SlideShare a Scribd company logo
Short Version : 14. Wave Motion
Wave Properties
Wave amplitude
Waveform
•Pulse
•Continuous wave
•Wave train
Periodicity in space :
Wavelength 
Wave number k = 2/
Periodicity in time :
Period T
Frequency  = 2/T
Longitudinal & Transverse Waves
Longitudinal waves
Transverse waves
Water waves
Longitudinal
Transverse
mixed
1-D Vibration
Water Waves
Wave Speed
Speed of wave depends only on the medium.
Sound in air  340 m/s  1220 km/h.
in water  1450 m/s
in granite  5000 m/s
Small ripples on water  20 cm/s.
Earthquake  5 km/s.
v
T

 f


Wave speed
14.2. Wave Math
At t = 0,    
,0
y x f x

At t , y(0) is displaced to the right by v t.
   
,
y x t f x v t
 

For a wave moving to the left :    
,
y x t f x v t
 
For a SHW (sinusoidal):
 
,0 cos
y x A kx

2
k


 = wave number
SHW moving to the right :
   
, cos
y x t A kx t

 
2
T

 
k x t
 
  = phase
v
T k
 
  = wave speed
 
k x v t
 
pk @ x = 0 pk @ x = v t
Waves
The Wave Equation
1-D waves in many media can be described by the partial differential equation
   
,
y x t f x v t
 
2 2
2 2 2
y y
x v t
 

 
Wave Equation
whose solutions are of the form
v = velocity of wave.
E.g.,
• water wave ( y = wave height )
• sound wave ( y = pressure )
• …
   
, cos
y x t A k x t

  v
k



( towards  x )
14.3. Waves on a String
 = mass per unit length [ kg/m ]
A pulse travels to the right.
In the frame moving with the pulse, the entire string
moves to the left.
Top of pulse is in circular motion with speed v & radius R.
Centripedal accel:
2
ˆ
m v
m
R
 
a y
Tension force F is cancelled out in the x direction:
2 sin
y
F F 
  2F
  ( small segment )

2
2
m v
F
R
 
2
2 R v
R
 

F
v


2
F v


Wave Power
SHO :
Segment of length x at fixed x : 2 2
1
2
E x A
 
 
2 2
1
2
x
P A
t
 



2 2
1
2
v A
 

v = phase velocity of wave
2 2
1
2
E m A


Wave Intensity
Wave front = surface of constant phase.
Plane wave : planar wave front.
Spherical wave : spherical wave front.
Intensity = power per unit area  direction of propagation [ W / m2 ]
Plane wave : I const

Spherical wave :
2
4
P
I
r


14.4. Sound Waves
Sound waves = longitudinal mechanical waves
through matter.
Speed of sound in air :
P
v



P = background pressure.
 = mass density.
 = 7/5 for air & diatomic gases.
 = 5/3 for monatomic gases, e.g., He.
P,  = max , x = 0
P,  = min , x = 0
P,  = eqm , |x| = max
Sound & the Human Ear
Audible freq:
20 Hz ~ 20 kHz
Bats: 100 kHz
Ultrasound: 10 MHz
db = 0 :
Hearing Threshold
@ 1k Hz
Decibels
Sound intensity level :
10
0
10 log
I
I

 
  
 
12 2
0 10 /
I W m

  Threshold of hearing at 1 kHz.
[  ] = decibel (dB)
/10
0 10
I I 

2
2 1 10
1
10 log
I
I
 
 
   
 
 
2 1 / 10
2
1
10
I
I
 


2 1
10
I I

2 1 10 dB
 
  
3/10
2 1
10
I I

2 1 3 dB
 
   1
2 I

Nonlinear behavior: Above 40dB, the ear percieves  = 10 dB as a doubling of loudness.
14.5. Interference
constructive interference
destructive interference
Principle of superposition: tot = 1 + 2 .
Interference
Fourier Analysis
Fourier analysis:
Periodic wave = sum of SHWs.
E note from
electric guitar
 
0
1
sin
2 1
n
square wave A n t
n






Fourier Series
Dispersion
Non-dispersive medium
Dispersive medium
Dispersion:
wave speed is wavelength (or freq) dependent
Surface wave on deep water:
2
g
v



 long wavelength waves reaches shore 1st.
Dispersion of square wave pulses determines max
length of wires or optical fibres in computer networks.
Dispersion
Beats
Beats: interference between 2
waves of nearly equal freq.
  1 2
cos cos
y t A t A t
 
 
   
1 2 1 2
1 1
2 cos cos
2 2
A t t
   
   
  
   
   
Freq of envelope = 1  2 .
smaller freq diff  longer period between beats
Applications:
Synchronize airplane engines (beat freq  0).
Tune musical instruments.
High precision measurements (EM waves).
Constructive
Destructive
Beats
Interference in 2-D
Water waves from two sources with separation  
Nodal lines:
amplitude  0
path difference = ½ n 
Destructive Constructive
Interference
14.6. Reflection & Refraction
Fixed end
Free end
Partial Reflection
A = 0;
reflected
wave
inverted
A = max;
reflected
wave not
inverted
light + heavy ropes
Rope
Partial reflection + oblique incidence
 refraction
Partial reflection + normal incidence
Application: Probing the Earth
P wave = longitudinal
S wave = transverse
S wave shadow
 liquid outer core
P wave partial reflection
 solid inner core
Explosive thumps
 oil / gas deposits
14.7. Standing Waves
String with both ends fixed:
2
L n


     
, cos cos
y x t A k x t B k x t
 
   
Superposition of right- travelling & reflected waves:
 
, 2 sin sin
y x t A kx t


   
1 1
cos cos 2 sin sin
2 2
A
     
   
    
   
   
 standing wave
sin 0
kL  
1,2,3,
n 
Allowed waves = modes or harmonics
n = mode number
n = 1  fundamental mode
n > 1  overtones
y = 0  node y = max  antinode
2
L n




 
0, 0
y t   B =  A
Standing Waves
1 end fixed  node,
1 end free  antinode.
 
2 1
4
L n

 
cos 0
kL  
1,2,3,
n 
 
2
2 1
2
L n
 

 
     
, cos cos
y x t A k x t B k x t
 
   
0
x L
dy
dx 

B A
 
   
sin sin 0
kA kL t kA kL t
 
    
cos sin 0
kL t
 
Standing Waves
14.8. The Doppler Effect & Shock Waves
Point source at rest in medium radiates uniformly in all directions.
When source moves, wave crests bunch up in the direction of motion (   ).
Wave speed v is a property of the medium & hence independent of source motion.
v
f

    f  Doppler effect
Approaching source:
.
t = T
u T
t = 2T 2 uT = uT
t = 0
approach u T
 
 
u = speed of source
u
v


  1
u
v

 
 
 
 
recede u T
 
  1
u
v

 
 
 
 
1 /
approach
approach
v f
f
u v

 

1 /
recede
f
f
u v


T = period of wave
Moving Source
.
t = T
u T
t = 2T 2 uT = uT
t = 0
approach u T
 
 
u = speed of source
u
v


  1
u
v

 
 
 
 
recede u T
 
  1
u
v

 
 
 
  1 /
recede
f
f
u v


T = period of wave
Moving Source
1 /
approach
approach
v f
f
u v

 

Moving Observers
An observer moving towards a point source at rest in medium sees a faster moving wave.
Since  is unchanged, observed f increases.
1
toward
u
f f
v
 
 
 
 
1
away
u
f f
v
 
 
 
 
Prob. 76
For u/v << 1:
1
app
f
f
u
v


1
u
f
v




 
 
toward
f

Waves from a stationary source that reflect from a moving object undergo 2 Doppler effects.
1. A f toward shift at the object.
2. A f approach shift when received at source.
Doppler Effect for Light
Doppler shift for EM waves is the same whether the source or the observer moves.
1
app
u
c
 
 
 
 
 
correct to 1st order in u/c
1
app
u
f
c

 
 
 
 
Shock Waves
1
app
u
v
 
 
 
 
 
 0
app
  if u v

Shock wave: u > v
Mach number = u / v
Mach angle = sin1(v/u)
E.g.,
Bow wave of boat.
Sonic booms.
Solar wind at ionosphere
Shock wave front
Source,
1 period ago
Moving Source

More Related Content

Similar to S14._WaveMotion.ppt

Learning Object: Analyzing a Standing Wave
Learning Object: Analyzing a Standing WaveLearning Object: Analyzing a Standing Wave
Learning Object: Analyzing a Standing Wave
Igor Mihajlović
 
chapter18.pdf
chapter18.pdfchapter18.pdf
chapter18.pdf
muhammadokasha12
 
6.wave_optics_1.ppt
6.wave_optics_1.ppt6.wave_optics_1.ppt
6.wave_optics_1.ppt
Ganeshsaini17
 
Wave Motion Theory Part3
Wave Motion Theory Part3Wave Motion Theory Part3
Wave Motion Theory Part3
Lakshmikanta Satapathy
 
04 UNIT-4 (WAVES) .pptx
04 UNIT-4 (WAVES) .pptx04 UNIT-4 (WAVES) .pptx
04 UNIT-4 (WAVES) .pptx
FatimaAfzal56
 
Stationary waves
Stationary wavesStationary waves
Stationary waves
sangitaholkar
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
FatimaAfzal56
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
BhavanaKhobragade
 
Vibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdf
Vibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdfVibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdf
Vibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdf
anonakitchen
 
JEE Main 2014 Physics - Wave Motion Part II
JEE Main 2014 Physics - Wave Motion Part IIJEE Main 2014 Physics - Wave Motion Part II
JEE Main 2014 Physics - Wave Motion Part II
Ednexa
 
299262637 ch16-ppt
299262637 ch16-ppt299262637 ch16-ppt
299262637 ch16-ppt
Allan Wilson
 
Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes Sina
Younes Sina
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3
Self-employed
 
Standin wave
Standin waveStandin wave
Standin wave
rameshthombre1
 
3 magnetic effect-of_current_3
3 magnetic effect-of_current_33 magnetic effect-of_current_3
3 magnetic effect-of_current_3
noT yeT woRkiNg !! iM stiLl stUdYinG !!
 
Ch 7 physical optics final
Ch 7 physical optics finalCh 7 physical optics final
Ch 7 physical optics final
animesh samundh
 
Waves ch. 8
Waves ch. 8Waves ch. 8
Waves ch. 8
Faizan Sadiq
 
Physics lo standing waves
Physics lo standing wavesPhysics lo standing waves
Physics lo standing waves
Supawat Poonjiradejma
 
Lecture 08 standing sound waves. resonance.
Lecture 08   standing sound waves. resonance.Lecture 08   standing sound waves. resonance.
Lecture 08 standing sound waves. resonance.
Albania Energy Association
 
Tunay na presentation sa physics
Tunay na presentation sa physicsTunay na presentation sa physics
Tunay na presentation sa physics
Dith Jose
 

Similar to S14._WaveMotion.ppt (20)

Learning Object: Analyzing a Standing Wave
Learning Object: Analyzing a Standing WaveLearning Object: Analyzing a Standing Wave
Learning Object: Analyzing a Standing Wave
 
chapter18.pdf
chapter18.pdfchapter18.pdf
chapter18.pdf
 
6.wave_optics_1.ppt
6.wave_optics_1.ppt6.wave_optics_1.ppt
6.wave_optics_1.ppt
 
Wave Motion Theory Part3
Wave Motion Theory Part3Wave Motion Theory Part3
Wave Motion Theory Part3
 
04 UNIT-4 (WAVES) .pptx
04 UNIT-4 (WAVES) .pptx04 UNIT-4 (WAVES) .pptx
04 UNIT-4 (WAVES) .pptx
 
Stationary waves
Stationary wavesStationary waves
Stationary waves
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
 
Vibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdf
Vibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdfVibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdf
Vibration and WavesT = 2pisqrt(mk)v = lambdafp = A sin(kx.pdf
 
JEE Main 2014 Physics - Wave Motion Part II
JEE Main 2014 Physics - Wave Motion Part IIJEE Main 2014 Physics - Wave Motion Part II
JEE Main 2014 Physics - Wave Motion Part II
 
299262637 ch16-ppt
299262637 ch16-ppt299262637 ch16-ppt
299262637 ch16-ppt
 
Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes Sina
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3
 
Standin wave
Standin waveStandin wave
Standin wave
 
3 magnetic effect-of_current_3
3 magnetic effect-of_current_33 magnetic effect-of_current_3
3 magnetic effect-of_current_3
 
Ch 7 physical optics final
Ch 7 physical optics finalCh 7 physical optics final
Ch 7 physical optics final
 
Waves ch. 8
Waves ch. 8Waves ch. 8
Waves ch. 8
 
Physics lo standing waves
Physics lo standing wavesPhysics lo standing waves
Physics lo standing waves
 
Lecture 08 standing sound waves. resonance.
Lecture 08   standing sound waves. resonance.Lecture 08   standing sound waves. resonance.
Lecture 08 standing sound waves. resonance.
 
Tunay na presentation sa physics
Tunay na presentation sa physicsTunay na presentation sa physics
Tunay na presentation sa physics
 

More from ssuser61f95d

Scour at Pipeline MSME lecture note (L2-3).pdf
Scour at Pipeline MSME lecture note (L2-3).pdfScour at Pipeline MSME lecture note (L2-3).pdf
Scour at Pipeline MSME lecture note (L2-3).pdf
ssuser61f95d
 
toe and bed scour lectures lecture note.pdf
toe and bed scour lectures lecture note.pdftoe and bed scour lectures lecture note.pdf
toe and bed scour lectures lecture note.pdf
ssuser61f95d
 
Lautan dan Iklim pada kuliah osenaografi
Lautan dan Iklim pada kuliah osenaografiLautan dan Iklim pada kuliah osenaografi
Lautan dan Iklim pada kuliah osenaografi
ssuser61f95d
 
230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf
230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf
230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf
ssuser61f95d
 
Andrei.pptx
Andrei.pptxAndrei.pptx
Andrei.pptx
ssuser61f95d
 
Presentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptx
Presentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptxPresentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptx
Presentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptx
ssuser61f95d
 
01_Warren (1).ppt
01_Warren (1).ppt01_Warren (1).ppt
01_Warren (1).ppt
ssuser61f95d
 

More from ssuser61f95d (7)

Scour at Pipeline MSME lecture note (L2-3).pdf
Scour at Pipeline MSME lecture note (L2-3).pdfScour at Pipeline MSME lecture note (L2-3).pdf
Scour at Pipeline MSME lecture note (L2-3).pdf
 
toe and bed scour lectures lecture note.pdf
toe and bed scour lectures lecture note.pdftoe and bed scour lectures lecture note.pdf
toe and bed scour lectures lecture note.pdf
 
Lautan dan Iklim pada kuliah osenaografi
Lautan dan Iklim pada kuliah osenaografiLautan dan Iklim pada kuliah osenaografi
Lautan dan Iklim pada kuliah osenaografi
 
230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf
230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf
230607 Paparan Penanganan dan Pelaporan Kekerasan di Lingkungan Kerja.pdf
 
Andrei.pptx
Andrei.pptxAndrei.pptx
Andrei.pptx
 
Presentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptx
Presentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptxPresentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptx
Presentation CTI-CFF for IORA - ICZM BLUE ECONOMY 29 AGUSTUS 2023.pptx
 
01_Warren (1).ppt
01_Warren (1).ppt01_Warren (1).ppt
01_Warren (1).ppt
 

Recently uploaded

IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
ramrag33
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
bjmsejournal
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
IJECEIAES
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
riddhimaagrawal986
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
SakkaravarthiShanmug
 

Recently uploaded (20)

IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
 

S14._WaveMotion.ppt

  • 1. Short Version : 14. Wave Motion
  • 2. Wave Properties Wave amplitude Waveform •Pulse •Continuous wave •Wave train Periodicity in space : Wavelength  Wave number k = 2/ Periodicity in time : Period T Frequency  = 2/T
  • 3. Longitudinal & Transverse Waves Longitudinal waves Transverse waves Water waves Longitudinal Transverse mixed 1-D Vibration Water Waves
  • 4. Wave Speed Speed of wave depends only on the medium. Sound in air  340 m/s  1220 km/h. in water  1450 m/s in granite  5000 m/s Small ripples on water  20 cm/s. Earthquake  5 km/s. v T   f   Wave speed
  • 5. 14.2. Wave Math At t = 0,     ,0 y x f x  At t , y(0) is displaced to the right by v t.     , y x t f x v t    For a wave moving to the left :     , y x t f x v t   For a SHW (sinusoidal):   ,0 cos y x A kx  2 k    = wave number SHW moving to the right :     , cos y x t A kx t    2 T    k x t     = phase v T k     = wave speed   k x v t   pk @ x = 0 pk @ x = v t Waves
  • 6. The Wave Equation 1-D waves in many media can be described by the partial differential equation     , y x t f x v t   2 2 2 2 2 y y x v t      Wave Equation whose solutions are of the form v = velocity of wave. E.g., • water wave ( y = wave height ) • sound wave ( y = pressure ) • …     , cos y x t A k x t    v k    ( towards  x )
  • 7. 14.3. Waves on a String  = mass per unit length [ kg/m ] A pulse travels to the right. In the frame moving with the pulse, the entire string moves to the left. Top of pulse is in circular motion with speed v & radius R. Centripedal accel: 2 ˆ m v m R   a y Tension force F is cancelled out in the x direction: 2 sin y F F    2F   ( small segment )  2 2 m v F R   2 2 R v R    F v   2 F v  
  • 8. Wave Power SHO : Segment of length x at fixed x : 2 2 1 2 E x A     2 2 1 2 x P A t      2 2 1 2 v A    v = phase velocity of wave 2 2 1 2 E m A  
  • 9. Wave Intensity Wave front = surface of constant phase. Plane wave : planar wave front. Spherical wave : spherical wave front. Intensity = power per unit area  direction of propagation [ W / m2 ] Plane wave : I const  Spherical wave : 2 4 P I r  
  • 10. 14.4. Sound Waves Sound waves = longitudinal mechanical waves through matter. Speed of sound in air : P v    P = background pressure.  = mass density.  = 7/5 for air & diatomic gases.  = 5/3 for monatomic gases, e.g., He. P,  = max , x = 0 P,  = min , x = 0 P,  = eqm , |x| = max
  • 11. Sound & the Human Ear Audible freq: 20 Hz ~ 20 kHz Bats: 100 kHz Ultrasound: 10 MHz db = 0 : Hearing Threshold @ 1k Hz
  • 12. Decibels Sound intensity level : 10 0 10 log I I         12 2 0 10 / I W m    Threshold of hearing at 1 kHz. [  ] = decibel (dB) /10 0 10 I I   2 2 1 10 1 10 log I I             2 1 / 10 2 1 10 I I     2 1 10 I I  2 1 10 dB      3/10 2 1 10 I I  2 1 3 dB      1 2 I  Nonlinear behavior: Above 40dB, the ear percieves  = 10 dB as a doubling of loudness.
  • 13. 14.5. Interference constructive interference destructive interference Principle of superposition: tot = 1 + 2 . Interference
  • 14. Fourier Analysis Fourier analysis: Periodic wave = sum of SHWs. E note from electric guitar   0 1 sin 2 1 n square wave A n t n       Fourier Series
  • 15. Dispersion Non-dispersive medium Dispersive medium Dispersion: wave speed is wavelength (or freq) dependent Surface wave on deep water: 2 g v     long wavelength waves reaches shore 1st. Dispersion of square wave pulses determines max length of wires or optical fibres in computer networks. Dispersion
  • 16. Beats Beats: interference between 2 waves of nearly equal freq.   1 2 cos cos y t A t A t         1 2 1 2 1 1 2 cos cos 2 2 A t t                    Freq of envelope = 1  2 . smaller freq diff  longer period between beats Applications: Synchronize airplane engines (beat freq  0). Tune musical instruments. High precision measurements (EM waves). Constructive Destructive Beats
  • 17. Interference in 2-D Water waves from two sources with separation   Nodal lines: amplitude  0 path difference = ½ n  Destructive Constructive Interference
  • 18. 14.6. Reflection & Refraction Fixed end Free end Partial Reflection A = 0; reflected wave inverted A = max; reflected wave not inverted light + heavy ropes Rope
  • 19. Partial reflection + oblique incidence  refraction Partial reflection + normal incidence
  • 20. Application: Probing the Earth P wave = longitudinal S wave = transverse S wave shadow  liquid outer core P wave partial reflection  solid inner core Explosive thumps  oil / gas deposits
  • 21. 14.7. Standing Waves String with both ends fixed: 2 L n         , cos cos y x t A k x t B k x t       Superposition of right- travelling & reflected waves:   , 2 sin sin y x t A kx t       1 1 cos cos 2 sin sin 2 2 A                         standing wave sin 0 kL   1,2,3, n  Allowed waves = modes or harmonics n = mode number n = 1  fundamental mode n > 1  overtones y = 0  node y = max  antinode 2 L n       0, 0 y t   B =  A Standing Waves
  • 22. 1 end fixed  node, 1 end free  antinode.   2 1 4 L n    cos 0 kL   1,2,3, n    2 2 1 2 L n            , cos cos y x t A k x t B k x t       0 x L dy dx   B A       sin sin 0 kA kL t kA kL t        cos sin 0 kL t   Standing Waves
  • 23. 14.8. The Doppler Effect & Shock Waves Point source at rest in medium radiates uniformly in all directions. When source moves, wave crests bunch up in the direction of motion (   ). Wave speed v is a property of the medium & hence independent of source motion. v f      f  Doppler effect Approaching source:
  • 24. . t = T u T t = 2T 2 uT = uT t = 0 approach u T     u = speed of source u v     1 u v          recede u T     1 u v          1 / approach approach v f f u v     1 / recede f f u v   T = period of wave Moving Source
  • 25. . t = T u T t = 2T 2 uT = uT t = 0 approach u T     u = speed of source u v     1 u v          recede u T     1 u v          1 / recede f f u v   T = period of wave Moving Source 1 / approach approach v f f u v    
  • 26. Moving Observers An observer moving towards a point source at rest in medium sees a faster moving wave. Since  is unchanged, observed f increases. 1 toward u f f v         1 away u f f v         Prob. 76 For u/v << 1: 1 app f f u v   1 u f v         toward f  Waves from a stationary source that reflect from a moving object undergo 2 Doppler effects. 1. A f toward shift at the object. 2. A f approach shift when received at source.
  • 27. Doppler Effect for Light Doppler shift for EM waves is the same whether the source or the observer moves. 1 app u c           correct to 1st order in u/c 1 app u f c         
  • 28. Shock Waves 1 app u v            0 app   if u v  Shock wave: u > v Mach number = u / v Mach angle = sin1(v/u) E.g., Bow wave of boat. Sonic booms. Solar wind at ionosphere Shock wave front Source, 1 period ago Moving Source