करना और फिर प्रत्येक समूह
क
े लिए पूर्व निर्धारित कोटा पूरा होने तक प्रत्येक उपसमूह से
गैर-यादृच्छिक रूप से व्यक्तियों का चयन करना शामिल है। इसका
उपयोग प्रतिदर्श में विविधता सुनिश्चित करने क
े लिए किया जाता है।
- उदाहरण: यदि आप किसी उत्पाद क
े बारे में लोगों का सर्वेक्षण करना
चाहते हैं, तो आप विभिन्न आयु समूहों, लिंग और आय स्तरों क
े लिए
कोटा निर्धारित कर सकते हैं और फिर इन मानदंडों को पूरा करने वाले
प्रतिभागियों का चयन कर सकते हैं।
5. स्वयंसेवक या स्व-चयन प्रतिदर्शकरण:
- विवरण: स्वयंसेवक या स्व-चयन प्रतिदर्शकरण तब होता है जब
व्यक्ति स्वेच्छा से किसी अध्ययन में भाग लेना चुनते हैं। इस पद्धति का
परिणाम अक्सर पक्षपातपूर्ण प्रतिदर्श होता है क्योंकि जो लोग भाग लेना
चुनते हैं वे व्यवस्थित रूप से उन लोगों से भिन्न हो सकते हैं जो भाग नहीं
लेते हैं।
- उदाहरण: ऑनलाइन सर्वेक्षण जहां उत्तरदाता सोशल मीडिया पर साझा
किए गए लिंक पर क्लिक करक
े भाग लेने क
े लिए स्व-चयन करते हैं।
6. लगातार प्रतिदर्शकरण:
- विवरण: लगातार प्रतिदर्श में उन सभी व्यक्तियों का चयन करना
शामिल है जो उपलब्ध होने पर प्रतिदर्श में शामिल करने क
े मानदंडों को
पूरा करते हैं। इस पद्धति का उपयोग अक्सर नैदानिक ​
​
या चिकित्सा
सेटिंग्स में किया जाता है।
- उदाहरण: एक अस्पताल एक विशिष्ट समय अवधि क
े दौरान
आपातकालीन कक्ष में पहुंचने वाले सभी रोगियों का लगातार प्रतिदर्श ले
सकता है।
7. अव्यवस्थित या आकस्मिक प्रतिदर्शकरण:
- विवरण: बेतरतीब प्रतिदर्श में किसी विशिष्ट योजना या पैटर्न क
े बिना
व्यक्तियों का चयन करना शामिल है। शोधकर्ता प्रतिभागियों को सुविधा,
उपलब्धता या किसी अन्य गैर-यादृच्छिक विधि क
े आधार पर चुनते हैं।
- उदाहरण: एक शॉपिंग मॉल में साक्षात्कार लेने वाला एक शोधकर्ता उन
लोगों से संपर्क कर सकता है जो व्यवस्थित चयन प्रक्रिया का पालन किए
बिना खरीदारी कर रहे हैं।
7. अर्ध-यादृच्छिक प्रतिदर्शकरण:
- विवरण: अर्ध-यादृच्छिक प्रतिदर्श में वे विधियाँ शामिल होती हैं जो
यादृच्छिक दिखाई देती हैं लेकिन संभाव्यता प्रतिदर्श क
े सख्त मानदंडों को
पूरा नहीं करती हैं। उदाहरण क
े लिए, उत्तरदाताओं का चयन करने क
े लिए
टेलीफोन नंबरों क
े अंतिम दो अंकों का उपयोग करना।
- उदाहरण: विशिष्ट भौगोलिक क्षेत्रों को निर्दिष्ट फ़ोन नंबर डायल
करना और अंतिम दो अंकों को यादृच्छिक रूप से चुनना।
बजट की कमी, समय सीमा क
े कारण गैर-संभाव्यता प्रतिदर्शकरण
विधियों को अक्सर आवश्यकता से बाहर चुना जाता है।
गैर-संभाव्यता प्रतिदर्शकरण विधियाँ खोजपूर्ण अनुसंधान में उपयोगी हो
सकती हैं या जब संभाव्यता प्रतिदर्शकरण अव्यावहारिक या लागू करना
असंभव हो। हालाँकि, उनमें अक्सर संभाव्यता प्रतिदर्श की
प्रतिनिधित्वशीलता और सामान्यीकरण का अभाव होता है, जिससे
शोधकर्ताओं क
े लिए इन तरीकों में निहित सीमाओं और संभावित पूर्वाग्रहों
को स्वीकार करना महत्वपूर्ण हो जाता है।
गैर-संभाव्यता प्रतिदर्शकरण विधियां प्रतिदर्शकरण तकनीक
ें हैं जहां
प्रतिदर्श क
े लिए समष्टि क
े किसी भी सदस्य क
े चुने जाने की संभावना
ज्ञात नहीं होती है। इन विधियों का उपयोग अक्सर तब किया जाता है जब
वास्तव में यादृच्छिक प्रतिदर्श प्राप्त करना कठिन या अव्यावहारिक होता
है। हालाँकि वे संभाव्यता प्रतिदर्शकरण विधियों की तरह ही प्रतिनिधित्व
या सांख्यिकीय वैधता की गारंटी नहीं देते हैं, फिर भी वे क
ु छ शोध संदर्भों
में उपयोगी हो सकते हैं।
एक अच्छे प्रतिदर्श की विशेषताएँ और प्रतिदर्श लेते समय ध्यान रखने
योग्य बातें
विश्वसनीय और वैध शोध परिणाम प्राप्त करने क
े लिए एक अच्छा
प्रतिदर्श आवश्यक है। एक अच्छे प्रतिदर्श की विशेषताएं, साथ ही प्रतिदर्श
लेने क
े विचार इस प्रकार हैं:
एक अच्छे प्रतिदर्श क
े लक्षण:
1. प्रतिनिधित्वशीलता: एक अच्छा प्रतिदर्श अध्ययन की जा रही पूरी
आबादी की विशेषताओं को सटीक रूप से दर्शाता है। इसमें ऐसे व्यक्ति या
इकाइयाँ शामिल होनी चाहिए जो अनुसंधान उद्देश्यों क
े लिए विविध और
प्रासंगिक हों।
2. यादृच्छिकता: संभाव्यता प्रतिदर्श में, तत्वों को यादृच्छिक रूप से चुना
जाना चाहिए ताकि यह सुनिश्चित किया जा सक
े कि समष्टि क
े प्रत्येक
सदस्य को प्रतिदर्श में शामिल होने का समान और स्वतंत्र मौका मिले।
इससे पूर्वाग्रह कम होता है और सामान्यीकरण बढ़ता है।
3. पर्याप्त आकार: प्रतिदर्श आकार सांख्यिकीय शक्ति और सटीकता
प्रदान करने क
े लिए पर्याप्त होना चाहिए। एक बड़ा प्रतिदर्श आकार आम
तौर पर अधिक विश्वसनीय अनुमान की ओर ले जाता है और यदि
आवश्यक हो तो उपसमूह विश्लेषण की अनुमति देता है।
4. परिशुद्धता: एक अच्छा प्रतिदर्श प्रतिदर्शकरण त्रुटि को कम करता है,
यह सुनिश्चित करता है कि परिणाम वास्तविक समष्टि मापदंडों क
े
जितना संभव हो उतना करीब हों। यह उचित प्रतिदर्श आकार गणना और
चयन विधियों क
े माध्यम से प्राप्त किया जाता है।
5. निष्पक्ष चयन: चयन पूर्वाग्रह से बचना महत्वपूर्ण है। यह प्रक्रिया
जानबूझकर या अनजाने पूर्वाग्रहों से मुक्त होनी चाहिए जो आबादी क
े
भीतर क
ु छ समूहों या विशेषताओं का पक्ष लेते हैं।
6. व्यवहार्यता: प्रतिदर्श समय, बजट और उपलब्ध संसाधनों की सीमा क
े
भीतर प्राप्त करना संभव होना चाहिए। क
ु छ स्थितियों में जटिल
प्रतिदर्शकरण विधियों को लागू करना चुनौतीपूर्ण हो सकता है।
प्रतिदर्शकरण क
े लिए विचार:
1. समष्टि को परिभाषित करें: उस लक्षित समष्टि को स्पष्ट रूप से
परिभाषित करें जिसका अध्ययन आपका शोध करना है। प्रतिदर्शकरण
प्रक्रिया का मार्गदर्शन करने क
े लिए यह परिभाषा सटीक और अच्छी तरह
से परिभाषित होनी चाहिए।
2. प्रतिदर्श फ़्र
े म: एक प्रतिदर्श फ़्र
े म विकसित करें, जो एक सूची या स्रोत है
जिससे प्रतिदर्श निकाला जाएगा। सुनिश्चित करें कि प्रतिदर्शकरण फ़्र
े म
व्यापक और अद्यतित है।
3. प्रतिदर्शकरण विधि: अनुसंधान उद्देश्यों और उपलब्ध संसाधनों क
े
आधार पर एक उपयुक्त प्रतिदर्शकरण विधि चुनें। जब संभव हो तो
संभाव्यता प्रतिदर्शकरण विधियों को प्राथमिकता दी जाती है, क्योंकि वे
अनुमान क
े लिए एक ठोस आधार प्रदान करते हैं।
4. यादृच्छिकीकरण: यदि संभाव्यता प्रतिदर्श का उपयोग कर रहे हैं, तो
यह सुनिश्चित करने क
े लिए यादृच्छिककरण तकनीकों को नियोजित करें
कि प्रत्येक तत्व क
े चयन की समान संभावना है। यादृच्छिक संख्या
जनरेटर या लॉटरी-शैली क
े तरीकों का आमतौर पर उपयोग किया जाता
है।
5. प्रतिदर्श आकार की गणना: समष्टि में आत्मविश्वास क
े वांछित स्तर,
त्रुटि क
े मार्जिन और परिवर्तनशीलता क
े आधार पर उचित प्रतिदर्श आकार
निर्धारित करें। यह कम-सैंपलिंग या अधिक-सैंपलिंग को रोकता है।
6. स्तरीकरण: यदि आवश्यक हो, तो प्रासंगिक विशेषताओं (जैसे, आयु,
लिंग) क
े आधार पर समष्टि को उपसमूहों में स्तरीकृ त करें और फिर
प्रतिनिधित्व सुनिश्चित करने क
े लिए प्रत्येक स्तर से आनुपातिक रूप से
प्रतिदर्श लें।
7. प्रतिदर्शकरण पूर्वाग्रह शमन: सावधानीपूर्वक सर्वेक्षण डिजाइन और डेटा
संग्रह तकनीकों क
े माध्यम से गैर-प्रतिक्रिया पूर्वाग्रह या स्व-चयन पूर्वाग्रह
जैसे संभावित पूर्वाग्रहों को कम करने क
े लिए कदम उठाएं।
8. डेटा संग्रह विधियाँ: उपयुक्त डेटा संग्रह विधियाँ चुनें (उदाहरण क
े लिए,
सर्वेक्षण, साक्षात्कार, अवलोकन) और सुनिश्चित करें कि वे पूरे प्रतिदर्श में
मानकीकृ त और सुसंगत हैं।
9. दस्तावेज़ीकरण: प्रतिदर्श प्रक्रिया का विस्तृत रिकॉर्ड बनाए रखें, जिसमें
प्रतिदर्श फ्र
े म, प्रयुक्त विधि, प्रतिदर्श आकार और मूल योजना से कोई
विचलन शामिल है।
10. प्रतिदर्शकरण वैधता: अनुसंधान प्रक्रिया क
े दौरान नियमित रूप से
प्रतिदर्श की वैधता का आकलन करें। किसी भी अप्रत्याशित पूर्वाग्रह या
परिवर्तन की जाँच करें जो प्रतिदर्श की प्रतिनिधित्वशीलता को प्रभावित
कर सकता है।
11. नैतिक विचार: सुनिश्चित करें कि प्रतिदर्शकरण प्रक्रिया नैतिक
मानकों का पालन करती है, जिसमें सूचित सहमति, गोपनीयता और
गोपनीयता शामिल है, खासकर मानव विषयों से निपटते समय।
12. डेटा विश्लेषण और रिपोर्टिंग: उचित सांख्यिकीय तकनीकों का
उपयोग करक
े प्रतिदर्श डेटा का सख्ती से विश्लेषण करें, और किसी भी
सीमा या पूर्वाग्रह क
े संभावित स्रोतों सहित पारदर्शिता क
े साथ परिणामों
की रिपोर्ट करें।
13. पर्याप्त आकार: विश्लेषण क
े लिए पर्याप्त सांख्यिकीय शक्ति प्रदान
करने क
े लिए प्रतिदर्श आकार काफी बड़ा होना चाहिए। एक बड़ा प्रतिदर्श
आकार आम तौर पर अधिक सटीक अनुमान और अधिक परिशुद्धता की
ओर ले जाता है।
14. समावेशन: प्रतिदर्श में समष्टि क
े सभी प्रासंगिक उपसमूह या स्तर
शामिल होने चाहिए। यदि समष्टि में अलग-अलग उप-समष्टि है, जैसे कि
विभिन्न आयु समूह या क्षेत्र, तो प्रतिदर्श को समष्टि में उनक
े आकार क
े
अनुपात में इन उपसमूहों का प्रतिनिधित्व करना चाहिए।
15. स्वतंत्रता: प्रत्येक प्रतिदर्श इकाई को प्रतिदर्श में दूसरों से स्वतंत्र होना
चाहिए। दूसरे शब्दों में, एक इकाई को शामिल करने से दूसरी इकाई को
शामिल करने पर प्रभाव नहीं पड़ना चाहिए। सांख्यिकीय विश्लेषण क
े लिए
स्वतंत्रता महत्वपूर्ण है।
16. व्यवहार्यता: प्रतिदर्श समय, बजट और उपलब्ध संसाधनों सहित
अनुसंधान परियोजना की बाधाओं क
े भीतर प्राप्त करने क
े लिए
व्यावहारिक होना चाहिए। शोधकर्ताओं को क
ु छ उप-आबादी या समूहों तक
पहुंचने की व्यवहार्यता पर विचार करना चाहिए।
इन विशेषताओं और विचारों का पालन करक
े , शोधकर्ता अपने नमूनों की
गुणवत्ता और विश्वसनीयता बढ़ा सकते हैं, जिससे अधिक मजबूत शोध
परिणाम और सार्थक निष्कर्ष प्राप्त हो सकते हैं।
सैम्पलिंग करते समय ध्यान रखने योग्य बातें:
1. समष्टि को परिभाषित करें: उस समष्टि को स्पष्ट रूप से परिभाषित
करें जिससे आप प्रतिदर्श ले रहे हैं। एक अच्छी तरह से परिभाषित समष्टि
प्रतिदर्शकरण निर्णय लेने में मदद करती है।
2. प्रतिदर्शकरण विधि चुनें: अनुसंधान उद्देश्यों और उपलब्ध संसाधनों क
े
आधार पर एक उपयुक्त प्रतिदर्शकरण विधि चुनें। जब संभव हो तो
संभाव्यता प्रतिदर्शकरण विधियों को प्राथमिकता दी जाती है।
3. रैंडमाइजेशन: सुनिश्चित करें कि उपयुक्त होने पर रैंडमाइजेशन का
उपयोग किया जाए। यादृच्छिक प्रतिदर्शकरण विधियाँ पूर्वाग्रह को कम
करने और प्रतिनिधि प्रतिदर्श की संभावना बढ़ाने में मदद करती हैं।
4. प्रतिदर्श आकार की गणना: सांख्यिकीय शक्ति और आत्मविश्वास क
े
वांछित स्तर क
े आधार पर आवश्यक प्रतिदर्श आकार की गणना करें। कम
प्रतिदर्शकरण या अधिक प्रतिदर्शकरण से पक्षपातपूर्ण परिणाम आ सकते
हैं।
5. सैंपलिंग फ्र
े म: सुनिश्चित करें कि सैंपलिंग फ्र
े म (वह सूची या स्रोत जहां
से सैंपल लिया गया है) सटीक और अद्यतित है। अधूरा या पुराना फ़्र
े म
प्रतिदर्शकरण त्रुटियों का कारण बन सकता है।
6. प्रतिदर्शकरण त्रुटियाँ: विभिन्न प्रकार की प्रतिदर्शकरण त्रुटियों से
अवगत रहें, जिनमें गैर-प्रतिक्रिया पूर्वाग्रह (जब क
ु छ चयनित इकाइयाँ
भाग नहीं लेती हैं), कवरेज पूर्वाग्रह (जब क
ु छ इकाइयाँ फ़्र
े म में शामिल नहीं
होती हैं), और चयन पूर्वाग्रह (जब प्रतिदर्शकरण) शामिल हैं विधि त्रुटिपूर्ण
है)
7. डेटा संग्रह प्रक्रिया: प्रतिदर्श से जानकारी एकत्र करने में स्थिरता और
विश्वसनीयता सुनिश्चित करने क
े लिए डेटा संग्रह क
े लिए एक स्पष्ट और
मानकीकृ त प्रक्रिया विकसित करें।
8. रिकॉर्ड रखना: प्रतिदर्श प्रक्रिया का विस्तृत रिकॉर्ड बनाए रखें, जिसमें
इस्तेमाल की गई विधि, प्रतिदर्श फ्र
े म, प्रतिदर्श आकार और मूल योजना से
कोई विचलन शामिल है।
9. सत्यापन: प्रतिदर्श प्राप्त करने क
े बाद, समष्टि की ज्ञात विशेषताओं क
े
साथ प्रतिदर्श की प्रमुख विशेषताओं की तुलना करक
े इसकी
प्रतिनिधित्वशीलता का आकलन करें।
10. विश्लेषण और व्याख्या: डेटा का विश्लेषण करते समय, उपयोग की
गई प्रतिदर्श पद्धति और प्रतिदर्श में किसी भी संभावित पूर्वाग्रह को ध्यान
में रखें। शोध निष्कर्षों में प्रतिदर्श की सीमाओं को स्पष्ट रूप से बताएं।
11. रिपोर्टिंग: अनुसंधान रिपोर्टों और प्रकाशनों में, प्रतिदर्शकरण प्रक्रिया
का विस्तृत विवरण प्रदान करें, जिसमें प्रयुक्त विधि, प्रतिदर्श आकार और
प्रतिदर्श क
े दौरान आने वाली कोई भी चुनौतियाँ शामिल हों।
सार्थक और विश्वसनीय शोध परिणाम प्राप्त करने क
े लिए एक अच्छी
तरह से निर्मित और अच्छी तरह से निष्पादित प्रतिदर्श योजना आवश्यक
है। शोधकर्ताओं को इन विशेषताओं और सावधानियों पर सावधानीपूर्वक
विचार करना चाहिए ताकि यह सुनिश्चित हो सक
े कि उनक
े प्रतिदर्श उच्च
गुणवत्ता वाले हैं और अध्ययन क
े उद्देश्य क
े लिए उपयुक्त हैं।

Sample and Sampling Techniques.pdf

  • 1.
    Sample and Sampling ByVikramjit Singh Population: Definition: The population is the entire group or collection of individuals, objects, or data points about which you want to draw conclusions. It includes every possible element of interest within a given study or analysis. Characteristics: The population is typically large, and in many cases, it may be impractical or impossible to collect data from the entire population. Parameters, which are descriptive measures of the population, such as the population mean, population standard deviation, and population proportions, are used to describe population characteristics. Example: If you want to know the average height of all adults in a country, the entire population of adults in that country would be your population. Universal Population: Definition: The universal population, also known as the "universe" or "theoretical population," refers to the entire group or collection of all possible individuals, elements, or data points that theoretically exist and are relevant to a particular research question or study. It represents the most comprehensive and inclusive concept.
  • 2.
    Characteristics: The universalpopulation includes all potential members, even those that may be difficult or impossible to access or study in practice. Use: While the universal population provides a theoretical foundation for a study, it is rarely, if ever, feasible to study every element within it due to practical constraints. Researchers typically focus on subsets of the universal population for their studies. Example: If you're studying the income levels of all individuals in a country, the universal population would include every person residing in that country, regardless of their age, income, or any other characteristics. Target Population: The target population is a specific subgroup or segment within the universal population that is the primary focus of a researcher's study. It is a more refined and well-defined subset of the universal population. Characteristics: The target population is typically defined based on specific criteria or characteristics that are relevant to the research question. Researchers aim to make inferences about this subgroup. Use: The target population guides the selection of samples and the research's overall scope. Findings and conclusions drawn from the study are intended to be applied to the target population. Example: If you're interested in understanding the income levels of working-age adults (ages 25 to 65) in a specific city, this working-age population within that city is your target population. Accessible Population:
  • 3.
    - Definition: Theaccessible population, also known as the "study population," is the subset of the target population that is realistically available and accessible for the researcher to study. It takes into account practical limitations such as budget, time, and the ability to reach and collect data from the desired individuals or elements. Characteristics: The accessible population may not include all members of the target population due to constraints in data collection. Use: Researchers often work with the accessible population because it is more feasible to study. Findings from the accessible population can still be used to make inferences about the target population if the accessible population is a representative subset. Example: If you plan to conduct interviews about workplace satisfaction among working-age adults in a city, but you can only access individuals who work in a particular industry within that city due to budget constraints, then the individuals in that specific industry constitute your accessible population. In practice, researchers need to carefully define and delineate these populations to ensure the relevance and generalizability of their findings. While the universal population represents an idealized concept, the target population is the group of primary interest, and the accessible population is the subset that can be practically studied within the constraints of the research project. Researchers aim to draw valid conclusions about the target population based on their findings from the accessible population.
  • 4.
    Sample: Definition: A sampleis a subset or a smaller, manageable group selected from the population. The goal of sampling is to collect data from this subset and use it to make inferences or draw conclusions about the entire population. Characteristics: A sample should be carefully selected to be representative of the population it is drawn from. This means that the sample should mirror the important characteristics of the population. Statistics, which are numerical measures calculated from the sample data, are used to estimate or infer population parameters. Example: Instead of measuring the height of every adult in a country, you could select a random sample of 1,000 adults and use their heights to estimate the average height of the entire population. 3. Parameter: Definition: A parameter is a numerical value that summarizes a characteristic or feature of a population. Parameters are fixed values that describe the population's properties. Usage: Parameters are typically denoted using Greek letters. For example, μ (mu) is used to represent the population mean, σ (sigma) represents the population standard deviation, and p represents population proportions.
  • 5.
    Example: If youare studying the IQ scores of a population, the parameter of interest might be the population mean IQ score (μ). 4. Statistic: Definition: A statistic is a numerical value that summarizes a characteristic or feature of a sample. Statistics are calculated from the data collected in a sample and are used to estimate or infer population parameters. Usage: Statistics are typically denoted using Roman letters. For example, x ̄ (xbar) represents the sample mean, s represents the sample standard deviation, and p ̂ (phat) represents sample proportions. Example: If you calculate the average IQ score of a sample of individuals, that calculated value is a statistic (x ̄ ). In summary, the key differences are: Population is the entire group you're interested in studying, while a sample is a subset of the population used to make inferences about the population. Parameters are characteristics of the population, while statistics are characteristics of the sample. Parameters are usually unknown and estimated using statistics.
  • 6.
    Sampling is acritical process in statistics because it allows us to make inferences about populations without having to collect data from every single element in the population, which is often impractical or impossible. Selecting a sample from a population is a critical step in many statistical studies and surveys. The process of selecting a sample aims to ensure that the sample is representative of the population, which allows for valid and reliable statistical inferences. Here are the typical steps followed in the selection of a sample from a population: Sampling is a critical process in research and statistics, involving several key steps to ensure that the sample accurately represents the population of interest. Here's a description of each step in the sampling process: 1. Define the Population: Population: The population is the entire group or collection of individuals, elements, or data points about which you want to draw conclusions. It's crucial to clearly define the population you're interested in studying. In research and sampling, the concepts of universal population, target population, and accessible population are used to describe different groups of individuals or elements, each with specific characteristics and implications for the research process. Here's an explanation of each:
  • 7.
    Target Population: Thetarget population is a specific subgroup within the larger population that is the primary focus of your research. It's a more refined and specific definition of the population. Example: If you are studying the income levels of residents in a city, the population is all residents of that city. Your target population might be residents aged 25 to 65 with a certain income range. 2. Determine the Sampling Frame: The sampling frame is a list or representation of all the elements or individuals in the population or target population. It serves as the basis for selecting the actual sample. Ensure that the sampling frame is comprehensive and uptodate to minimize the risk of excluding relevant elements. Example: If your population is all registered voters in a state, the sampling frame could be the official voter registration list for that state. 3. Determine the Sample Size:
  • 8.
    Calculate or decideon the appropriate sample size for your study. This decision should consider factors like the desired level of confidence, margin of error, and the variability in the population. A larger sample size generally provides more accurate estimates but may require more resources. Example: If you're conducting a survey to estimate the proportion of a specific opinion in a city's population with a margin of error of 5%, you may need a sample size of at least a few hundred respondents. 4. Choose the Sampling Method: Select an appropriate sampling method based on your research objectives and available resources. The choice of method should aim to achieve a representative sample. Probability Sampling: In this method, each element in the population has a known, non-zero probability of being selected. Common probability sampling methods include simple random sampling, stratified sampling, systematic sampling, and cluster sampling. Probability sampling methods are preferred when you want to ensure that your sample is representative of the population Non – Probability Sampling: In this method, elements are selected without a known probability of selection. Non-probability sampling methods include convenience sampling, judgmental sampling, and quota sampling. Non-probability sampling is often used when it is difficult or impractical to use probability sampling methods.
  • 9.
    Common sampling methodsinclude simple random sampling, stratified sampling, systematic sampling, cluster sampling, convenience sampling, judgmental sampling, and snowball sampling. Example: If you are interested in understanding the political preferences of voters in a state, you might use stratified sampling, dividing the population into strata based on regions (urban, suburban, rural) and then sampling randomly from each stratum. 5. Select the Sample: Use the chosen sampling method to select the sample elements from the sampling frame. Ensure that the selection process is conducted without bias and adheres to the selected method. Example: If you're using simple random sampling, you might use a random number generator to select a random set of voter IDs from the voter registration list. 6. Collect Data: Once you've selected the sample, collect data from the selected individuals or elements using an appropriate data collection method, such as surveys, interviews, observations, or experiments.
  • 10.
    7. Data Analysisand Inference: Analyze the data collected from the sample using appropriate statistical techniques. Use the results to make inferences about the population or target population. 8. Report and Interpret Results: Present your findings in a clear and meaningful manner, including details about the sample, the methods used, and any limitations of your study. Interpret the results in the context of your research objectives. 9. Draw Implications: Discuss the implications of your findings and how they relate to your research question or hypothesis. Identify any practical or policy implications. 10. Consider Ethical and Practical Concerns: Throughout the sampling process, consider ethical considerations, such as informed consent, privacy, and confidentiality, especially when dealing with human subjects. Also, account for practical constraints, including budget and time limitations.
  • 11.
    Each of thesesteps is critical in ensuring that your sample is representative and that your study's results can be meaningfully generalized to the larger population or target population you're interested in studying. Careful planning and documentation are essential for the validity and credibility of your research. Importance of Sample and Sampling Sample and sampling are crucial concepts in research, and they play a pivotal role in ensuring the validity and reliability of research findings. Here's an overview of their importance: 1. Representativeness: One of the primary goals of sampling is to select a subset (sample) of a population that accurately represents the entire population. In most cases, it's impractical or impossible to study an entire population, so researchers rely on samples to draw conclusions about the larger group. A well-chosen sample increases the likelihood that findings can be generalized to the population. 2. Cost and Time Efficiency: Conducting research on an entire population can be prohibitively expensive and time-consuming. Sampling allows researchers to collect data from a smaller, manageable subset of the population, which can save resources and expedite the research process. 3. Reducing Bias: Random sampling techniques help minimize bias in research. Bias can occur if certain groups within a population are overrepresented or underrepresented in the sample. Random
  • 12.
    sampling methods, suchas simple random sampling or stratified sampling, help ensure that each member of the population has an equal chance of being included in the sample, reducing the potential for bias. 4. Generalizability: When researchers carefully select a representative sample, the findings from their study can often be generalized to the larger population. This generalizability is critical for making meaningful inferences and drawing conclusions that apply beyond the specific sample studied. 5. Practicality: In some cases, the entire population may be too vast, dispersed, or inaccessible to study comprehensively. Sampling allows researchers to gather data efficiently and effectively, even when studying populations that are geographically widespread or otherwise challenging to access. 6. Ethical Considerations: In research involving humans or animals, there are ethical constraints and considerations. Sampling can help limit the number of individuals exposed to research procedures, ensuring that research is conducted ethically and responsibly. 7. Statistical Analysis: Sampling provides a basis for conducting statistical analyses. Researchers can use inferential statistics to make inferences about the population based on the data collected from the sample. Statistical techniques allow researchers to quantify
  • 13.
    uncertainty and estimatepopulation parameters with a degree of confidence. 8. Resource Allocation: Sampling helps researchers allocate resources efficiently. By focusing resources on the sample rather than the entire population, researchers can gather more detailed and high-quality data, increasing the chances of obtaining meaningful results. 9. Manageability: Working with a smaller sample size makes data collection, analysis, and interpretation more manageable. Researchers can devote more attention to each data point, reducing the risk of errors and oversights. Hence, sample and sampling are essential components of research methodology that enable researchers to draw meaningful conclusions from a subset of a larger population. Properly designed and executed sampling methods enhance the reliability, validity, and practicality of research studies, making them valuable tools in the research process. Probability Sampling Probability sampling is a sampling method in which every member of the population has a known, non-zero chance of being selected as part of the sample. This ensures that the sample is representative of the population and allows for the application of statistical inference. There are several types of probability sampling methods, each with
  • 14.
    its own characteristicsand applications. Here are some common ones: 1. Simple Random Sampling: - Method: In simple random sampling, each member of the population has an equal chance of being selected. This is typically achieved using random number generators or drawing lots. - Use: It is suitable when the population is relatively small and homogenous. It is the most basic form of probability sampling. - Advantages: Unbiased, easy to implement. - Disadvantages: May not be suitable for large or heterogeneous populations. 2. Stratified Sampling: - Method: The population is divided into subgroups or strata based on certain characteristics (e.g., age, gender, income). Then, random samples are selected from each stratum. - Use: Ideal when the population is diverse, and you want to ensure representation of different subgroups. - Advantages: Ensures representation of subgroups, provides more precision compared to simple random sampling. - Disadvantages: Requires knowledge of population characteristics to create strata.
  • 15.
    3. Systematic Sampling: -Method: Researchers select every nth individual from a list of the population. The starting point is often randomly chosen. - Use: Suitable for large populations when a complete list is available. - Advantages: Simpler and more practical than simple random sampling for large populations. - Disadvantages: May introduce bias if there is a hidden pattern in the list. 4. Cluster Sampling: - Method: The population is divided into clusters, and a random sample of clusters is selected. Then, all members within the selected clusters are included in the sample. - Use: Useful when it is difficult to obtain a complete list of the population, and the population naturally forms clusters. - Advantages: Practical for large, geographically dispersed populations. - Disadvantages: May lead to less precision compared to other methods if clusters are not truly representative. 5. Multi-Stage Sampling:
  • 16.
    - Method: Thismethod combines several sampling techniques. It often involves a combination of cluster sampling, stratified sampling, and simple random sampling in multiple stages. - Use: Useful for very large and complex populations when a single sampling method is not practical. - Advantages: Can provide a balance between representativeness and efficiency. - Disadvantages: Complex to plan and implement. 6. Proportional Sampling: - Description: Proportional sampling is a variation of stratified sampling where the size of each stratum in the sample is proportional to its size in the population. This ensures that larger strata contribute more to the sample. - Example: If you are conducting a political poll in a state with three counties of varying populations, you might use proportional sampling to ensure that each county's representation in the sample reflects its population size. Each type of probability sampling has its own strengths and weaknesses, and the choice of method depends on the research objectives, the characteristics of the population, and practical considerations. Researchers must carefully select the most
  • 17.
    appropriate sampling methodto ensure the validity and reliability of their study results. Probability sampling is a sampling method in which each member of the population has a known, non-zero chance of being selected as part of the sample. It ensures that the sample is representative of the population, which allows for more accurate generalizations and statistical analysis. There are several different types of probability sampling methods, each with its unique characteristics. Non-Probability Sampling Non-probability sampling methods are sampling techniques where the probability of any member of the population being selected as part of the sample is not known. Unlike probability sampling, these methods do not rely on random selection and may introduce bias into the sample. Non-probability sampling can be useful in certain research situations but is generally considered less reliable for making population inferences. Here are some common types of non-probability sampling methods: 1. Convenience Sampling: - Description: Convenience sampling involves selecting individuals who are readily accessible or convenient to the researcher. This method is quick, easy, and does not require a structured sampling frame. - Example: Surveying people who happen to be passing by a street corner or interviewing friends and family members for research.
  • 18.
    2. Judgmental orPurposive Sampling: - Description: Judgmental sampling is based on the researcher's judgment and expertise in selecting specific individuals or cases that are believed to be most relevant to the research question. It's often used in qualitative research. - Example: A researcher studying a specific medical condition might purposefully select patients from a particular clinic who have the condition. 3. Snowball Sampling: - Description: Snowball sampling is used when it's challenging to identify and access members of a hidden or hard-to-reach population. The researcher starts with a few participants and asks them to refer other potential participants. - Example: Studying the social networks of drug users, where one participant refers the researcher to others within the same network. 4. Quota Sampling: - Description: Quota sampling involves dividing the population into specific subgroups (quotas) based on certain characteristics and then non-randomly selecting individuals from each subgroup until a predetermined quota for each group is met. It's used to ensure diversity in the sample.
  • 19.
    - Example: Ifyou want to survey people about a product, you might set quotas for different age groups, genders, and income levels and then select participants who meet these criteria. 5. Volunteer or Self-Selection Sampling: - Description: Volunteer or self-selection sampling occurs when individuals voluntarily choose to participate in a study. This method often results in a biased sample because those who choose to participate may differ systematically from those who do not. - Example: Online surveys where respondents self-select to participate by clicking a link shared on social media. 6. Consecutive Sampling: - Description: Consecutive sampling involves selecting all individuals who meet the criteria for inclusion in the sample as they become available. This method is often used in clinical or medical settings. - Example: A hospital may consecutively sample all patients who arrive at the emergency room during a specific time period. 7. Haphazard or Accidental Sampling: - Description: Haphazard sampling involves selecting individuals without a specific plan or pattern. Researchers choose participants
  • 20.
    based on convenience,availability, or some other non-random method. - Example: A researcher conducting interviews at a shopping mall might approach people who are shopping without following a systematic selection process. 7. Quasi-random Sampling: - Description: Quasi-random sampling involves methods that appear random but do not meet the strict criteria of probability sampling. For example, using the last two digits of telephone numbers to select respondents. - Example: Dialing phone numbers that have been assigned to specific geographic regions and selecting the last two digits randomly. Non-probability sampling methods are often chosen out of necessity due to budget constraints, time limit. Non-probability sampling methods can be useful in exploratory research or when probability sampling is impractical or impossible to implement. However, they often lack the representativeness and generalizability of probability sampling, making it important for researchers to acknowledge the limitations and potential biases inherent in these methods. Non-probability sampling methods are sampling techniques where the probability of any given member of the population being selected for the sample is not known. These methods are often used when it is difficult or impractical to obtain a truly random sample.
  • 21.
    While they donot guarantee representativeness or statistical validity in the same way as probability sampling methods, they can still be useful in certain research contexts. Characteristics of a good Sample and things to take care while doing sampling A good sample is essential for obtaining reliable and valid research results. The characteristics of a good sample, as well as considerations for conducting sampling, are as follows: Characteristics of a Good Sample: 1. Representativeness: A good sample accurately reflects the characteristics of the entire population being studied. It should include individuals or units that are diverse and relevant to the research objectives. 2. Randomness: In probability sampling, elements should be selected randomly to ensure that each member of the population has an equal and independent chance of being included in the sample. This reduces bias and enhances generalizability. 3. Adequate Size: The sample size should be sufficient to provide statistical power and precision. A larger sample size generally leads
  • 22.
    to more reliableestimates and allows for subgroup analysis if necessary. 4. Precision: A good sample minimizes sampling error, ensuring that the results are as close as possible to the true population parameters. This is achieved through proper sample size calculations and selection methods. 5. Unbiased Selection: Avoiding selection bias is crucial. The process should be free from intentional or unintentional biases that favor certain groups or characteristics within the population. 6. Feasibility: The sample should be feasible to obtain within the constraints of time, budget, and available resources. Complex sampling methods may be challenging to implement in some situations. Considerations for Sampling: 1. Define the Population: Clearly define the target population that your research aims to study. This definition should be precise and well-defined to guide the sampling process.
  • 23.
    2. Sampling Frame:Develop a sampling frame, which is a list or source from which the sample will be drawn. Ensure that the sampling frame is comprehensive and up-to-date. 3. Sampling Method: Choose an appropriate sampling method based on the research objectives and available resources. Probability sampling methods are preferred when possible, as they provide a solid basis for inference. 4. Randomization: If using probability sampling, employ randomization techniques to ensure that every element has an equal chance of selection. Random number generators or lottery-style methods are commonly used. 5. Sample Size Calculation: Determine the appropriate sample size based on the desired level of confidence, margin of error, and variability in the population. This prevents under-sampling or over-sampling. 6. Stratification: If necessary, stratify the population into subgroups based on relevant characteristics (e.g., age, gender) and then sample proportionally from each stratum to ensure representation.
  • 24.
    7. Sampling BiasMitigation: Take steps to minimize potential biases, such as non-response bias or self-selection bias, through careful survey design and data collection techniques. 8. Data Collection Methods: Choose appropriate data collection methods (e.g., surveys, interviews, observations) and ensure that they are standardized and consistent across the sample. 9. Documentation: Maintain detailed records of the sampling process, including the sampling frame, method used, sample size, and any deviations from the original plan. 10. Sampling Validity: Regularly assess the validity of the sample throughout the research process. Check for any unexpected biases or changes that may affect the representativeness of the sample. 11. Ethical Considerations: Ensure that the sampling process adheres to ethical standards, including informed consent, privacy, and confidentiality, especially when dealing with human subjects. 12. Data Analysis and Reporting: Analyze the sample data rigorously, using appropriate statistical techniques, and report the results with transparency, including any limitations or potential sources of bias.
  • 25.
    13. Adequate Size:The sample size should be large enough to provide sufficient statistical power for analysis. A larger sample size generally leads to more accurate estimates and greater precision. 14. Inclusiveness: The sample should include all relevant subgroups or strata from the population. If the population has distinct subpopulations, such as different age groups or regions, the sample should represent these subgroups in proportion to their size in the population. 15. Independence: Each sample unit should be independent of others in the sample. In other words, the inclusion of one unit should not influence the inclusion of another. Independence is crucial for statistical analysis. 16. Feasibility: The sample should be practical to obtain within the constraints of the research project, including time, budget, and available resources. Researchers should consider the feasibility of reaching certain subpopulations or groups. By adhering to these characteristics and considerations, researchers can enhance the quality and reliability of their samples, leading to more robust research outcomes and meaningful findings.
  • 26.
    Things to TakeCare While Doing Sampling: 1. Define the Population: Clearly define the population from which you are drawing the sample. A well-defined population helps in making sampling decisions. 2. Choose the Sampling Method: Select an appropriate sampling method based on the research objectives and available resources. Probability sampling methods are preferred when possible. 3. Randomization: Ensure that randomization is used when appropriate. Random sampling methods help minimize bias and increase the chances of a representative sample. 4. Sample Size Calculation: Calculate the required sample size based on statistical power and the desired level of confidence. Under-sampling or over-sampling can lead to biased results. 5. Sampling Frame: Ensure that the sampling frame (the list or source from which the sample is drawn) is accurate and up-to-date. An incomplete or outdated frame can lead to sampling errors.
  • 27.
    6. Sampling Errors:Be aware of various types of sampling errors, including non-response bias (when some selected units do not participate), coverage bias (when some units are not included in the frame), and selection bias (when the sampling method is flawed). 7. Data Collection Procedure: Develop a clear and standardized procedure for data collection to ensure consistency and reliability in gathering information from the sample. 8. Record Keeping: Maintain detailed records of the sampling process, including the method used, sampling frame, sample size, and any deviations from the original plan. 9. Validation: After obtaining the sample, assess its representativeness by comparing key characteristics of the sample to the known characteristics of the population. 10. Analysis and Interpretation: When analyzing the data, account for the sampling method used and any potential biases in the sample. Clearly communicate the limitations of the sample in the research findings. 11. Reporting: In research reports and publications, provide a thorough description of the sampling process, including the method used, sample size, and any challenges encountered during sampling.
  • 28.
    A well-constructed andwell-executed sampling plan is essential for obtaining meaningful and reliable research results. Researchers should carefully consider these characteristics and precautions to ensure that their samples are of high quality and fit for the purpose of the study. प्रतिदर्श एवं प्रतिदर्शकरण विक्रमजीत सिंह समष्टि: परिभाषा: समष्टि व्यक्तियों, वस्तुओं या डेटा बिंदुओं का संपूर्ण समूह या संग्रह है जिसक े बारे में आप निष्कर्ष निकालना चाहते हैं। इसमें किसी दिए गए अध्ययन या विश्लेषण में रुचि क े हर संभावित तत्व शामिल हैं। विशेषताएँ: समष्टि आम तौर पर बड़ी है, और कई मामलों में, पूरी आबादी से डेटा एकत्र करना अव्यावहारिक या असंभव हो सकता है। पैरामीटर, जो समष्टि क े वर्णनात्मक उपाय हैं, जैसे समष्टि माध्य, समष्टि मानक विचलन और समष्टि अनुपात, का उपयोग समष्टि विशेषताओं का वर्णन करने क े लिए किया जाता है। उदाहरण: यदि आप किसी देश क े सभी वयस्कों की औसत ऊ ं चाई जानना चाहते हैं, तो उस देश में वयस्कों की पूरी समष्टि आपकी समष्टि होगी। सार्वभौमिक समष्टि: परिभाषा: सार्वभौमिक समष्टि, जिसे "ब्रह्मांड" या "सैद्धांतिक समष्टि" क े रूप में भी जाना जाता है, सभी संभावित व्यक्तियों, तत्वों या डेटा बिंदुओं क े पूरे समूह या संग्रह को संदर्भित करता है जो सैद्धांतिक रूप से मौजूद हैं और किसी विशेष शोध प्रश्न या अध्ययन क े लिए प्रासंगिक हैं। यह सबसे व्यापक और समावेशी अवधारणा का प्रतिनिधित्व करता है।
  • 29.
    पहुंच योग्य समष्टि: -परिभाषा: सुलभ समष्टि, जिसे "अध्ययन समष्टि" क े रूप में भी जाना जाता है, लक्ष्य समष्टि का उपसमूह है जो शोधकर्ता क े अध्ययन क े लिए वास्तविक रूप से उपलब्ध और सुलभ है। यह बजट, समय और वांछित व्यक्तियों या तत्वों तक डेटा तक पहुंचने और एकत्र करने की क्षमता जैसी व्यावहारिक सीमाओं को ध्यान में रखता है। विशेषताएँ: डेटा संग्रह में बाधाओं क े कारण सुलभ समष्टि में लक्ष्य समष्टि क े सभी सदस्य शामिल नहीं हो सकते हैं। उपयोग: शोधकर्ता अक्सर सुलभ आबादी क े साथ काम करते हैं क्योंकि अध्ययन करना अधिक संभव है। यदि सुलभ समष्टि एक प्रतिनिधि उपसमूह है, तो सुलभ समष्टि क े निष्कर्षों का उपयोग लक्ष्य समष्टि क े बारे में अनुमान लगाने क े लिए अभी भी किया जा सकता है। उदाहरण: यदि आप किसी शहर में कामकाजी उम्र क े वयस्कों क े बीच कार्यस्थल की संतुष्टि क े बारे में साक्षात्कार आयोजित करने की योजना बना रहे हैं, लेकिन बजट की कमी क े कारण आप क े वल उन व्यक्तियों तक ही पहुंच सकते हैं जो उस शहर क े किसी विशेष उद्योग में काम करते हैं, तो उस विशिष्ट उद्योग क े व्यक्ति आपकी पहुंच का हिस्सा होंगे। समष्टि। व्यवहार में, शोधकर्ताओं को अपने निष्कर्षों की प्रासंगिकता और सामान्यीकरण सुनिश्चित करने क े लिए इन आबादी को सावधानीपूर्वक परिभाषित और चित्रित करने की आवश्यकता है। जबकि सार्वभौमिक समष्टि एक आदर्श अवधारणा का प्रतिनिधित्व करती है, लक्ष्य समष्टि प्राथमिक हित का समूह है, और सुलभ समष्टि वह उपसमूह है जिसका अनुसंधान परियोजना की बाधाओं क े भीतर व्यावहारिक रूप से अध्ययन किया जा सकता है। शोधकर्ताओं का लक्ष्य सुलभ आबादी से अपने
  • 30.
    निष्कर्षों क े आधारपर लक्षित आबादी क े बारे में वैध निष्कर्ष निकालना है। प्रतिदर्श: परिभाषा: एक प्रतिदर्श समष्टि से चुना गया एक उपसमूह या छोटा, प्रबंधनीय समूह है। प्रतिदर्शकरण का लक्ष्य इस उपसमूह से डेटा एकत्र करना और इसका उपयोग संपूर्ण समष्टि क े बारे में अनुमान लगाने या निष्कर्ष निकालने क े लिए करना है। विशेषताएँ: किसी प्रतिदर्श का चयन सावधानीपूर्वक किया जाना चाहिए ताकि वह उस समष्टि का प्रतिनिधि हो जिससे वह लिया गया है। इसका मतलब यह है कि प्रतिदर्श को समष्टि की महत्वपूर्ण विशेषताओं को प्रतिबिंबित करना चाहिए। सांख्यिकी, जो प्रतिदर्श डेटा से गणना की गई संख्यात्मक माप हैं, का उपयोग समष्टि मापदंडों का अनुमान लगाने या अनुमान लगाने क े लिए किया जाता है। उदाहरण: किसी देश में प्रत्येक वयस्क की ऊ ं चाई मापने क े बजाय, आप 1,000 वयस्कों का एक यादृच्छिक प्रतिदर्श चुन सकते हैं और पूरी आबादी की औसत ऊ ं चाई का अनुमान लगाने क े लिए उनकी ऊ ं चाई का उपयोग कर सकते हैं। 3. पैरामीटर: परिभाषा: एक पैरामीटर एक संख्यात्मक मान है जो किसी समष्टि की विशेषता या विशेषता का सारांश प्रस्तुत करता है। पैरामीटर निश्चित मान हैं जो समष्टि क े गुणों का वर्णन करते हैं। उपयोग: पैरामीटर आमतौर पर ग्रीक अक्षरों का उपयोग करक े दर्शाए जाते हैं। उदाहरण क े लिए, μ (mu) का उपयोग समष्टि माध्य को दर्शाने क े लिए किया जाता है, σ (सिग्मा) समष्टि मानक विचलन का प्रतिनिधित्व करता है, और p समष्टि अनुपात का प्रतिनिधित्व करता है।
  • 31.
    उदाहरण: यदि आपकिसी समष्टि क े आईक्यू स्कोर का अध्ययन कर रहे हैं, तो रुचि का पैरामीटर समष्टि माध्य आईक्यू स्कोर (μ) हो सकता है। 4. आँकड़ा: परिभाषा: एक आँकड़ा एक संख्यात्मक मान है जो किसी प्रतिदर्श की किसी विशेषता या विशेषता का सारांश प्रस्तुत करता है। आंकड़ों की गणना एक प्रतिदर्श में एकत्र किए गए डेटा से की जाती है और इसका उपयोग समष्टि मापदंडों का अनुमान लगाने या अनुमान लगाने क े लिए किया जाता है। उपयोग: सांख्यिकी को आमतौर पर रोमन अक्षरों का उपयोग करक े दर्शाया जाता है। उदाहरण क े लिए, x ̄ (xbar) प्रतिदर्श माध्य का प्रतिनिधित्व करता है, s प्रतिदर्श मानक विचलन का प्रतिनिधित्व करता है, और p ̂ (phat) प्रतिदर्श अनुपात का प्रतिनिधित्व करता है। उदाहरण: यदि आप व्यक्तियों क े प्रतिदर्श क े औसत आईक्यू स्कोर की गणना करते हैं, तो वह परिकलित मान एक आँकड़ा (x ̄ ) है। संक्षेप में, मुख्य अंतर ये हैं: समष्टि वह संपूर्ण समूह है जिसका अध्ययन करने में आपकी रुचि है, जबकि प्रतिदर्श समष्टि का एक उपसमूह है जिसका उपयोग समष्टि क े बारे में अनुमान लगाने क े लिए किया जाता है। पैरामीटर समष्टि की विशेषताएँ हैं, जबकि आँकड़े प्रतिदर्श की विशेषताएँ हैं। पैरामीटर आमतौर पर अज्ञात होते हैं और आंकड़ों का उपयोग करक े अनुमान लगाया जाता है।
  • 32.
    सांख्यिकी में प्रतिदर्शकरणएक महत्वपूर्ण प्रक्रिया है क्योंकि यह हमें आबादी क े हर एक तत्व से डेटा एकत्र किए बिना आबादी क े बारे में अनुमान लगाने की अनुमति देता है, जो अक्सर अव्यावहारिक या असंभव होता है। कई सांख्यिकीय अध्ययनों और सर्वेक्षणों में समष्टि से एक प्रतिदर्श चुनना एक महत्वपूर्ण कदम है। प्रतिदर्श चुनने की प्रक्रिया का उद्देश्य यह सुनिश्चित करना है कि प्रतिदर्श समष्टि का प्रतिनिधि है, जो वैध और विश्वसनीय सांख्यिकीय निष्कर्षों की अनुमति देता है। समष्टि से प्रतिदर्श क े चयन में अपनाए जाने वाले विशिष्ट चरण यहां दिए गए हैं: प्रतिदर्शकरण अनुसंधान और सांख्यिकी में एक महत्वपूर्ण प्रक्रिया है, जिसमें यह सुनिश्चित करने क े लिए कई महत्वपूर्ण चरण शामिल हैं कि प्रतिदर्श रुचि की आबादी का सटीक प्रतिनिधित्व करता है। प्रतिदर्शकरण प्रक्रिया क े प्रत्येक चरण का विवरण यहां दिया गया है: 1. समष्टि को परिभाषित करें: समष्टि: समष्टि व्यक्तियों, तत्वों या डेटा बिंदुओं का संपूर्ण समूह या संग्रह है जिसक े बारे में आप निष्कर्ष निकालना चाहते हैं। आप जिस समष्टि का अध्ययन करने में रुचि रखते हैं उसे स्पष्ट रूप से परिभाषित करना महत्वपूर्ण है। अनुसंधान और प्रतिदर्श में, सार्वभौमिक समष्टि, लक्ष्य समष्टि और सुलभ समष्टि की अवधारणाओं का उपयोग व्यक्तियों या तत्वों क े विभिन्न समूहों का वर्णन करने क े लिए किया जाता है, जिनमें से प्रत्येक अनुसंधान प्रक्रिया क े लिए विशिष्ट विशेषताओं और निहितार्थों क े साथ होता है। यहां प्रत्येक का स्पष्टीकरण दिया गया है: लक्षित समष्टि: लक्षित समष्टि बड़ी समष्टि क े भीतर एक विशिष्ट उपसमूह है जो आपक े शोध का प्राथमिक फोकस है। यह समष्टि की अधिक परिष्कृ त और विशिष्ट परिभाषा है।
  • 33.
    उदाहरण: यदि आपकिसी शहर में निवासियों क े आय स्तर का अध्ययन कर रहे हैं, तो समष्टि उस शहर क े सभी निवासी हैं। आपकी लक्षित समष्टि एक निश्चित आय सीमा क े साथ 25 से 65 वर्ष की आयु क े निवासी हो सकते हैं। 2. प्रतिदर्शकरण फ़्र े म निर्धारित करें: प्रतिदर्शकरण फ़्र े म समष्टि या लक्षित समष्टि क े सभी तत्वों या व्यक्तियों की एक सूची या प्रतिनिधित्व है। यह वास्तविक प्रतिदर्श क े चयन क े लिए आधार क े रूप में कार्य करता है। सुनिश्चित करें कि प्रासंगिक तत्वों को बाहर करने क े जोखिम को कम करने क े लिए प्रतिदर्शकरण फ्र े म व्यापक और अद्यतन है। उदाहरण: यदि आपकी समष्टि किसी राज्य में पंजीकृ त सभी मतदाताओं की है, तो प्रतिदर्श फ्र े म उस राज्य क े लिए आधिकारिक मतदाता पंजीकरण सूची हो सकता है। 3. प्रतिदर्श आकार निर्धारित करें: अपने अध्ययन क े लिए उपयुक्त प्रतिदर्श आकार की गणना करें या निर्णय लें। इस निर्णय में आत्मविश्वास क े वांछित स्तर, त्रुटि की संभावना और समष्टि में परिवर्तनशीलता जैसे कारकों पर विचार किया जाना चाहिए। एक बड़ा प्रतिदर्श आकार आम तौर पर अधिक सटीक अनुमान प्रदान करता है लेकिन अधिक संसाधनों की आवश्यकता हो सकती है। उदाहरण: यदि आप 5% की त्रुटि की संभावना क े साथ किसी शहर की आबादी में किसी विशिष्ट राय क े अनुपात का अनुमान लगाने क े लिए एक सर्वेक्षण कर रहे हैं, तो आपको कम से कम क ु छ सौ उत्तरदाताओं क े प्रतिदर्श आकार की आवश्यकता हो सकती है।
  • 34.
    4. प्रतिदर्शकरण विधिचुनें: अपने शोध उद्देश्यों और उपलब्ध संसाधनों क े आधार पर एक उपयुक्त प्रतिदर्शकरण विधि का चयन करें। विधि क े चयन का लक्ष्य प्रतिनिधि प्रतिदर्श प्राप्त करना होना चाहिए। संभाव्यता प्रतिदर्शकरण: इस पद्धति में, समष्टि में प्रत्येक तत्व क े चुने जाने की ज्ञात, गैर-शून्य संभावना होती है। सामान्य संभाव्यता प्रतिदर्शकरण विधियों में सरल यादृच्छिक प्रतिदर्शकरण, स्तरीकृ त प्रतिदर्शकरण, व्यवस्थित प्रतिदर्शकरण और क्लस्टर प्रतिदर्शकरण शामिल हैं। जब आप यह सुनिश्चित करना चाहते हैं कि आपका प्रतिदर्श समष्टि का प्रतिनिधि है तो संभाव्यता प्रतिदर्शकरण विधियों को प्राथमिकता दी जाती है गैर-संभाव्यता प्रतिदर्शकरण: इस पद्धति में, चयन की ज्ञात संभावना क े बिना तत्वों का चयन किया जाता है। गैर-संभाव्यता प्रतिदर्शकरण विधियों में सुविधा प्रतिदर्शकरण, निर्णयात्मक प्रतिदर्शकरण और कोटा प्रतिदर्शकरण शामिल हैं। गैर-संभाव्यता प्रतिदर्शकरण का उपयोग अक्सर तब किया जाता है जब संभाव्यता प्रतिदर्शकरण विधियों का उपयोग करना कठिन या अव्यावहारिक होता है। सामान्य प्रतिदर्शकरण विधियों में सरल यादृच्छिक प्रतिदर्शकरण, स्तरीकृ त प्रतिदर्शकरण, व्यवस्थित प्रतिदर्शकरण, क्लस्टर प्रतिदर्शकरण, सुविधा प्रतिदर्शकरण, निर्णयात्मक प्रतिदर्शकरण और स्नोबॉल प्रतिदर्शकरण शामिल हैं। उदाहरण: यदि आप किसी राज्य में मतदाताओं की राजनीतिक प्राथमिकताओं को समझने में रुचि रखते हैं, तो आप स्तरीकृ त प्रतिदर्श का उपयोग कर सकते हैं, समष्टि को क्षेत्रों (शहरी, उपनगरीय, ग्रामीण) क े आधार पर स्तरों में विभाजित कर सकते हैं और फिर प्रत्येक स्तर से यादृच्छिक रूप से प्रतिदर्श ले सकते हैं।
  • 35.
    5. प्रतिदर्श चुनें: सैंपलिंगफ्र े म से प्रतिदर्श तत्वों का चयन करने क े लिए चुनी गई सैंपलिंग विधि का उपयोग करें। सुनिश्चित करें कि चयन प्रक्रिया बिना पक्षपात क े आयोजित की जाए और चयनित पद्धति का पालन किया जाए। उदाहरण: यदि आप सरल यादृच्छिक प्रतिदर्शकरण का उपयोग कर रहे हैं, तो आप मतदाता पंजीकरण सूची से मतदाता पहचान पत्रों क े एक यादृच्छिक सेट का चयन करने क े लिए एक यादृच्छिक संख्या जनरेटर का उपयोग कर सकते हैं। 6. डेटा एकत्र करें: एक बार जब आप प्रतिदर्श चुन लेते हैं, तो उपयुक्त डेटा संग्रह विधि, जैसे सर्वेक्षण, साक्षात्कार, अवलोकन या प्रयोग का उपयोग करक े चयनित व्यक्तियों या तत्वों से डेटा एकत्र करें। 7. डेटा विश्लेषण और अनुमान: उचित सांख्यिकीय तकनीकों का उपयोग करक े प्रतिदर्श से एकत्र किए गए डेटा का विश्लेषण करें। समष्टि या लक्षित समष्टि क े बारे में अनुमान लगाने क े लिए परिणामों का उपयोग करें। 8. रिपोर्ट करें और परिणामों की व्याख्या करें: अपने निष्कर्षों को स्पष्ट और सार्थक तरीक े से प्रस्तुत करें, जिसमें प्रतिदर्श, उपयोग की गई विधियों और आपक े अध्ययन की सीमाओं क े बारे में विवरण शामिल हों। अपने शोध उद्देश्यों क े संदर्भ में परिणामों की व्याख्या करें। 9. निहितार्थ निकालें:
  • 36.
    अपने निष्कर्षों क ेनिहितार्थों पर चर्चा करें और वे आपक े शोध प्रश्न या परिकल्पना से क ै से संबंधित हैं। किसी भी व्यावहारिक या नीतिगत निहितार्थ की पहचान करें। 10. नैतिक और व्यावहारिक चिंताओं पर विचार करें: प्रतिदर्शकरण प्रक्रिया क े दौरान, नैतिक विचारों पर विचार करें, जैसे कि सूचित सहमति, गोपनीयता और गोपनीयता, खासकर मानवीय विषयों से निपटते समय। इसक े अलावा, बजट और समय सीमा सहित व्यावहारिक बाधाओं को भी ध्यान में रखें। इनमें से प्रत्येक चरण यह सुनिश्चित करने क े लिए महत्वपूर्ण है कि आपका प्रतिदर्श प्रतिनिधि है और आपक े अध्ययन क े परिणामों को उस बड़ी आबादी या लक्षित आबादी क े लिए सार्थक रूप से सामान्यीकृ त किया जा सकता है जिसका आप अध्ययन करने में रुचि रखते हैं। आपक े शोध की वैधता और विश्वसनीयता क े लिए सावधानीपूर्वक योजना और दस्तावेज़ीकरण आवश्यक है। सैम्पल एवं सैम्पलिंग का महत्व प्रतिदर्श और प्रतिदर्शकरण अनुसंधान में महत्वपूर्ण अवधारणाएं हैं, और वे अनुसंधान निष्कर्षों की वैधता और विश्वसनीयता सुनिश्चित करने में महत्वपूर्ण भूमिका निभाते हैं। यहां उनक े महत्व का अवलोकन दिया गया है: 1. प्रतिनिधित्वशीलता: प्रतिदर्श क े प्राथमिक लक्ष्यों में से एक समष्टि क े एक उपसमूह (प्रतिदर्श) का चयन करना है जो पूरी आबादी का सटीक प्रतिनिधित्व करता है। ज्यादातर मामलों में, पूरी आबादी का अध्ययन करना अव्यावहारिक या असंभव है, इसलिए शोधकर्ता बड़े समूह क े बारे में निष्कर्ष निकालने क े लिए नमूनों पर भरोसा करते हैं। एक अच्छी तरह से चुने गए प्रतिदर्श से यह संभावना बढ़ जाती है कि निष्कर्षों को समष्टि क े लिए सामान्यीकृ त किया जा सकता है।
  • 37.
    2. लागत औरसमय दक्षता: संपूर्ण समष्टि पर शोध करना बेहद महंगा और समय लेने वाला हो सकता है। प्रतिदर्शकरण शोधकर्ताओं को आबादी क े एक छोटे, प्रबंधनीय उपसमूह से डेटा एकत्र करने की अनुमति देता है, जो संसाधनों को बचा सकता है और अनुसंधान प्रक्रिया को तेज कर सकता है। 3. पूर्वाग्रह को कम करना: यादृच्छिक प्रतिदर्शकरण तकनीक अनुसंधान में पूर्वाग्रह को कम करने में मदद करती है। यदि किसी समष्टि क े भीतर क ु छ समूहों को प्रतिदर्श में अधिक या कम प्रतिनिधित्व दिया जाता है तो पूर्वाग्रह उत्पन्न हो सकता है। यादृच्छिक प्रतिदर्शकरण विधियाँ, जैसे कि सरल यादृच्छिक प्रतिदर्शकरण या स्तरीकृ त प्रतिदर्शकरण, यह सुनिश्चित करने में मदद करती हैं कि समष्टि क े प्रत्येक सदस्य को प्रतिदर्श में शामिल होने का समान मौका मिलता है, जिससे पूर्वाग्रह की संभावना कम हो जाती है। 4. सामान्यीकरण: जब शोधकर्ता सावधानीपूर्वक एक प्रतिनिधि प्रतिदर्श का चयन करते हैं, तो उनक े अध्ययन क े निष्कर्षों को अक्सर बड़ी आबादी क े लिए सामान्यीकृ त किया जा सकता है। यह सामान्यीकरण सार्थक निष्कर्ष निकालने और अध्ययन किए गए विशिष्ट प्रतिदर्श से परे लागू होने वाले निष्कर्ष निकालने क े लिए महत्वपूर्ण है। 5. व्यावहारिकता: क ु छ मामलों में, संपूर्ण समष्टि व्यापक रूप से अध्ययन करने क े लिए बहुत विशाल, बिखरी हुई या दुर्गम हो सकती है। प्रतिदर्शकरण शोधकर्ताओं को डेटा को क ु शलतापूर्वक और प्रभावी ढंग से इकट्ठा करने की अनुमति देता है, यहां तक ​ ​ ​ ​ कि उन आबादी का अध्ययन करते समय भी जो भौगोलिक रूप से व्यापक हैं या अन्यथा उन तक पहुंच चुनौतीपूर्ण है।
  • 38.
    6. नैतिक विचार:मनुष्यों या जानवरों से जुड़े शोध में नैतिक बाधाएँ और विचार होते हैं। प्रतिदर्शकरण अनुसंधान प्रक्रियाओं क े संपर्क में आने वाले व्यक्तियों की संख्या को सीमित करने में मदद कर सकता है, यह सुनिश्चित करते हुए कि अनुसंधान नैतिक और जिम्मेदारी से आयोजित किया जाता है। 7. सांख्यिकीय विश्लेषण: प्रतिदर्शकरण सांख्यिकीय विश्लेषण करने क े लिए एक आधार प्रदान करता है। प्रतिदर्श से एकत्र किए गए डेटा क े आधार पर समष्टि क े बारे में अनुमान लगाने क े लिए शोधकर्ता अनुमानित आंकड़ों का उपयोग कर सकते हैं। सांख्यिकीय तकनीक ें शोधकर्ताओं को अनिश्चितता की मात्रा निर्धारित करने और आत्मविश्वास की डिग्री क े साथ समष्टि मापदंडों का अनुमान लगाने की अनुमति देती हैं। 8. संसाधन आवंटन: प्रतिदर्शकरण शोधकर्ताओं को संसाधनों को क ु शलतापूर्वक आवंटित करने में मदद करता है। संपूर्ण समष्टि क े बजाय प्रतिदर्श पर संसाधनों को क ें द्रित करक े , शोधकर्ता अधिक विस्तृत और उच्च गुणवत्ता वाले डेटा एकत्र कर सकते हैं, जिससे सार्थक परिणाम प्राप्त करने की संभावना बढ़ जाती है। 9. प्रबंधनीयता: छोटे प्रतिदर्श आकार क े साथ काम करना डेटा संग्रह, विश्लेषण और व्याख्या को अधिक प्रबंधनीय बनाता है। शोधकर्ता प्रत्येक डेटा बिंदु पर अधिक ध्यान दे सकते हैं, जिससे त्रुटियों और चूक का जोखिम कम हो जाता है। इसलिए, प्रतिदर्श और प्रतिदर्शकरण अनुसंधान पद्धति क े आवश्यक घटक हैं जो शोधकर्ताओं को बड़ी आबादी क े एक उपसमूह से सार्थक निष्कर्ष निकालने में सक्षम बनाते हैं। उचित रूप से डिजाइन और
  • 39.
    निष्पादित प्रतिदर्शकरण विधियांअनुसंधान अध्ययनों की विश्वसनीयता, वैधता और व्यावहारिकता को बढ़ाती हैं, जिससे वे अनुसंधान प्रक्रिया में मूल्यवान उपकरण बन जाते हैं। सम्भाव्यता प्रतिदर्शचयन संभाव्यता प्रतिदर्शकरण एक प्रतिदर्शकरण विधि है जिसमें समष्टि क े प्रत्येक सदस्य क े पास प्रतिदर्श क े भाग क े रूप में चुने जाने की ज्ञात, गैर-शून्य संभावना होती है। यह सुनिश्चित करता है कि प्रतिदर्श समष्टि का प्रतिनिधि है और सांख्यिकीय अनुमान क े अनुप्रयोग की अनुमति देता है। संभाव्यता प्रतिदर्शकरण विधियाँ कई प्रकार की होती हैं, जिनमें से प्रत्येक की अपनी विशेषताएँ और अनुप्रयोग होते हैं। यहाँ क ु छ सामान्य हैं: 1. सरल यादृच्छिक प्रतिदर्शकरण: - विधि: सरल यादृच्छिक प्रतिदर्श में, समष्टि क े प्रत्येक सदस्य क े चुने जाने की समान संभावना होती है। यह आमतौर पर यादृच्छिक संख्या जनरेटर या ड्राइंग लॉट का उपयोग करक े प्राप्त किया जाता है। - उपयोग: यह तब उपयुक्त है जब समष्टि अपेक्षाकृ त छोटी और समरूप हो। यह संभाव्यता प्रतिदर्श का सबसे बुनियादी रूप है। - लाभ: निष्पक्ष, कार्यान्वयन में आसान। - नुकसान: बड़ी या विषम आबादी क े लिए उपयुक्त नहीं हो सकता है। 2. स्तरीकृ त प्रतिदर्शकरण: - विधि: समष्टि को क ु छ विशेषताओं (जैसे, आयु, लिंग, आय) क े आधार पर उपसमूहों या स्तरों में विभाजित किया जाता है। फिर, प्रत्येक स्तर से यादृच्छिक प्रतिदर्श चुने जाते हैं। - उपयोग: आदर्श तब जब समष्टि विविध हो, और आप विभिन्न उपसमूहों का प्रतिनिधित्व सुनिश्चित करना चाहते हों। - लाभ: उपसमूहों का प्रतिनिधित्व सुनिश्चित करता है, सरल यादृच्छिक प्रतिदर्श की तुलना में अधिक सटीकता प्रदान करता है।
  • 40.
    - नुकसान: स्तरबनाने क े लिए समष्टि विशेषताओं क े ज्ञान की आवश्यकता होती है। 3. व्यवस्थित प्रतिदर्शकरण: - विधि: शोधकर्ता समष्टि की सूची से प्रत्येक nवें व्यक्ति का चयन करते हैं। शुरुआती बिंदु अक्सर यादृच्छिक रूप से चुना जाता है। - उपयोग: पूरी सूची उपलब्ध होने पर बड़ी आबादी क े लिए उपयुक्त। - लाभ: बड़ी आबादी क े लिए सरल यादृच्छिक प्रतिदर्श की तुलना में सरल और अधिक व्यावहारिक। - नुकसान: यदि सूची में कोई छिपा हुआ पैटर्न है तो पूर्वाग्रह का परिचय हो सकता है। 4. क्लस्टर प्रतिदर्शकरण: - विधि: समष्टि को समूहों में विभाजित किया जाता है, और समूहों का एक यादृच्छिक प्रतिदर्श चुना जाता है। फिर, चयनित क्लस्टर क े सभी सदस्यों को प्रतिदर्श में शामिल किया जाता है। - उपयोग: तब उपयोगी जब समष्टि की पूरी सूची प्राप्त करना कठिन हो, और समष्टि स्वाभाविक रूप से समूह बनाती हो। - लाभ: बड़ी, भौगोलिक रूप से बिखरी हुई आबादी क े लिए व्यावहारिक। - नुकसान: यदि क्लस्टर वास्तव में प्रतिनिधि नहीं हैं तो अन्य तरीकों की तुलना में कम सटीकता हो सकती है। 5. मल्टी-स्टेज सैंपलिंग: - विधि: यह विधि कई प्रतिदर्शकरण तकनीकों को जोड़ती है। इसमें अक्सर कई चरणों में क्लस्टर सैंपलिंग, स्तरीकृ त सैंपलिंग और सरल यादृच्छिक सैंपलिंग का संयोजन शामिल होता है। - उपयोग: बहुत बड़ी और जटिल आबादी क े लिए उपयोगी जब एकल प्रतिदर्शकरण विधि व्यावहारिक नहीं होती है। - लाभ: प्रतिनिधित्व और दक्षता क े बीच संतुलन प्रदान कर सकता है।
  • 41.
    - नुकसान: योजनाबनाना और लागू करना जटिल। 6. आनुपातिक प्रतिदर्शकरण: - विवरण: आनुपातिक प्रतिदर्शकरण स्तरीकृ त प्रतिदर्श का एक रूप है जहां प्रतिदर्श में प्रत्येक स्तर का आकार समष्टि में उसक े आकार क े समानुपाती होता है। इससे यह सुनिश्चित होता है कि बड़े स्तर प्रतिदर्श में अधिक योगदान देते हैं। - उदाहरण: यदि आप अलग-अलग आबादी वाले तीन काउंटियों वाले राज्य में राजनीतिक मतदान कर रहे हैं, तो आप यह सुनिश्चित करने क े लिए आनुपातिक प्रतिदर्शकरण का उपयोग कर सकते हैं कि प्रतिदर्श में प्रत्येक काउंटी का प्रतिनिधित्व उसकी समष्टि क े आकार को दर्शाता है। प्रत्येक प्रकार क े संभाव्यता प्रतिदर्श की अपनी ताकत और कमजोरियां होती हैं, और विधि का चुनाव अनुसंधान क े उद्देश्यों, समष्टि की विशेषताओं और व्यावहारिक विचारों पर निर्भर करता है। शोधकर्ताओं को अपने अध्ययन क े परिणामों की वैधता और विश्वसनीयता सुनिश्चित करने क े लिए सबसे उपयुक्त प्रतिदर्शकरण विधि का सावधानीपूर्वक चयन करना चाहिए। संभाव्यता प्रतिदर्शकरण एक प्रतिदर्शकरण विधि है जिसमें समष्टि क े प्रत्येक सदस्य क े पास प्रतिदर्श क े भाग क े रूप में चुने जाने की ज्ञात, गैर-शून्य संभावना होती है। यह सुनिश्चित करता है कि प्रतिदर्श समष्टि का प्रतिनिधि है, जो अधिक सटीक सामान्यीकरण और सांख्यिकीय विश्लेषण की अनुमति देता है। संभाव्यता प्रतिदर्शकरण विधियाँ कई अलग-अलग प्रकार की होती हैं, जिनमें से प्रत्येक की अपनी विशिष्ट विशेषताएँ होती हैं। गैर संभावित प्रतिदर्श
  • 42.
    गैर-संभाव्यता प्रतिदर्शकरण विधियांप्रतिदर्शकरण तकनीक ें हैं जहां समष्टि क े किसी भी सदस्य को प्रतिदर्श क े हिस्से क े रूप में चुने जाने की संभावना ज्ञात नहीं है। संभाव्यता प्रतिदर्श क े विपरीत, ये विधियां यादृच्छिक चयन पर निर्भर नहीं होती हैं और प्रतिदर्श में पूर्वाग्रह ला सकती हैं। गैर-संभाव्यता प्रतिदर्शकरण क ु छ शोध स्थितियों में उपयोगी हो सकता है लेकिन आम तौर पर समष्टि अनुमान लगाने क े लिए इसे कम विश्वसनीय माना जाता है। यहां क ु छ सामान्य प्रकार की गैर-संभाव्यता प्रतिदर्शकरण विधियां दी गई हैं: 1. सुविधा प्रतिदर्शकरण: - विवरण: सुविधा प्रतिदर्श में ऐसे व्यक्तियों का चयन करना शामिल है जो शोधकर्ता क े लिए आसानी से सुलभ या सुविधाजनक हों। यह विधि त्वरित, आसान है और इसक े लिए संरचित प्रतिदर्शकरण फ़्र े म की आवश्यकता नहीं होती है। - उदाहरण: सड़क क े किनारे से गुज़र रहे लोगों का सर्वेक्षण करना या शोध क े लिए दोस्तों और परिवार क े सदस्यों का साक्षात्कार लेना। 2. निर्णयात्मक या उद्देश्यपूर्ण प्रतिदर्शकरण: - विवरण: निर्णयात्मक प्रतिदर्शकरण शोधकर्ता क े निर्णय और उन विशिष्ट व्यक्तियों या मामलों को चुनने की विशेषज्ञता पर आधारित होता है जिन्हें शोध प्रश्न क े लिए सबसे अधिक प्रासंगिक माना जाता है। इसका उपयोग अक्सर गुणात्मक अनुसंधान में किया जाता है। - उदाहरण: एक विशिष्ट चिकित्सा स्थिति का अध्ययन करने वाला एक शोधकर्ता जानबूझकर किसी विशेष क्लिनिक से उन रोगियों का चयन कर सकता है जिनकी यह स्थिति है। 3. स्नोबॉल प्रतिदर्शकरण:
  • 43.
    - विवरण: स्नोबॉलसैंपलिंग का उपयोग तब किया जाता है जब किसी छिपी हुई या पहुंच से बाहर की आबादी क े सदस्यों की पहचान करना और उन तक पहुंचना चुनौतीपूर्ण होता है। शोधकर्ता क ु छ प्रतिभागियों से शुरुआत करता है और उनसे अन्य संभावित प्रतिभागियों को संदर्भित करने क े लिए कहता है। - उदाहरण: नशीली दवाओं क े उपयोगकर्ताओं क े सामाजिक नेटवर्क का अध्ययन, जहां एक प्रतिभागी शोधकर्ता को उसी नेटवर्क क े अन्य लोगों क े पास भेजता है। 4. कोटा प्रतिदर्शकरण: - विवरण: कोटा प्रतिदर्शकरण में समष्टि को क ु छ विशेषताओं क े आधार पर विशिष्ट उपसमूहों (कोटा) में विभाजित करना और फिर प्रत्येक समूह क े लिए पूर्व निर्धारित कोटा पूरा होने तक प्रत्येक उपसमूह से गैर-यादृच्छिक रूप से व्यक्तियों का चयन करना शामिल है। इसका उपयोग प्रतिदर्श में विविधता सुनिश्चित करने क े लिए किया जाता है। - उदाहरण: यदि आप किसी उत्पाद क े बारे में लोगों का सर्वेक्षण करना चाहते हैं, तो आप विभिन्न आयु समूहों, लिंग और आय स्तरों क े लिए कोटा निर्धारित कर सकते हैं और फिर इन मानदंडों को पूरा करने वाले प्रतिभागियों का चयन कर सकते हैं। 5. स्वयंसेवक या स्व-चयन प्रतिदर्शकरण: - विवरण: स्वयंसेवक या स्व-चयन प्रतिदर्शकरण तब होता है जब व्यक्ति स्वेच्छा से किसी अध्ययन में भाग लेना चुनते हैं। इस पद्धति का परिणाम अक्सर पक्षपातपूर्ण प्रतिदर्श होता है क्योंकि जो लोग भाग लेना चुनते हैं वे व्यवस्थित रूप से उन लोगों से भिन्न हो सकते हैं जो भाग नहीं लेते हैं। - उदाहरण: ऑनलाइन सर्वेक्षण जहां उत्तरदाता सोशल मीडिया पर साझा किए गए लिंक पर क्लिक करक े भाग लेने क े लिए स्व-चयन करते हैं।
  • 44.
    6. लगातार प्रतिदर्शकरण: -विवरण: लगातार प्रतिदर्श में उन सभी व्यक्तियों का चयन करना शामिल है जो उपलब्ध होने पर प्रतिदर्श में शामिल करने क े मानदंडों को पूरा करते हैं। इस पद्धति का उपयोग अक्सर नैदानिक ​ ​ या चिकित्सा सेटिंग्स में किया जाता है। - उदाहरण: एक अस्पताल एक विशिष्ट समय अवधि क े दौरान आपातकालीन कक्ष में पहुंचने वाले सभी रोगियों का लगातार प्रतिदर्श ले सकता है। 7. अव्यवस्थित या आकस्मिक प्रतिदर्शकरण: - विवरण: बेतरतीब प्रतिदर्श में किसी विशिष्ट योजना या पैटर्न क े बिना व्यक्तियों का चयन करना शामिल है। शोधकर्ता प्रतिभागियों को सुविधा, उपलब्धता या किसी अन्य गैर-यादृच्छिक विधि क े आधार पर चुनते हैं। - उदाहरण: एक शॉपिंग मॉल में साक्षात्कार लेने वाला एक शोधकर्ता उन लोगों से संपर्क कर सकता है जो व्यवस्थित चयन प्रक्रिया का पालन किए बिना खरीदारी कर रहे हैं। 7. अर्ध-यादृच्छिक प्रतिदर्शकरण: - विवरण: अर्ध-यादृच्छिक प्रतिदर्श में वे विधियाँ शामिल होती हैं जो यादृच्छिक दिखाई देती हैं लेकिन संभाव्यता प्रतिदर्श क े सख्त मानदंडों को पूरा नहीं करती हैं। उदाहरण क े लिए, उत्तरदाताओं का चयन करने क े लिए टेलीफोन नंबरों क े अंतिम दो अंकों का उपयोग करना। - उदाहरण: विशिष्ट भौगोलिक क्षेत्रों को निर्दिष्ट फ़ोन नंबर डायल करना और अंतिम दो अंकों को यादृच्छिक रूप से चुनना। बजट की कमी, समय सीमा क े कारण गैर-संभाव्यता प्रतिदर्शकरण विधियों को अक्सर आवश्यकता से बाहर चुना जाता है। गैर-संभाव्यता प्रतिदर्शकरण विधियाँ खोजपूर्ण अनुसंधान में उपयोगी हो सकती हैं या जब संभाव्यता प्रतिदर्शकरण अव्यावहारिक या लागू करना
  • 45.
    असंभव हो। हालाँकि,उनमें अक्सर संभाव्यता प्रतिदर्श की प्रतिनिधित्वशीलता और सामान्यीकरण का अभाव होता है, जिससे शोधकर्ताओं क े लिए इन तरीकों में निहित सीमाओं और संभावित पूर्वाग्रहों को स्वीकार करना महत्वपूर्ण हो जाता है। गैर-संभाव्यता प्रतिदर्शकरण विधियां प्रतिदर्शकरण तकनीक ें हैं जहां प्रतिदर्श क े लिए समष्टि क े किसी भी सदस्य क े चुने जाने की संभावना ज्ञात नहीं होती है। इन विधियों का उपयोग अक्सर तब किया जाता है जब वास्तव में यादृच्छिक प्रतिदर्श प्राप्त करना कठिन या अव्यावहारिक होता है। हालाँकि वे संभाव्यता प्रतिदर्शकरण विधियों की तरह ही प्रतिनिधित्व या सांख्यिकीय वैधता की गारंटी नहीं देते हैं, फिर भी वे क ु छ शोध संदर्भों में उपयोगी हो सकते हैं। एक अच्छे प्रतिदर्श की विशेषताएँ और प्रतिदर्श लेते समय ध्यान रखने योग्य बातें विश्वसनीय और वैध शोध परिणाम प्राप्त करने क े लिए एक अच्छा प्रतिदर्श आवश्यक है। एक अच्छे प्रतिदर्श की विशेषताएं, साथ ही प्रतिदर्श लेने क े विचार इस प्रकार हैं: एक अच्छे प्रतिदर्श क े लक्षण: 1. प्रतिनिधित्वशीलता: एक अच्छा प्रतिदर्श अध्ययन की जा रही पूरी आबादी की विशेषताओं को सटीक रूप से दर्शाता है। इसमें ऐसे व्यक्ति या इकाइयाँ शामिल होनी चाहिए जो अनुसंधान उद्देश्यों क े लिए विविध और प्रासंगिक हों। 2. यादृच्छिकता: संभाव्यता प्रतिदर्श में, तत्वों को यादृच्छिक रूप से चुना जाना चाहिए ताकि यह सुनिश्चित किया जा सक े कि समष्टि क े प्रत्येक सदस्य को प्रतिदर्श में शामिल होने का समान और स्वतंत्र मौका मिले। इससे पूर्वाग्रह कम होता है और सामान्यीकरण बढ़ता है।
  • 46.
    3. पर्याप्त आकार:प्रतिदर्श आकार सांख्यिकीय शक्ति और सटीकता प्रदान करने क े लिए पर्याप्त होना चाहिए। एक बड़ा प्रतिदर्श आकार आम तौर पर अधिक विश्वसनीय अनुमान की ओर ले जाता है और यदि आवश्यक हो तो उपसमूह विश्लेषण की अनुमति देता है। 4. परिशुद्धता: एक अच्छा प्रतिदर्श प्रतिदर्शकरण त्रुटि को कम करता है, यह सुनिश्चित करता है कि परिणाम वास्तविक समष्टि मापदंडों क े जितना संभव हो उतना करीब हों। यह उचित प्रतिदर्श आकार गणना और चयन विधियों क े माध्यम से प्राप्त किया जाता है। 5. निष्पक्ष चयन: चयन पूर्वाग्रह से बचना महत्वपूर्ण है। यह प्रक्रिया जानबूझकर या अनजाने पूर्वाग्रहों से मुक्त होनी चाहिए जो आबादी क े भीतर क ु छ समूहों या विशेषताओं का पक्ष लेते हैं। 6. व्यवहार्यता: प्रतिदर्श समय, बजट और उपलब्ध संसाधनों की सीमा क े भीतर प्राप्त करना संभव होना चाहिए। क ु छ स्थितियों में जटिल प्रतिदर्शकरण विधियों को लागू करना चुनौतीपूर्ण हो सकता है। प्रतिदर्शकरण क े लिए विचार: 1. समष्टि को परिभाषित करें: उस लक्षित समष्टि को स्पष्ट रूप से परिभाषित करें जिसका अध्ययन आपका शोध करना है। प्रतिदर्शकरण प्रक्रिया का मार्गदर्शन करने क े लिए यह परिभाषा सटीक और अच्छी तरह से परिभाषित होनी चाहिए। 2. प्रतिदर्श फ़्र े म: एक प्रतिदर्श फ़्र े म विकसित करें, जो एक सूची या स्रोत है जिससे प्रतिदर्श निकाला जाएगा। सुनिश्चित करें कि प्रतिदर्शकरण फ़्र े म व्यापक और अद्यतित है।
  • 47.
    3. प्रतिदर्शकरण विधि:अनुसंधान उद्देश्यों और उपलब्ध संसाधनों क े आधार पर एक उपयुक्त प्रतिदर्शकरण विधि चुनें। जब संभव हो तो संभाव्यता प्रतिदर्शकरण विधियों को प्राथमिकता दी जाती है, क्योंकि वे अनुमान क े लिए एक ठोस आधार प्रदान करते हैं। 4. यादृच्छिकीकरण: यदि संभाव्यता प्रतिदर्श का उपयोग कर रहे हैं, तो यह सुनिश्चित करने क े लिए यादृच्छिककरण तकनीकों को नियोजित करें कि प्रत्येक तत्व क े चयन की समान संभावना है। यादृच्छिक संख्या जनरेटर या लॉटरी-शैली क े तरीकों का आमतौर पर उपयोग किया जाता है। 5. प्रतिदर्श आकार की गणना: समष्टि में आत्मविश्वास क े वांछित स्तर, त्रुटि क े मार्जिन और परिवर्तनशीलता क े आधार पर उचित प्रतिदर्श आकार निर्धारित करें। यह कम-सैंपलिंग या अधिक-सैंपलिंग को रोकता है। 6. स्तरीकरण: यदि आवश्यक हो, तो प्रासंगिक विशेषताओं (जैसे, आयु, लिंग) क े आधार पर समष्टि को उपसमूहों में स्तरीकृ त करें और फिर प्रतिनिधित्व सुनिश्चित करने क े लिए प्रत्येक स्तर से आनुपातिक रूप से प्रतिदर्श लें। 7. प्रतिदर्शकरण पूर्वाग्रह शमन: सावधानीपूर्वक सर्वेक्षण डिजाइन और डेटा संग्रह तकनीकों क े माध्यम से गैर-प्रतिक्रिया पूर्वाग्रह या स्व-चयन पूर्वाग्रह जैसे संभावित पूर्वाग्रहों को कम करने क े लिए कदम उठाएं। 8. डेटा संग्रह विधियाँ: उपयुक्त डेटा संग्रह विधियाँ चुनें (उदाहरण क े लिए, सर्वेक्षण, साक्षात्कार, अवलोकन) और सुनिश्चित करें कि वे पूरे प्रतिदर्श में मानकीकृ त और सुसंगत हैं।
  • 48.
    9. दस्तावेज़ीकरण: प्रतिदर्शप्रक्रिया का विस्तृत रिकॉर्ड बनाए रखें, जिसमें प्रतिदर्श फ्र े म, प्रयुक्त विधि, प्रतिदर्श आकार और मूल योजना से कोई विचलन शामिल है। 10. प्रतिदर्शकरण वैधता: अनुसंधान प्रक्रिया क े दौरान नियमित रूप से प्रतिदर्श की वैधता का आकलन करें। किसी भी अप्रत्याशित पूर्वाग्रह या परिवर्तन की जाँच करें जो प्रतिदर्श की प्रतिनिधित्वशीलता को प्रभावित कर सकता है। 11. नैतिक विचार: सुनिश्चित करें कि प्रतिदर्शकरण प्रक्रिया नैतिक मानकों का पालन करती है, जिसमें सूचित सहमति, गोपनीयता और गोपनीयता शामिल है, खासकर मानव विषयों से निपटते समय। 12. डेटा विश्लेषण और रिपोर्टिंग: उचित सांख्यिकीय तकनीकों का उपयोग करक े प्रतिदर्श डेटा का सख्ती से विश्लेषण करें, और किसी भी सीमा या पूर्वाग्रह क े संभावित स्रोतों सहित पारदर्शिता क े साथ परिणामों की रिपोर्ट करें। 13. पर्याप्त आकार: विश्लेषण क े लिए पर्याप्त सांख्यिकीय शक्ति प्रदान करने क े लिए प्रतिदर्श आकार काफी बड़ा होना चाहिए। एक बड़ा प्रतिदर्श आकार आम तौर पर अधिक सटीक अनुमान और अधिक परिशुद्धता की ओर ले जाता है। 14. समावेशन: प्रतिदर्श में समष्टि क े सभी प्रासंगिक उपसमूह या स्तर शामिल होने चाहिए। यदि समष्टि में अलग-अलग उप-समष्टि है, जैसे कि विभिन्न आयु समूह या क्षेत्र, तो प्रतिदर्श को समष्टि में उनक े आकार क े अनुपात में इन उपसमूहों का प्रतिनिधित्व करना चाहिए।
  • 49.
    15. स्वतंत्रता: प्रत्येकप्रतिदर्श इकाई को प्रतिदर्श में दूसरों से स्वतंत्र होना चाहिए। दूसरे शब्दों में, एक इकाई को शामिल करने से दूसरी इकाई को शामिल करने पर प्रभाव नहीं पड़ना चाहिए। सांख्यिकीय विश्लेषण क े लिए स्वतंत्रता महत्वपूर्ण है। 16. व्यवहार्यता: प्रतिदर्श समय, बजट और उपलब्ध संसाधनों सहित अनुसंधान परियोजना की बाधाओं क े भीतर प्राप्त करने क े लिए व्यावहारिक होना चाहिए। शोधकर्ताओं को क ु छ उप-आबादी या समूहों तक पहुंचने की व्यवहार्यता पर विचार करना चाहिए। इन विशेषताओं और विचारों का पालन करक े , शोधकर्ता अपने नमूनों की गुणवत्ता और विश्वसनीयता बढ़ा सकते हैं, जिससे अधिक मजबूत शोध परिणाम और सार्थक निष्कर्ष प्राप्त हो सकते हैं। सैम्पलिंग करते समय ध्यान रखने योग्य बातें: 1. समष्टि को परिभाषित करें: उस समष्टि को स्पष्ट रूप से परिभाषित करें जिससे आप प्रतिदर्श ले रहे हैं। एक अच्छी तरह से परिभाषित समष्टि प्रतिदर्शकरण निर्णय लेने में मदद करती है। 2. प्रतिदर्शकरण विधि चुनें: अनुसंधान उद्देश्यों और उपलब्ध संसाधनों क े आधार पर एक उपयुक्त प्रतिदर्शकरण विधि चुनें। जब संभव हो तो संभाव्यता प्रतिदर्शकरण विधियों को प्राथमिकता दी जाती है। 3. रैंडमाइजेशन: सुनिश्चित करें कि उपयुक्त होने पर रैंडमाइजेशन का उपयोग किया जाए। यादृच्छिक प्रतिदर्शकरण विधियाँ पूर्वाग्रह को कम करने और प्रतिनिधि प्रतिदर्श की संभावना बढ़ाने में मदद करती हैं।
  • 50.
    4. प्रतिदर्श आकारकी गणना: सांख्यिकीय शक्ति और आत्मविश्वास क े वांछित स्तर क े आधार पर आवश्यक प्रतिदर्श आकार की गणना करें। कम प्रतिदर्शकरण या अधिक प्रतिदर्शकरण से पक्षपातपूर्ण परिणाम आ सकते हैं। 5. सैंपलिंग फ्र े म: सुनिश्चित करें कि सैंपलिंग फ्र े म (वह सूची या स्रोत जहां से सैंपल लिया गया है) सटीक और अद्यतित है। अधूरा या पुराना फ़्र े म प्रतिदर्शकरण त्रुटियों का कारण बन सकता है। 6. प्रतिदर्शकरण त्रुटियाँ: विभिन्न प्रकार की प्रतिदर्शकरण त्रुटियों से अवगत रहें, जिनमें गैर-प्रतिक्रिया पूर्वाग्रह (जब क ु छ चयनित इकाइयाँ भाग नहीं लेती हैं), कवरेज पूर्वाग्रह (जब क ु छ इकाइयाँ फ़्र े म में शामिल नहीं होती हैं), और चयन पूर्वाग्रह (जब प्रतिदर्शकरण) शामिल हैं विधि त्रुटिपूर्ण है) 7. डेटा संग्रह प्रक्रिया: प्रतिदर्श से जानकारी एकत्र करने में स्थिरता और विश्वसनीयता सुनिश्चित करने क े लिए डेटा संग्रह क े लिए एक स्पष्ट और मानकीकृ त प्रक्रिया विकसित करें। 8. रिकॉर्ड रखना: प्रतिदर्श प्रक्रिया का विस्तृत रिकॉर्ड बनाए रखें, जिसमें इस्तेमाल की गई विधि, प्रतिदर्श फ्र े म, प्रतिदर्श आकार और मूल योजना से कोई विचलन शामिल है। 9. सत्यापन: प्रतिदर्श प्राप्त करने क े बाद, समष्टि की ज्ञात विशेषताओं क े साथ प्रतिदर्श की प्रमुख विशेषताओं की तुलना करक े इसकी प्रतिनिधित्वशीलता का आकलन करें।
  • 51.
    10. विश्लेषण औरव्याख्या: डेटा का विश्लेषण करते समय, उपयोग की गई प्रतिदर्श पद्धति और प्रतिदर्श में किसी भी संभावित पूर्वाग्रह को ध्यान में रखें। शोध निष्कर्षों में प्रतिदर्श की सीमाओं को स्पष्ट रूप से बताएं। 11. रिपोर्टिंग: अनुसंधान रिपोर्टों और प्रकाशनों में, प्रतिदर्शकरण प्रक्रिया का विस्तृत विवरण प्रदान करें, जिसमें प्रयुक्त विधि, प्रतिदर्श आकार और प्रतिदर्श क े दौरान आने वाली कोई भी चुनौतियाँ शामिल हों। सार्थक और विश्वसनीय शोध परिणाम प्राप्त करने क े लिए एक अच्छी तरह से निर्मित और अच्छी तरह से निष्पादित प्रतिदर्श योजना आवश्यक है। शोधकर्ताओं को इन विशेषताओं और सावधानियों पर सावधानीपूर्वक विचार करना चाहिए ताकि यह सुनिश्चित हो सक े कि उनक े प्रतिदर्श उच्च गुणवत्ता वाले हैं और अध्ययन क े उद्देश्य क े लिए उपयुक्त हैं।