データべースによる
治療効果研究の報告事例
かわぐち心臓呼吸器病院 集中治療室
波多野 俊之
臨床疫学研究における報告の質向上のための統計学の研究会
2018/10/13 (土) 13:30-17:55
お茶の水医学会館 9階大会議室
薬物による稀な
副作用の報告事例
全てフリー
ダウンロード
①の論文の発表後、New York Times誌 MAY 16, 2012年 
「アジスロマイシン(抗生剤)による心血管死」
①Ray WA et al:N Engl J Med 2012;366:1881-90.
②Svanström H et al:N Engl J Med 2013;368:1704-912
2
抗生剤(antibiotics)とは
3
別名:抗生物質
分類
スペク
トラム
ペニシリン系
セフェム系
カルバペネム
キノロン
マクロライド系 特殊
抗生剤
細菌
ウイルス
(風邪)
○
✖
①細菌の増殖を抑える薬剤である
②3要素により投与抗生剤を選択
③抗生剤の種類
狭域∼広域
原因菌
患者の状態
感染臓器
狭域
広域
AZM:グラム陽性球菌
Mycoplasma, Chlamydia
などに効く
研究の背景
• アジスロマイシン(AZM)(商品名:ジスロ
マック)は普及している抗生剤で、呼吸器
感染症や性感染症などに使用されている。
• AZMは心血管リスクは低いとされていた
が、突然死のリスクとなりうるQT延長が
報告されるようになった。
4Ray WA et al:N Engl J Med 2012;366:1881-90.
2012年NEJM発表 Database研究
Azithromycin and the Risk of Cardiovascular Death
QT間隔:
心筋細胞が収縮後
収縮前の状態に戻る時間
(再分極時間)
QT
QT延長➡TdP(トルサードポワン)で突然死
5
Owens RC et al:Clin Infect Dis. 2006;43(12):1603-1611
Yang Z et al. Circ Arrhythm Electrophysiol. 2017;10:e003560.
drug con con
and Idrug
are current amplitudes in the absence and presence of azithro-
mycin, respectively. Dose–response curves were fit by the equation:
y=B1
+(B2
−B1
)/(1+10(logx0–x)*p
), where B1
is the bottom asymptote, B2
is the top asymptote, logx0 is IC50
, x is azithromycin concentration,
and p is hill slope.
ing liquid chromatography–tandem mass spectrometry as d
Statistical Analysis
Data represented using a continuous variable were summa
mean and SE for each group. For group comparisons of
Figure 1. Azithromycin-induced polymorphic ventricular tachycardia (VT) in a 24-y-old woman with no structural heart disease a
mal ECG. The arrhythmias resolved with stopping the drug.
romhttp://ahajournals.orgbyonSeptember16,2018
QT
QT延長
低カリウム
低マグネシウム
抗不整脈薬
IA, III群
徐脈
risk factor
QT間隔延長により
TdP(多形性心室
頻拍)が惹起
QT間隔延長:QTc=
QT RR 440ms
Azithromycin and the Risk of Cardiovascular Death
6
P:
テネシー・メディケイドに登録された30-74歳の患者
(1992-2006年)
E: アジスロマイシンを5日間服用
C: 抗生剤を服用しない(他の抗生剤の使用)
O: 心臓血管病による死亡
T: 抗生剤処方日から5日間(6-10日間)
Ray WA et al:N Engl J Med 2012;366:1881-90.
2012年NEJM発表 Database研究
仮説:Azithromycin服用で心血管突然死が増える
short-term
なriskに限定
研究デザイン:コホート研究
データ源
7
テネシー・メディケイド
死亡統計
全米退院
データベース
メディケイド
薬局ファイル
(出典:kff.orgより)
約19%
Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY COHORT 1段落目
テネシー州人口
671.6万人
メディケイド加入者
約160万人
一般的には、個人が民間企業の
医療保険に加入。
メディケイド:低所得者・身体
障害者のためのアメリカの公的
医療保険制度
2017年
8
1992-2006年に外来でAZMを処方された人
インデックス日(処方日)に抗生剤1種類のみ処方
(抗生剤以外の処方は可)
①生年月日、性別が明らかな人
②30-74歳(インデックス日時点)
③インデックス日にメディケイド薬局情報に登録された人
④インデックス日時点でMedicaidに加入後365日以上経過
⑤インデックス日以前の1年間に処方歴有り
⑥インデックス日以前の1年間に2度以上の受診歴有り
⑦インデックス日時点で老人ホーム、施設に居住していない
⑧インデックス日以前の1年間に除外基準疾患の罹患なし
⑨インデックス日とそれ以前の29日前に入院歴なし
Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目, Appendix Table 2
十分な背景情報
を得る目的
暴露(AZM)群の適格基準
AZMは1992
年にアメリカ
で販売開始
対照群と共通
9
Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目, Appendix Table 2
多少の医療サービ
ス享受者を対象
(全く受診しない
人は含まれない)
1992-2006年のインデックス日に医療サービスを受けている
インデックス日以前の30日間で研究対象の抗生剤処方を受け
ていない(抗生剤以外の処方は可)
①生年月日、性別が明らかな人
②30-74歳(インデックス日時点)
③インデックス日にfull pharmacy benefitに登録された人
④インデックス日時点でMedicaidに加入後365日以上経過
⑤インデックス日以前の1年間に処方歴有り
⑥インデックス日以前の1年間に2度以上の受診歴有り
⑦インデックス日時点でNursing homeに居住していない
⑧インデックス日以前の1年間に除外基準疾患の罹患なし
⑨インデックス日とそれ以前の29日前に入院歴なし
十分な背景情報
を得る目的
対象(No Abx)群の適格基準
暴露群と共通
除外基準
10
Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目、Appendix Table 1
①癌 ⑦神経筋疾患
②HIV ⑧先天性心疾患
③透析 or 末期腎不全 ⑨先天性奇形
④慢性肝炎, 肝硬変 ⑩終末期の疾患
⑤呼吸不全、心不全
(永久気管切開, 在宅酸
⑪薬物乱用
⑥臓器移植後
ICD-9-CM で明確に定義
インデックス日(処方日)の1年以内に
以下の重篤な疾患の罹患
WHOが作成した国際疾病分類。
疾病分類と医療行為の分類の2つの分類をもつ。
現在ICD-10が使用されている、ICD-11(2018/06発表)
11
ICD-9-CMとは
疾患 ICD 9-CM code
①癌 235-238, 238.9 etc
③透析 or 末期腎不全 996.73, 285.21
④慢性肝炎, 肝硬変 570-573
Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目、Appendix Table 1
医療保険
支払い
International Classification of Diseases 9th
Revision Clinical Modification
医療統計
調査
+
12
共変量(n=153)
ID Therapy 年齢 性別 糖尿病 心疾患 ・・ 未知因
子1 AZM 50 男 + - ・・ ?
2 AZM 45 女 - + ・・ ?
3 AZM 67 男 + + ・・ ?
4 no ABx 40 男 + + ・・ ?
5 no ABx 33 男 - - ・・ ?
6 no ABx 70 女 - - ・・ ?
7 AZM 60 女 - - ・・ ?
8 AZM 42 男 + - ・・ ?
9 no ABx 72 男 + - ・・ ?
10 no ABx 35 男 + + ・・ ?
傾向スコア(Propensity score)の理解
仮想データシートを用いて
13
共変量(n=153)
ID Therapy 年齢 性別 糖尿病 心疾患 ・・ 未知因
1 AZM 50 男 + - ・・ ?
2 AZM 45 女 - + ・・ ?
3 AZM 67 男 + + ・・ ?
4 no ABx 40 男 + + ・・ ?
5 no ABx 33 男 - - ・・ ?
6 no ABx 70 女 - - ・・ ?
7 AZM 60 女 - - ・・ ?
8 AZM 42 男 + - ・・ ?
9 no ABx 72 男 + - ・・ ?
10 no ABx 35 男 + + ・・ ?
共変量からAZMへの割り付け率を推測
割り付け率=傾向スコア(0-1の値)
14
治療
Azithromycin
治療選択は共変数
に影響される
あり
なし
共変量
153
年齢
対象患者
性別
女=0, 男=1
糖尿病
No=0, Yes=1
心疾患
No=0, Yes=1
未知の因子
・
・
傾向スコア
の推定
logistic
回帰解析
Propensity scoreの計算
❌
X
1-X
15
治療
Azithromycin
治療選択は共変数
に影響される
あり
なし
共変量
153
年齢
対象患者
性別
男=1
糖尿病
Yes=1
心疾患
Yes=1
未知の因子
・
・
傾向スコア
の推定
logistic
回帰解析
Propensity scoreの計算
❌
0.8
0.2
共変量(covariate):153項目の設定理由
16
共変量 項目 理由
①月 (month)
抗生剤の処方、死亡は季節に影響
を受ける(呼吸器・心疾患は共に
冬に多い)
②呼吸器疾患 死亡のリスク
③心疾患の処方、診断名 死亡のリスク
④精神疾患 自傷行為
⑤筋骨格系疾患 opioid使用➡非心臓死
⑥神経疾患 死亡のリスク
⑦frailty(虚弱性) 死亡のリスク
⑧受診歴 死亡のリスク
Ray WA et al:N Engl J Med 2012;366:1881-90. Appendix p5
対象群(No user群)の抽出
• AZM服用者の4つの特徴:
①過去1年に10回以上循環器疾患以外で受診 
②過去1年にβ刺激薬の処方         
③過去30日以内に救急外来を受診      
④過去30日以内に何らかの処方(AZM以外)
17
PSの計算
Azithromycin vs non user
共変量 153
potential non user control
poolの同定
n=8,461,105
PSマッチング
n=1,391,180
non user control
• 年齢・性別・インデックス日(処方日)・
AZM服用者の4つの特徴でマッチさせて、
potential non user control poolを同定
AZM服用者の特徴
を同定
分析の単位が処方であり、
(同一患者が)複数回組み入れあり
Propensity scoreの計算
18
Appendix Table 3.より抜粋
β0+β1 人種 +β2 性別 +β3 年齢 +…+μ=loge (p/1-p)
⭐ロジスティック回帰分析
⭐pがpropensity score(PS), PSとは暴露(AZM)群に入る確率
Appendix: Azithromycin and the Risk of Cardiovascular Death 6
Appendix Table 3. Azithromycin:nonuser control propensity score model. 25-1 sample.
Obs Parameter DF OR CIlow CIhigh P ChiSq
1 Intercept 1 0.02466 0.02363 0.02573 <.0001
Demographic factors
2 Race, white vs nonwhite 1 1.28497 1.27337 1.29667 <.0001
3 Female vs male 1 0.90542 0.89745 0.91347 <.0001
4 Age, 1 year increase 1 1.00192 1.00154 1.00229 <.0001
5 Standard Metropolitan Statistical Area (yes vs no) 1 0.95789 0.95109 0.96475 <.0001
6 Medicaid enrollment, disabled vs other 1 0.98397 0.9764 0.99161 <.0001
7 Calendar year 1992 1 0.9795 0.92322 1.03921 0.4926
8 Calendar year 1993 1 0.92582 0.88825 0.96499 0.0003
9 Calendar year 1994 1 0.84013 0.78127 0.90342 <.0001
10 Calendar year 1995 1 0.79734 0.71205 0.89284 <.0001
11 Calendar year 1996 1 0.82791 0.78477 0.87342 <.0001
12 Calendar year 1997 1 0.82992 0.79554 0.86579 <.0001
13 Calendar year 1998 1 0.81066 0.77714 0.84564 <.0001
14 Calendar year 1999 1 0.77591 0.74626 0.80674 <.0001
15 Calendar year 2000 1 0.80186 0.78022 0.8241 <.0001
Appendix: Azithromycin and the Risk of Cardiovascular Death 7
Cardiovascular, including diabetes
42 Angina pectoris 1 1.03347 1.01411 1.05319 0.0006
43 Cardiac revascularization 1 1.03156 0.99234 1.07234 0.1162
44 Myocardial infarction 1 0.96056 0.91684 1.00637 0.0905
45 Other coronary heart disease 1 1.06579 1.05022 1.0816 <.0001
46 Cardiac valve disease 1 1.00883 0.98776 1.03034 0.4145
47 Conduction disorder 1 1.00941 0.96569 1.05511 0.6783
48 Atrial fibrillation 1 1.0369 1.00292 1.07202 0.033
49 Arrhythmia 1 1.00376 0.98544 1.02243 0.6894
105 Suicide attempt 1 0.88791 0.84623 0.93164 <.0001
106 Fall 1 0.97538 0.96082 0.99017 0.0012
107 Injury ED, 1-2 visits 1 0.95417 0.94332 0.96514 <.0001
108 Injury ED, 3+ visits 1 0.93152 0.90939 0.95419 <.0001
109 Injury outpatient, 1-2 visits 1 1.03338 1.02407 1.04277 <.0001
110 Injury outpatient, 3-5 visits 1 1.02015 1.00326 1.03732 0.0192
111 Injury outpatient, 6+ visits 1 0.96453 0.93762 0.9922 0.0123
112 Morphine Rx past 12 months 1 0.88525 0.86861 0.90221 <.0001
113 Fentanyl Rx past 12 months 1 0.94324 0.92748 0.95927 <.0001
114 Meperidine Rx past 12 months 1 1.05624 1.03838 1.07441 <.0001
115 Opioids past 30 days, 1-15 days 1 0.87111 0.86132 0.881 <.0001
116 Opioids past 30 days, 16-30 days 1 1.00571 0.99095 1.02068 0.4505
117 Opioids past 30 days, 31+ days 1 0.97706 0.9599 0.99453 0.0103
118 Opioids past year, 1-60 days 1 1.14436 1.1306 1.15829 <.0001
119 Opioids past year, 61-499 days 1 1.14479 1.12544 1.16447 <.0001
120 Opioids past year, 500+ days 1 1.1576 1.12422 1.19197 <.0001
121 Opioid refill, early 1 1.08083 1.0611 1.10093 <.0001
122 Disease modifying anti-rheumatic drug 1 0.95196 0.92998 0.97446 <.0001
123 Systemic corticosteroid 1 1.12743 1.10398 1.15138 <.0001
Neurologic
124 Seizure disorder 1 0.89905 0.87925 0.9193 <.0001
125 Dementia 1 0.91069 0.88036 0.94205 <.0001
126 Anticonvulsant 1 0.99935 0.98071 1.01835 0.9464
127 Parkinsons medication 1 0.91569 0.89485 0.93702 <.0001
Frailty
128 Decubitus ulcer 1 0.93937 0.88265 0.99973 0.049
129 Amputation 1 0.90509 0.82272 0.99571 0.0405
130 Delirium 1 0.8697 0.82851 0.91293 <.0001
131 Incontinence, urine 1 1.01858 0.99701 1.04062 0.0918
132 Incontinence, fecal 1 0.99218 0.91288 1.07838 0.8535
133 Indwelling urinary catheter 1 0.92295 0.84696 1.00576 0.0674
134 Feeding/nutrition problem 1 0.90354 0.83487 0.97786 0.0119
135 Wheelchair or walker 1 0.97218 0.94924 0.99568 0.0206
Medical care
136 Any outpatient visit past 30 days 1 0.94775 0.93968 0.9559 <.0001
137 Any prescription past 30 days (not study antibiotic) 1 0.62543 0.61764 0.63332 <.0001
138 CV inpatient visit 91-365 days before t0 1 1.02644 1.00662 1.04665 0.0087
β
β
β
β
Azithromycin群とpotential control群の
PS scoreの分布➡マッチング
•153の共変量を元に傾向スコアを計算後、4対1 の割付比で
frequency matching
•AZM服用群をPS band(100分割,各々n数)を作成, AZMの各
bandに対して, 4n数をpotential nonuser controlから抽出
19
Appendix: Azithromycin and the Risk of Cardiovascular Death 10
Important percentiles for the azithromycin:nonuser control propensity score are shown in Appendix
Table 4.
Appendix Table 4. Azithromycin:nonuser control propensity score percentiles.
Potential nonuser control Azithromycin
Propensity Score
Minimum 0.0031 0.0041
5% 0.0161 0.0200
25% 0.0234 0.0292
50% 0.0303 0.0420
75% 0.0420 0.0774
95% 0.0918 0.1738
Maximum 0.6530 0.6227
For each azithromycin prescription, four nonuser control periods were selected from the potential
control pool, frequency-matched according to propensity score. The first step was to create propensity score
bands: we identified 100 1-percentile intervals, each with an approximately equal number of azithromycin
prescriptions. From each of these bands, 4n control periods were randomly selected, where n was the number
of azithromycin prescriptions within the band. For this reason, the nonuser control periods are not individually
matched on either the propensity score or any of the study variables. Because the very highest band (99th
percentile) did not contain sufficient controls, the successive lower bands were oversampled to make up the
deficiency.
A key test of propensity score matching is whether or not the distribution of the covariates is balanced.
The manuscript Table 1 shows virtually complete balance with regard to study covariates.
Study Followup and Person-TimeAbbreviation: PS(propensity score), AZM(azithromycin)
Ray WA et al:N Engl J Med 2012;366:1881-90.
アクティブな対象群
20
Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY COHORTの4段落目
分類 催不整脈作用
Azithromycin マクロライド系 ?
Amoxicillin ペニシリン系 ー
Ciprofloxacin ニューキノロン +
Levofloxacin ニューキノロン ++
AZM服用の適応(感染症)
による交絡を調整する
目的で作成
要因
AZM服用
アウトカム
死亡
交絡因子
感染症
アクティブな比較対象ごとにPS を計算
• 1)amoxicillin vs nonuser, 2)AZM vs amoxicillin
3)ciprofloxacin vs amoxicillin 4)levofloxacin vs amoxicillin
5)AZM vs ciprofloxacin 6)AZM vs levofloxacin
Appendix: Azithromycin and the Risk of Cardiovascular Death 13
Appendix Table 5. Percentiles for other study antibiotic propensity scores.
N Min P5 P25 P50 P75 P95 Max
Amoxicillin vs nonuser Amoxicillin
No 1391180 0.042579 0.149002 0.222731 0.289014 0.372291 0.763472 0.993369
Yes 1348672 0.04879 0.207406 0.358349 0.822118 0.927004 0.978623 0.99553
Azithromycin vs amoxicillin Azithromycin
No 1348672 0.000664 0.005074 0.018192 0.052255 0.295193 0.484113 0.866628
Yes 347795 0.001145 0.068093 0.292857 0.386622 0.49003 0.649625 0.872965
Ciprofloxacin vs amoxicillin Ciprofloxacin
No 1348672 0.002086 0.008307 0.022776 0.073864 0.177116 0.36137 0.984417
Yes 264626 0.003003 0.05582 0.175478 0.294214 0.650018 0.843497 0.982692
Appendix Table 3.より抜粋
21
Ray WA et al:N Engl J Med 2012;366:1881-90.
:6つのPSを作成
アウトカム
22
• primary end points:心血管疾患による死亡
インデックス日 5 10日目
AZM内服
追跡期間
Amoxicilin内服
Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY END POINTS
・死亡の系統的誤分類(differential misclassification)
を避けるため、全ての理由による死亡も解析
:疾病によって感度が異なる可能性
• secondary end points:心臓突然死
short-term
なriskに限定
全ての理由による死亡
23Chung CP, Ray WA et al. pharmacoepidemiology and drug safety 2010; 19: 563–572
thetic) generally not performed on patients in cardiac
arrest.
Validation sample. The validation study cohort had
1870 deaths that met the computer case definition for
sudden cardiac death (Figure 1). To avoid overlap with
the development sample, the validation sample was
restricted to deaths that occurred between 1994 and
2005. To reduce the time and expense of record
retrieval, the sample was further restricted to 316
deaths in counties within a 100 mile radius of Nash-
ville. Of these, records were not sought for 74 (23.4%)
because they had no institutional (hospital, emergency
department, or hospital-based clinic) or emergency
medical services encounters in the year preceding
death. Our past experience suggested that absent these
types of encounters, information on the circumstances
of death would be insufficient to permit adjudication.
Medical records were sought for the remaining 242
deaths; access was refused for 5 (2.0%) and the records
had inadequate documentation for 63 (26.0%). This
left 174 deaths for which medical records (redacted to
remove personal identifiers and medication history)
were adjudicated (Figure 1) by both a study physician
and a cardiac electrophysiologist.
Figure 2. Computer case definition for sudden cardiac death
Copyright # 2009 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2010; 19: 563–572
DOI: 10.1002/pds
computer case definition for sudden cardiac death 567
心臓突然死の定義
RESULTS
Development sample
The 926 adjudicated deaths in the development sample
were the basis for constructing the computer case
definition for sudden cardiac death. Of these deaths,
706 were classified as cases of sudden cardiac death
(49% probable, 51% possible), a positive predictive
value of 76.2% (Table 2).
We assessed the effect of the successive application
of each of the three criteria in the computer case
definition intended to reduce misclassification by
restricting deaths to those more likely to represent
true sudden cardiac deaths (Figure 2). Restriction to
deaths with no evidence of a terminal institutional
stay (Figure 2, criterion 1, 800 deaths) increased the
positive predictive value to 79.6% (Table 2). Restric-
tion to those with an underlying cause of death
diagnosis code more compatible with sudden cardiac
death (Table 1 and Figure 2, criterion 2, 644 deaths)
increased the positive predictive value to 85.1%.
Finally, excluding those deaths where terminal medical
care was inconsistent with cardiac arrest (Figure 2,
criterion 3, 616 deaths) increased the positive
predictive value to 86.0%. These further restrictions
led to misclassification of 176 deaths adjudicated as
sudden cardiac deaths, a false negative proportion of
24.9%.
We assessed the performance of the individual cause
of death codes used to identify the deaths in the
development sample (Table 3). This assessment
utilized the 800 cases in the development sample
with no evidence of a terminal hospitalization and
included both codes ultimately used and not used for
the computer case definition. For the codes used in
the computer case definition, the most frequently
recorded were myocardial infarction (285 deaths,
positive predictive value of 82.1%) and cardiovascular
NOS denotes ‘not otherwise specified’.
Table 2. Development study sample. Adjudication by medical record review of potential cases of sudden cardiac death
Deaths adjudicated Confirmed cases sudden cardiac death PPV,% FN FN,%
Entire development study sample 926 706 76.2 0 0
Additional restrictions in computer case definition
1. No terminal institutional stayÃ
800 637 79.6 69 9.8
2. Underlying cause of death consistent with sudden cardiac death 644 548 85.1 158 22.4
3. No terminal procedure inconsistent with sudden cardiac death 616 530 86.0 176 24.9
The positive predictive values (PPVs) and false negative (FN) proportions are shown for the entire development sample and for subsets of that sample identified
by successively applying the three criteria of the computer case definition for sudden cardiac death (see Figure 2).
Ã
Did not include the State Hospital Discharge File, which was unavailable at the time the development study was performed.
Copyright # 2009 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2010; 19: 563–572
DOI: 10.1002/pds
Databaseから抽出で
きるように
Ray WAらが自ら定義
カルテ検証で
高い陽性適中率
24
The new engl and jour nal of medicine
Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled
and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.*
Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin
Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795
Mean age (yr) 48.6 47.7 50.5 51.5 48.6
Female sex (%) 77.5 73.3 75.5 73.5 77.5
Current or past use of medications (%)
Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1
Beta-blocker 21.6 17.3 20.9 24.8 21.5
Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2
Digoxin 2.5 3.5 3.8 3.6 2.5
Loop diuretic 17.3 15.1 20.1 23.8 17.2
Other diuretic 25.9 22.4 26.3 28.9 25.9
Statin 28.1 17.9 25.2 34.5 28.0
Insulin 6.5 6.9 10.2 10.2 6.5
Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5
Beta-agonist 40.5 28.1 28.6 43.5 40.3
Glucocorticoid 3.3 2.8 3.8 4.8 3.3
Coexisting conditions (%)
Heart failure 4.3 3.9 5.3 6.8 4.3
Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4
Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5
Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9
Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3
Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2
Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8
Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9
Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§
Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3
* Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise
specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com-
parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use
The new engl and journal of medicine
Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled
e Control Period for Persons Who Received No Antibiotic Treatment.*
No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin
1,391,180 1,348,672 264,626 193,906 347,795
48.6 47.7 50.5 51.5 48.6
77.5 73.3 75.5 73.5 77.5
dications (%)
g–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1
21.6 17.3 20.9 24.8 21.5
ker 20.2 19.9 22.8 24.3 20.2
2.5 3.5 3.8 3.6 2.5
17.3 15.1 20.1 23.8 17.2
25.9 22.4 26.3 28.9 25.9
28.1 17.9 25.2 34.5 28.0
6.5 6.9 10.2 10.2 6.5
nt 16.5 13.1 18.9 21.9 16.5
40.5 28.1 28.6 43.5 40.3
3.3 2.8 3.8 4.8 3.3
4.3 3.9 5.3 6.8 4.3
ulmonary disease 5.5 4.6 5.1 6.8 5.4
etes‡ 7.4 6.5 11.3 11.7 7.5
or feces 2.9 2.1 4.6 4.3 2.9
alker 2.3 1.6 3.2 3.8 2.3
vascular condition (%) 7.2 6.0 8.5 9.5 7.2
condition (%) 15.7 14.8 19.1 20.4 15.8
ment in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9
e past 30 days (%) 27.9 28.4 38.6 40.3 27.0§
risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3
nd medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise
with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com-
teristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use
Table 1.より抜粋
• AZM群と対象群で共変量
は均一な背景
• balancingの評価なし  
推奨法:標準化差
(standardized
difference)
結果 患者背景(インデックス日時点):
AZM群 vs No antibitotics群
Ray WA et al:N Engl J Med 2012;366:1881-90.
25
Table 1.より抜粋
結果 患者背景(インデックス日時点):
AZM群 vs Amoxicillin群
• AZM群とno antibiotics群
とは違うマッチング方法を
採用(IPTW変法)
• AZM群とAmoxicillin群で
共変量は均一か疑問有り:
balancingの評価なし(SD
の検証なし)
• 22項目中18項目で(性別、
処方数を除く)AZMの背景
因子が悪い。特にstatinと
β刺激薬服用に違いが顕著
(コメント論文より)
Ray WA et al:N Engl J Med 2012;366:1881-90.
The new engl and jour nal o f medicine
Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled
and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.*
Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin
Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795
Mean age (yr) 48.6 47.7 50.5 51.5 48.6
Female sex (%) 77.5 73.3 75.5 73.5 77.5
Current or past use of medications (%)
Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1
Beta-blocker 21.6 17.3 20.9 24.8 21.5
Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2
Digoxin 2.5 3.5 3.8 3.6 2.5
Loop diuretic 17.3 15.1 20.1 23.8 17.2
Other diuretic 25.9 22.4 26.3 28.9 25.9
Statin 28.1 17.9 25.2 34.5 28.0
Insulin 6.5 6.9 10.2 10.2 6.5
Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5
Beta-agonist 40.5 28.1 28.6 43.5 40.3
Glucocorticoid 3.3 2.8 3.8 4.8 3.3
Coexisting conditions (%)
Heart failure 4.3 3.9 5.3 6.8 4.3
Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4
Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5
Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9
Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3
Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2
Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8
Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9
Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§
Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3
* Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise
specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com-
parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use
The new engl and jour nal o f medicine
Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled
and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.*
Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin
Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795
Mean age (yr) 48.6 47.7 50.5 51.5 48.6
Female sex (%) 77.5 73.3 75.5 73.5 77.5
Current or past use of medications (%)
Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1
Beta-blocker 21.6 17.3 20.9 24.8 21.5
Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2
Digoxin 2.5 3.5 3.8 3.6 2.5
Loop diuretic 17.3 15.1 20.1 23.8 17.2
Other diuretic 25.9 22.4 26.3 28.9 25.9
Statin 28.1 17.9 25.2 34.5 28.0
Insulin 6.5 6.9 10.2 10.2 6.5
Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5
Beta-agonist 40.5 28.1 28.6 43.5 40.3
Glucocorticoid 3.3 2.8 3.8 4.8 3.3
Coexisting conditions (%)
Heart failure 4.3 3.9 5.3 6.8 4.3
Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4
Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5
Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9
Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3
Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2
Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8
Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9
Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§
Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3
* Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise
specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com-
parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use
The new engl and jour nal of medicine
Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled
e Control Period for Persons Who Received No Antibiotic Treatment.*
No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin
1,391,180 1,348,672 264,626 193,906 347,795
48.6 47.7 50.5 51.5 48.6
77.5 73.3 75.5 73.5 77.5
dications (%)
g–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1
21.6 17.3 20.9 24.8 21.5
er 20.2 19.9 22.8 24.3 20.2
2.5 3.5 3.8 3.6 2.5
17.3 15.1 20.1 23.8 17.2
25.9 22.4 26.3 28.9 25.9
28.1 17.9 25.2 34.5 28.0
6.5 6.9 10.2 10.2 6.5
nt 16.5 13.1 18.9 21.9 16.5
40.5 28.1 28.6 43.5 40.3
3.3 2.8 3.8 4.8 3.3
4.3 3.9 5.3 6.8 4.3
lmonary disease 5.5 4.6 5.1 6.8 5.4
etes‡ 7.4 6.5 11.3 11.7 7.5
or feces 2.9 2.1 4.6 4.3 2.9
alker 2.3 1.6 3.2 3.8 2.3
ascular condition (%) 7.2 6.0 8.5 9.5 7.2
ondition (%) 15.7 14.8 19.1 20.4 15.8
ment in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9
past 30 days (%) 27.9 28.4 38.6 40.3 27.0§
isk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3
nd medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise
with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com-
teristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use
26
Table 1.より抜粋
Ray WA et al:N Engl J Med 2012;366:1881-90.
結果 患者背景(インデックス日時点):
AZM群 vs Amoxicillin群
The new engl and jour nal o f medicine
Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled
and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.*
Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin
Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795
Mean age (yr) 48.6 47.7 50.5 51.5 48.6
Female sex (%) 77.5 73.3 75.5 73.5 77.5
Current or past use of medications (%)
Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1
Beta-blocker 21.6 17.3 20.9 24.8 21.5
Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2
Digoxin 2.5 3.5 3.8 3.6 2.5
Loop diuretic 17.3 15.1 20.1 23.8 17.2
Other diuretic 25.9 22.4 26.3 28.9 25.9
Statin 28.1 17.9 25.2 34.5 28.0
Insulin 6.5 6.9 10.2 10.2 6.5
Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5
Beta-agonist 40.5 28.1 28.6 43.5 40.3
Glucocorticoid 3.3 2.8 3.8 4.8 3.3
Coexisting conditions (%)
Heart failure 4.3 3.9 5.3 6.8 4.3
Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4
Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5
Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9
Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3
Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2
Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8
Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9
Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§
Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3
* Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise
specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com-
parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use
antibiotics. See Table 7 in the Supplementary Appendix for additional cohort characteristics.
• AZM群とAmoxicillin
群で共変数は均一か疑
問有り。statinとβ刺
激薬服用に違いが顕著
• balancingの評価なし
(SDの検証なし)
PS調整された抗生剤の服用理由
AmoxicillinとAZMで均一
27
Appendix: Azithromycin and the Risk of Cardiovascular Death 18
Appendix Table 9. Propensity-score adjusted antibiotic indicationsa
.
Amoxicillin Azithromycin
Days of prescribed therapy     
Median 10  5
Inter-quartile range 8‐10  5‐5
 
Recorded indication, % a
     
Ear-nose-throat 41.8  41.8
Bronchitis 19.7  20.0
Pneumonia 2.5  2.4
Respiratory symptoms 12.6  12.6
Chronic obstructive pulmonary disease 6.8  6.9
Other respiratory 3.2  3.2
Gastrointestinal 0.8  0.8
Genitourinary 3.5  3.4
Skin/soft tissue/joint/bone 2.5  2.4
Wounds 3.3  3.4
Pyrexia unknown origin 1.1  1.1
Other serious infectionsb
0.8  0.7
Other 1.5  1.5
a
Based on proportion with known indication, see MS Table 2. The propensity score is for azithromycin vs amoxicillin.
Ray WA et al:N Engl J Med 2012;366:1881-90.
• No Abxと比較して、
Day1-5における心
血管死増あり(HR
2.88)
• 一方で、Amoxicillin
のNo Abxと比較
における心血管死
増あり(HR 0.95)
28
Ray WA et al:N Engl J Med 2012;366:1881-90.
結果:Day1-5の累積死亡
29
The regression model coefficients for the study covariates must be interpreted cautiously. Because
controlling for confounding relies upon the propensity score, these coefficients are not completely adjusted for
other factors. For example, male sex is associated with increased risk. However, the corresponding HRs for
these covariates are not well adjusted for other cardiovascular risk factors, as the propensity score can only be
demonstrated to perform this adjustment for azithromycin.
Appendix Table 10. Proportional hazards regression model estimates. These are for azithromycin 5
day course of therapy versus comparable period for amoxicillin, cardiovascular death endpoint.
Obs  Parameter  ClassVal0  Prob ChiSq  Hazard Ratio  CL Low  CL High 
1  Year before 1995  0.4179 1.5253  0.5490 4.2360
2  Age, 1 year increase  <.0001  1.0551  1.0330 1.0770
3  Female vs male  <.0001  0.3461  0.2150 0.5560
4  Antibiotic  4: azithromycin  0.0025 2.4909  1.3790 4.5010
5  Propensity Score Decile  9 0.0675 4.7179  0.8940 24.8870
6  8 0.2658 2.6600  0.4750 14.9000
7  7 0.1557 3.3763  0.6290 18.1160
8  6 0.7043 0.6687  0.0840 5.3420
9  5 0.9109 1.1149  0.1660 7.4960
10  4 0.2334 2.4878  0.5560 11.1390
11  3 0.1396 2.7965  0.7150 10.9420
12  2 0.1358 2.7582  0.7270 10.4600
13  1 0.4808 1.6736  0.4000 7.0050
Appendix Figure 2 shows cardiovascular and total mortality for the comparison of ciprofloxacin and
levofloxacin versus amoxicillin.
Appendix: Azithromycin and the Risk of Cardiovascular Death 22
Appendix Table 11 shows alternative analyses for the comparison of cardiovascular deaths during a 5
day course of azithromycin therapy versus a comparable time period for amoxicillin. The analyses include a
propensity-score stratified analysis, in which we calculated the HR for each decile of the azithromycin:
amoxicillin propensity score. The model for each stratum included age and gender. The pooled estimated was
calculated as the inverse-variance weighted mean of the stratum-specific estimates.11
The pooled HR was
2.53 (1.37-4.67), essentially identical to that of 2.49 (1.38-4.50) from the primary analysis. We also performed
the same analysis for the azithromycin vs nonuser control comparison; the HR from the propensity-score
stratified analysis was 3.01 (1.84-4.94), very similar to that of 2.88 (1.79-4.63) from the primary analysis.
We also performed a repeated measures analysis that controls for possible within-person
dependencies (although theoretically the use of non-overlapping time periods and only one endpoint per
person should make this unnecessary) as well as one that includes terms for other potentially proarrhythmic
drugs. The latter include non-study macrolides/fluoroquinolones, methadone,12
anti-arrhythmic medications
that can cause torsade de pointes (disopyramide, procainamide, amiodarone, sotalol, quinidine, dofetilide),13;14
cisapride,15
terfenadine,16
and astemizole.17
Findings for both of these analyses were essentially identical to
those of the primary analysis.
Appendix Table 11. Alternative analyses.
All Cardiovascular Death HR 95% CI
Primary analysis 2.49 1.38-4.50
Propensity-score stratified analysis 2.53 1.37-4.67
Repeated measures analysis to control for possible
dependence between different time periods within the same
patient.
2.49 1.40-4.42
Model includes terms for other proarrhythmic drugs 2.51 1.38-4.54
様々なモデルで検証
AZMによる心血管死↑
• Day1-5ではAZMが2.88倍の死亡、一方で、
Day6-10ではAZM群と対象群でHR変わらず。   
➡5日目まで(AZM服用中)のみ死亡リスク↑
30
Ray WA et al:N Engl J Med 2012;366:1881-90.
結果:10日間の累積死亡 
AZM群 vs no ABx 群
• Day1-5において, Amoxicillin群と比較してもAZM群
は心血管死が増加(2.49倍),一方で, Day 6-10にお
いてはAZM群とAmoxicillin群は死亡率に差なし 31
Ray WA et al:N Engl J Med 2012;366:1881-90.
結果:10日間の累積死亡 
AZM群 vs Amoxicillin 群
32
Appendix: Azithromycin and the Risk of Cardiovascular Death 19
Cardiovascular Deaths
0 1 2 3 4 5 6 7 8 9 10
0
50
100
150
Nonuser Amoxicillin
Days 1 to 5: p = 0.85
HR = 0.95 (0.55-1.63)
Entire 10 Days: p = 0.47, HR = 0.87 (0.59-1.28)
Days 6 to 10: p = 0.40
HR = 0.81 (0.49-1.33)
Deaths:
Amoxicillin 6 11 12 9 4 9 10 4 6 9
Nonuser 7 10 6 8 10 11 8 9 9 6
Days Since Prescription Fill
CumulativeDeathsper106
Prescriptions
All Deaths
0 1 2 3 4 5 6 7 8 9 10
0
50
100
150
Nonuser Amoxicillin
Days 1 to 5: p = 0.45
HR = 0.86 (0.58-1.28)
Entire 10 Days: p = 0.80, HR = 1.04 (0.79-1.36)
Days 6 to 10: p = 0.56
HR = 1.11 (0.78-1.57)
Deaths:
Amoxicillin 11 17 20 11 11 19 20 10 16 16
Nonuser 17 15 19 12 16 19 14 15 19 13
Days Since Prescription Fill
CumulativeDeathsper106
Prescriptions
Appendix Figure 1. Cardiovascular and total mortality for amoxicillin users versus nonuser controls. See also MS Figure 1.
結果:Nouser群 vs Amoxicillin群 
AmoxicillinはNouserと比較して、心血管死・全ての死
共にリスク変わらない、時期による差もなし
Appendix Figure 1より
33
Appendix: Azithromycin and the Risk of Cardiovascular Death 23
Appendix Table 12. Azithromycin user characteristics according to cardiovascular risk score deciles.
Characteristics are those as of the date of the prescription fill. Also see footnotes to MS Table 1.
Deciles 1-5 Deciles 6-9 Decile 10
N of prescriptions 179,317 135,931 32,547
Demographic characteristics
Calendar year t0, mean 2003.2 2002.9 2002.7
Age in years, mean 42.7 53.9 59.4
Female, % 91.7% 66.8% 43.7%
White, % 81.6% 76.8% 74.8%
Urban residence,% 48.8% 52.4% 55.4%
Medicaid enrollment disability,% 33.0% 64.5% 79.3%
Cardiovascular medications, %
Angiotensin converting enzyme inhibitors 16.8% 36.6% 54.9%
Anti-arrhythmic 0.9% 1.7% 4.5%
Anticoagulants 1.6% 4.0% 12.4%
Non-aspirin platelet inhibitor 2.3% 6.3% 13.7%
Beta-blockers 13.4% 26.9% 44.0%
Calcium-channel blockers 11.7% 26.9% 38.6%
Digoxin 0.2% 2.0% 17.9%
Loop diuretic 7.3% 22.4% 50.0%
Other diuretic 19.5% 31.8% 36.7%
Nitrate 4.1% 12.9% 31.1%
Statin 19.0% 35.4% 46.8%
Cardiovascular diagnoses, %
Myocardial infarction 0.1% 0.8% 3.1%
Revascularization 0.9% 1.4% 2.1%
Cardiac valve disease 1.8% 3.4% 7.6%
Heart failure 0.5% 4.0% 27.0%
Cerebrovascular disease 1.9% 2.7% 5.9%
Peripheral vascular disease 1.1% 3.6% 9.3%
Cardiovascular risk summary
Summary cardiovascular risk score, mean 4.4 13.4 18.5
Other comorbidity, %
Insulin 3.5% 7.8% 17.1%
Oral hypoglycemic 11.6% 20.2% 28.4%
Antipsychotic prescription 6.1% 16.3% 24.8%
Figure3背景:心血管リスクスコアを3分割して比較
最大リスク群はかなりハイリスク
34
4100処方あたり
1人の心血管死↑
10万処方あたり1人
より少ない心血管死↑
結果:心血管リスクを3分割して
AZMとAmoxicillinで比較
最大リスク群
最小リスク群
結果のまとめ
• リスクが増大したタイミングが特徴的である。   
アクティブ対照群との比較により死亡リスクの上昇は
AZMによる薬剤性の可能性である事が示唆される。
• 様々なモデルでもAZMのリスク増加は一致する。
• 心血管リスクスコアごとの比較では、スコアが高くな
るとリスク増大した。
35
36
コメント論文
• 過去にRCTあり
• 抗生剤非使用群でも死亡率が高い。テネシー・メディケイドに合併
症を伴う患者が多い可能性
• 背景に差があるのでは?←(Ray WAら)マッチさせると標本が減
り、検出力が減ってしまう。傾向スコアで調整しており問題ない。
• 抗生剤の処方理由が死因に寄与しているはず。
• 潜在的な交絡を調整するために統計を駆使しているが、上手く交絡
を調整できているかは不明である。
• 本研究は真に抗生剤が必要な人に処方されているか疑問あり。
37Albert RK et al. N Engl J Med 2011;365:689-698
コメント論文
AZMによるCOPD急性増悪の予防ができるか調査したRCT
QT延長のリスク
がある患者は対象
から除外
Azithromycin for prevention of exacerbations of COPD
リスクが高い人はQT間
隔をモニタリングすれば
AZMは使用可能
AZMによるQT延長なし
Azithromycin for the Secondary Prevention of Coronary Events
38
P: 安定狭心症の4012人
E: アジスロマイシン600mg/週を1年間服用
C: Placebo薬 週1回を1年間服用
O:
冠動脈疾患による死亡、非致死的な心筋 塞、
冠動脈再建の施行、不安定狭心症による入院
T: 平均で3.9年follow
Grayston JT et al:N Engl J Med 2005;352:1637-45.
2005年NEJM 発表 RCT
• 仮説:Chlamydia Pneumoniae感染と動脈硬化の関連性あり
➡AZM服用により冠動脈イベントを二次的に減らせる
Ray WAとの相違
・対象者が異なる
・アウトカムの差異
・暴露期間が異なる
患者背景
39Grayston JT et al:N Engl J Med 2005;352:1637-45.
結果:
40
• 冠動脈疾患死に限定し
て参考にできる
Grayston JT et al:N Engl J Med 2005;352:1637-45.
• primary end pointが
全く異なるため、カプ
ランマイヤー曲線は参
考にならない
The cardiovascular risk of azithromycin was
increased in a large observational cohort study,
contradicting findings from prior randomised trials.
• ①RCTではない
• ②保険支払いデータの情報の正確性に疑問
• ③AZM群と対照群の間に「選択バイアス」
41Muhlestein JB:Evid Based Med. 2013 Jun;18(3):e28.
• Ray WAらの研究の問題点.
コメント論文
Use of Azithromycin
and Death from Cardiovascular Causes
42
P:
Danish Registyに登録された18-64歳の患者
(1997-2010年)
E: アジスロマイシンを5日間服用
C: 抗生剤を服用しない(Penicillin Vの使用)
O: 心臓血管病による死亡
T: 抗生剤処方日から5日間(最大35日間)
Svanström H et al:N Engl J Med 2013;368:1704-912
2013年NEJM発表  Database研究
• 背景:リスクが高い患者ではAzithromycinの心血管死が増加する
➡通常リスクの患者においては、心血管死は増えるか?
研究デザイン:コホート研究
Ray WAより
若年
データ源
43
市民登録
システム
死亡統計
デンマーク患者
レジスター
デンマーク
処方レジストリ
総人口
554.8万
(2010年)
1997­2010年に18-64歳の
全てのデンマーク在住者が対象
研究対象:473.3万
Svanström H et al:N Engl J Med 2013;368:1704-912
暴露(AZM)群 適格基準
44
⓪1997-2010年に外来でAZMを処方された人
① 18-64歳(インデックス日(処方日)時点)
②インデックス日前の30日間に入院歴無し
③インデックス日前の30日間に抗生剤使用無し
④インデックス日に抗生剤1種類のみ(対象
群:抗生剤なし)処方
⑤インデックス日以前に2年以上デンマーク在住
⑥インデックス日以前の1年間に処方歴が1回以
上有り
多少の医療サービ
ス享受者を対象
(対照群にも全く
受診しない人は含
まれない)
十分な背景情報
を得る目的
Svanström H et al:N Engl J Med 2013;368:1704-912
対照群と共通
• AZMと3項目をマッチさせたものを、
AZM 1件に対して1-10件採用
45Svanström H et al:N Engl J Med 2013;368:1704-912
対象(No Abx)群の抽出
分析の単位が処方であり、(同一患者の)複数
回組み入れあり
インデックス日
性別
生年月日
61項目の共変量で傾向スコアを推定
→potential control poolの作成
→1対1の割付け比でマッチング
アクティブな対象群
46
分類 催不整脈作用
Azithromycin マクロライド系 ?
Penicillin V ペニシリン系 ー
要因
AZM服用
アウトカム
死亡
交絡因子
感染症
AZM服用の適応(感染症)
による交絡を調整する
目的で作成
Svanström H et al:N Engl J Med 2013;368:1704-912
アウトカム
47
• primary end points:心血管疾患による死亡
• secondary end points:心血管疾患以外による死亡
他の抗生剤への切り替え,
入院,死亡 いずれかでfollow中止
最大で35日目までfollow
インデックス日 5
AZM内服
追跡期間
Penicillin V内服
10 35日目
Current use
Recent
use
Past use
治療のタイミング
Ray WAより
follow期間長い
48
473万人
169万episodes,
AZM
1047万episodes,
Penicillin V
110万episodes,
AZM
1102万episodes,
control
736万episodes,
Penicillin V
708万episodes,
control
PS match
110万vs110万
AZM vs control
Cohort
110万vs736万
AZM vs Penicillin V
PS adjusted
49
背景 :balanceの評価はp値で良いのか
Svanström H et al:N Engl J Med 2013;368:1704-912
マッチング
• AZMとPenicillin Vの
比較では, 有意差があ
る項目が多い
• AZMとNo Abxの比較
でもPS matchしてい
るが、有意差のある項
目が数カ所あり
• Ray WAと比較して合
併症が少ない
50
Svanström H et al:N Engl J Med 2013;368:1704-912
Primary outcome
(No Abxと比較)AZM current useでは心血管死増 RR 2.85
Recent, Past useではリスク増加無し
AZM vs Penicillin V サブ解析
51
Svanström H et al:N Engl J Med 2013;368:1704-912
Primary outcome:AZM current use
による心血管死 サブ解析(Penicillin Vと比較)
性別、年齢、心疾患の既往の有無に分けた、
いずれも有意差なし
52
Svanström H et al:N Engl J Med 2013;368:1704-912
感度分析
AZMとAmoxicillinを1:1でマッチさせた場合
• 心血管死亡に有意
差なし
• 両群64.8万まで
減らしたマッチン
グでも有意差なし
(Suppelmentar
y Table S6)
結論
• Azithromycinは、一般の若者・中年成人におい
ては、心血管死を増やさない。
• Ray WAは、心血管イベントのハイリスク患者を
対象としている。相反する結果ではなく、母集団
の違いによるものと考えられる。
• AZMは一般外来では問題なく処方できる。心疾
患のハイリスク患者における処方では注意すべき
である。
53
• Ray WA研究とSvanström H研究の比較
54
Ray WA(2012) Svansöm H(2013)
対象者
テネシー・メディケイド加入者
(低所得者・障害者多い)
デンマーク一般市民
n 約34.8万 約110.2万
治療時期 1992-2006 1997-2010
平均年齢 48.6歳 39.7歳
男性 22.5% 35%
インスリン使用 6.5% 1%
心不全既往 4.3% 1%
アウトカム
Day1-5の心血管死
(100万コースあたり)
85.2人 15.4人
HR (vs No Abx) 2.88 2.85
結論:
AZMによる心血管リスク
有り 無し
PS match後のAZM群を比較
データベース研究
も、RCTもある一部分を
見ている
55
RW母集団
DB母集団
標本
目の前
の患者?
研究結果は目の前の患者に適応できるか?
まとめ
• 薬剤による稀な副作用を調査するためのデータベース研究を
紹介した。
• 暴露群のインデックス日を定義後に、対照群を定義した。対
照群の抽出は、共変量を元にして計算された傾向スコアを用
いて、暴露群とマッチングさせた。
• 薬剤の処方理由の交絡を調整するために、アクティブな対照
群を用意した。しかしながら、交絡が調整できているかは懐
疑的である。
• 結果の解釈においては、母集団と標本を考慮する必要がある。
56
傾向スコアの理解のために
• 星野崇宏, 岡田謙介. 傾向スコアを用いた共変量調整による因果
関係の推定と臨床医学・疫学・薬学・公衆衛生分野での応用に
ついて J. Natl. Inst. Public Health, 55(3) : 2006
• 奥村泰之「傾向スコアの概念とその実践」(slide share)
• 白石淳「傾向スコアマッチと多重補完法の解説」(slide share)
57

Rwd example-toshiyukihatano-181013

  • 1.
  • 2.
    薬物による稀な 副作用の報告事例 全てフリー ダウンロード ①の論文の発表後、New York Times誌 MAY16, 2012年  「アジスロマイシン(抗生剤)による心血管死」 ①Ray WA et al:N Engl J Med 2012;366:1881-90. ②Svanström H et al:N Engl J Med 2013;368:1704-912 2
  • 3.
  • 4.
  • 5.
    QT延長➡TdP(トルサードポワン)で突然死 5 Owens RC etal:Clin Infect Dis. 2006;43(12):1603-1611 Yang Z et al. Circ Arrhythm Electrophysiol. 2017;10:e003560. drug con con and Idrug are current amplitudes in the absence and presence of azithro- mycin, respectively. Dose–response curves were fit by the equation: y=B1 +(B2 −B1 )/(1+10(logx0–x)*p ), where B1 is the bottom asymptote, B2 is the top asymptote, logx0 is IC50 , x is azithromycin concentration, and p is hill slope. ing liquid chromatography–tandem mass spectrometry as d Statistical Analysis Data represented using a continuous variable were summa mean and SE for each group. For group comparisons of Figure 1. Azithromycin-induced polymorphic ventricular tachycardia (VT) in a 24-y-old woman with no structural heart disease a mal ECG. The arrhythmias resolved with stopping the drug. romhttp://ahajournals.orgbyonSeptember16,2018 QT QT延長 低カリウム 低マグネシウム 抗不整脈薬 IA, III群 徐脈 risk factor QT間隔延長により TdP(多形性心室 頻拍)が惹起 QT間隔延長:QTc= QT RR 440ms
  • 6.
    Azithromycin and theRisk of Cardiovascular Death 6 P: テネシー・メディケイドに登録された30-74歳の患者 (1992-2006年) E: アジスロマイシンを5日間服用 C: 抗生剤を服用しない(他の抗生剤の使用) O: 心臓血管病による死亡 T: 抗生剤処方日から5日間(6-10日間) Ray WA et al:N Engl J Med 2012;366:1881-90. 2012年NEJM発表 Database研究 仮説:Azithromycin服用で心血管突然死が増える short-term なriskに限定 研究デザイン:コホート研究
  • 7.
    データ源 7 テネシー・メディケイド 死亡統計 全米退院 データベース メディケイド 薬局ファイル (出典:kff.orgより) 約19% Ray WA etal:N Engl J Med 2012;366:1881-90.  STUDY COHORT 1段落目 テネシー州人口 671.6万人 メディケイド加入者 約160万人 一般的には、個人が民間企業の 医療保険に加入。 メディケイド:低所得者・身体 障害者のためのアメリカの公的 医療保険制度 2017年
  • 8.
    8 1992-2006年に外来でAZMを処方された人 インデックス日(処方日)に抗生剤1種類のみ処方 (抗生剤以外の処方は可) ①生年月日、性別が明らかな人 ②30-74歳(インデックス日時点) ③インデックス日にメディケイド薬局情報に登録された人 ④インデックス日時点でMedicaidに加入後365日以上経過 ⑤インデックス日以前の1年間に処方歴有り ⑥インデックス日以前の1年間に2度以上の受診歴有り ⑦インデックス日時点で老人ホーム、施設に居住していない ⑧インデックス日以前の1年間に除外基準疾患の罹患なし ⑨インデックス日とそれ以前の29日前に入院歴なし Ray WA etal:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目, Appendix Table 2 十分な背景情報 を得る目的 暴露(AZM)群の適格基準 AZMは1992 年にアメリカ で販売開始 対照群と共通
  • 9.
    9 Ray WA etal:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目, Appendix Table 2 多少の医療サービ ス享受者を対象 (全く受診しない 人は含まれない) 1992-2006年のインデックス日に医療サービスを受けている インデックス日以前の30日間で研究対象の抗生剤処方を受け ていない(抗生剤以外の処方は可) ①生年月日、性別が明らかな人 ②30-74歳(インデックス日時点) ③インデックス日にfull pharmacy benefitに登録された人 ④インデックス日時点でMedicaidに加入後365日以上経過 ⑤インデックス日以前の1年間に処方歴有り ⑥インデックス日以前の1年間に2度以上の受診歴有り ⑦インデックス日時点でNursing homeに居住していない ⑧インデックス日以前の1年間に除外基準疾患の罹患なし ⑨インデックス日とそれ以前の29日前に入院歴なし 十分な背景情報 を得る目的 対象(No Abx)群の適格基準 暴露群と共通
  • 10.
    除外基準 10 Ray WA etal:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目、Appendix Table 1 ①癌 ⑦神経筋疾患 ②HIV ⑧先天性心疾患 ③透析 or 末期腎不全 ⑨先天性奇形 ④慢性肝炎, 肝硬変 ⑩終末期の疾患 ⑤呼吸不全、心不全 (永久気管切開, 在宅酸 ⑪薬物乱用 ⑥臓器移植後 ICD-9-CM で明確に定義 インデックス日(処方日)の1年以内に 以下の重篤な疾患の罹患
  • 11.
    WHOが作成した国際疾病分類。 疾病分類と医療行為の分類の2つの分類をもつ。 現在ICD-10が使用されている、ICD-11(2018/06発表) 11 ICD-9-CMとは 疾患 ICD 9-CMcode ①癌 235-238, 238.9 etc ③透析 or 末期腎不全 996.73, 285.21 ④慢性肝炎, 肝硬変 570-573 Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY COHORT 2段落目、Appendix Table 1 医療保険 支払い International Classification of Diseases 9th Revision Clinical Modification 医療統計 調査 +
  • 12.
    12 共変量(n=153) ID Therapy 年齢性別 糖尿病 心疾患 ・・ 未知因 子1 AZM 50 男 + - ・・ ? 2 AZM 45 女 - + ・・ ? 3 AZM 67 男 + + ・・ ? 4 no ABx 40 男 + + ・・ ? 5 no ABx 33 男 - - ・・ ? 6 no ABx 70 女 - - ・・ ? 7 AZM 60 女 - - ・・ ? 8 AZM 42 男 + - ・・ ? 9 no ABx 72 男 + - ・・ ? 10 no ABx 35 男 + + ・・ ? 傾向スコア(Propensity score)の理解 仮想データシートを用いて
  • 13.
    13 共変量(n=153) ID Therapy 年齢性別 糖尿病 心疾患 ・・ 未知因 1 AZM 50 男 + - ・・ ? 2 AZM 45 女 - + ・・ ? 3 AZM 67 男 + + ・・ ? 4 no ABx 40 男 + + ・・ ? 5 no ABx 33 男 - - ・・ ? 6 no ABx 70 女 - - ・・ ? 7 AZM 60 女 - - ・・ ? 8 AZM 42 男 + - ・・ ? 9 no ABx 72 男 + - ・・ ? 10 no ABx 35 男 + + ・・ ? 共変量からAZMへの割り付け率を推測 割り付け率=傾向スコア(0-1の値)
  • 14.
  • 15.
  • 16.
    共変量(covariate):153項目の設定理由 16 共変量 項目 理由 ①月 (month) 抗生剤の処方、死亡は季節に影響 を受ける(呼吸器・心疾患は共に 冬に多い) ②呼吸器疾患死亡のリスク ③心疾患の処方、診断名 死亡のリスク ④精神疾患 自傷行為 ⑤筋骨格系疾患 opioid使用➡非心臓死 ⑥神経疾患 死亡のリスク ⑦frailty(虚弱性) 死亡のリスク ⑧受診歴 死亡のリスク Ray WA et al:N Engl J Med 2012;366:1881-90. Appendix p5
  • 17.
    対象群(No user群)の抽出 • AZM服用者の4つの特徴: ①過去1年に10回以上循環器疾患以外で受診  ②過去1年にβ刺激薬の処方          ③過去30日以内に救急外来を受診       ④過去30日以内に何らかの処方(AZM以外) 17 PSの計算 Azithromycinvs non user 共変量 153 potential non user control poolの同定 n=8,461,105 PSマッチング n=1,391,180 non user control • 年齢・性別・インデックス日(処方日)・ AZM服用者の4つの特徴でマッチさせて、 potential non user control poolを同定 AZM服用者の特徴 を同定 分析の単位が処方であり、 (同一患者が)複数回組み入れあり
  • 18.
    Propensity scoreの計算 18 Appendix Table3.より抜粋 β0+β1 人種 +β2 性別 +β3 年齢 +…+μ=loge (p/1-p) ⭐ロジスティック回帰分析 ⭐pがpropensity score(PS), PSとは暴露(AZM)群に入る確率 Appendix: Azithromycin and the Risk of Cardiovascular Death 6 Appendix Table 3. Azithromycin:nonuser control propensity score model. 25-1 sample. Obs Parameter DF OR CIlow CIhigh P ChiSq 1 Intercept 1 0.02466 0.02363 0.02573 <.0001 Demographic factors 2 Race, white vs nonwhite 1 1.28497 1.27337 1.29667 <.0001 3 Female vs male 1 0.90542 0.89745 0.91347 <.0001 4 Age, 1 year increase 1 1.00192 1.00154 1.00229 <.0001 5 Standard Metropolitan Statistical Area (yes vs no) 1 0.95789 0.95109 0.96475 <.0001 6 Medicaid enrollment, disabled vs other 1 0.98397 0.9764 0.99161 <.0001 7 Calendar year 1992 1 0.9795 0.92322 1.03921 0.4926 8 Calendar year 1993 1 0.92582 0.88825 0.96499 0.0003 9 Calendar year 1994 1 0.84013 0.78127 0.90342 <.0001 10 Calendar year 1995 1 0.79734 0.71205 0.89284 <.0001 11 Calendar year 1996 1 0.82791 0.78477 0.87342 <.0001 12 Calendar year 1997 1 0.82992 0.79554 0.86579 <.0001 13 Calendar year 1998 1 0.81066 0.77714 0.84564 <.0001 14 Calendar year 1999 1 0.77591 0.74626 0.80674 <.0001 15 Calendar year 2000 1 0.80186 0.78022 0.8241 <.0001 Appendix: Azithromycin and the Risk of Cardiovascular Death 7 Cardiovascular, including diabetes 42 Angina pectoris 1 1.03347 1.01411 1.05319 0.0006 43 Cardiac revascularization 1 1.03156 0.99234 1.07234 0.1162 44 Myocardial infarction 1 0.96056 0.91684 1.00637 0.0905 45 Other coronary heart disease 1 1.06579 1.05022 1.0816 <.0001 46 Cardiac valve disease 1 1.00883 0.98776 1.03034 0.4145 47 Conduction disorder 1 1.00941 0.96569 1.05511 0.6783 48 Atrial fibrillation 1 1.0369 1.00292 1.07202 0.033 49 Arrhythmia 1 1.00376 0.98544 1.02243 0.6894 105 Suicide attempt 1 0.88791 0.84623 0.93164 <.0001 106 Fall 1 0.97538 0.96082 0.99017 0.0012 107 Injury ED, 1-2 visits 1 0.95417 0.94332 0.96514 <.0001 108 Injury ED, 3+ visits 1 0.93152 0.90939 0.95419 <.0001 109 Injury outpatient, 1-2 visits 1 1.03338 1.02407 1.04277 <.0001 110 Injury outpatient, 3-5 visits 1 1.02015 1.00326 1.03732 0.0192 111 Injury outpatient, 6+ visits 1 0.96453 0.93762 0.9922 0.0123 112 Morphine Rx past 12 months 1 0.88525 0.86861 0.90221 <.0001 113 Fentanyl Rx past 12 months 1 0.94324 0.92748 0.95927 <.0001 114 Meperidine Rx past 12 months 1 1.05624 1.03838 1.07441 <.0001 115 Opioids past 30 days, 1-15 days 1 0.87111 0.86132 0.881 <.0001 116 Opioids past 30 days, 16-30 days 1 1.00571 0.99095 1.02068 0.4505 117 Opioids past 30 days, 31+ days 1 0.97706 0.9599 0.99453 0.0103 118 Opioids past year, 1-60 days 1 1.14436 1.1306 1.15829 <.0001 119 Opioids past year, 61-499 days 1 1.14479 1.12544 1.16447 <.0001 120 Opioids past year, 500+ days 1 1.1576 1.12422 1.19197 <.0001 121 Opioid refill, early 1 1.08083 1.0611 1.10093 <.0001 122 Disease modifying anti-rheumatic drug 1 0.95196 0.92998 0.97446 <.0001 123 Systemic corticosteroid 1 1.12743 1.10398 1.15138 <.0001 Neurologic 124 Seizure disorder 1 0.89905 0.87925 0.9193 <.0001 125 Dementia 1 0.91069 0.88036 0.94205 <.0001 126 Anticonvulsant 1 0.99935 0.98071 1.01835 0.9464 127 Parkinsons medication 1 0.91569 0.89485 0.93702 <.0001 Frailty 128 Decubitus ulcer 1 0.93937 0.88265 0.99973 0.049 129 Amputation 1 0.90509 0.82272 0.99571 0.0405 130 Delirium 1 0.8697 0.82851 0.91293 <.0001 131 Incontinence, urine 1 1.01858 0.99701 1.04062 0.0918 132 Incontinence, fecal 1 0.99218 0.91288 1.07838 0.8535 133 Indwelling urinary catheter 1 0.92295 0.84696 1.00576 0.0674 134 Feeding/nutrition problem 1 0.90354 0.83487 0.97786 0.0119 135 Wheelchair or walker 1 0.97218 0.94924 0.99568 0.0206 Medical care 136 Any outpatient visit past 30 days 1 0.94775 0.93968 0.9559 <.0001 137 Any prescription past 30 days (not study antibiotic) 1 0.62543 0.61764 0.63332 <.0001 138 CV inpatient visit 91-365 days before t0 1 1.02644 1.00662 1.04665 0.0087 β β β β
  • 19.
    Azithromycin群とpotential control群の PS scoreの分布➡マッチング •153の共変量を元に傾向スコアを計算後、4対1の割付比で frequency matching •AZM服用群をPS band(100分割,各々n数)を作成, AZMの各 bandに対して, 4n数をpotential nonuser controlから抽出 19 Appendix: Azithromycin and the Risk of Cardiovascular Death 10 Important percentiles for the azithromycin:nonuser control propensity score are shown in Appendix Table 4. Appendix Table 4. Azithromycin:nonuser control propensity score percentiles. Potential nonuser control Azithromycin Propensity Score Minimum 0.0031 0.0041 5% 0.0161 0.0200 25% 0.0234 0.0292 50% 0.0303 0.0420 75% 0.0420 0.0774 95% 0.0918 0.1738 Maximum 0.6530 0.6227 For each azithromycin prescription, four nonuser control periods were selected from the potential control pool, frequency-matched according to propensity score. The first step was to create propensity score bands: we identified 100 1-percentile intervals, each with an approximately equal number of azithromycin prescriptions. From each of these bands, 4n control periods were randomly selected, where n was the number of azithromycin prescriptions within the band. For this reason, the nonuser control periods are not individually matched on either the propensity score or any of the study variables. Because the very highest band (99th percentile) did not contain sufficient controls, the successive lower bands were oversampled to make up the deficiency. A key test of propensity score matching is whether or not the distribution of the covariates is balanced. The manuscript Table 1 shows virtually complete balance with regard to study covariates. Study Followup and Person-TimeAbbreviation: PS(propensity score), AZM(azithromycin) Ray WA et al:N Engl J Med 2012;366:1881-90.
  • 20.
    アクティブな対象群 20 Ray WA etal:N Engl J Med 2012;366:1881-90.  STUDY COHORTの4段落目 分類 催不整脈作用 Azithromycin マクロライド系 ? Amoxicillin ペニシリン系 ー Ciprofloxacin ニューキノロン + Levofloxacin ニューキノロン ++ AZM服用の適応(感染症) による交絡を調整する 目的で作成 要因 AZM服用 アウトカム 死亡 交絡因子 感染症
  • 21.
    アクティブな比較対象ごとにPS を計算 • 1)amoxicillinvs nonuser, 2)AZM vs amoxicillin 3)ciprofloxacin vs amoxicillin 4)levofloxacin vs amoxicillin 5)AZM vs ciprofloxacin 6)AZM vs levofloxacin Appendix: Azithromycin and the Risk of Cardiovascular Death 13 Appendix Table 5. Percentiles for other study antibiotic propensity scores. N Min P5 P25 P50 P75 P95 Max Amoxicillin vs nonuser Amoxicillin No 1391180 0.042579 0.149002 0.222731 0.289014 0.372291 0.763472 0.993369 Yes 1348672 0.04879 0.207406 0.358349 0.822118 0.927004 0.978623 0.99553 Azithromycin vs amoxicillin Azithromycin No 1348672 0.000664 0.005074 0.018192 0.052255 0.295193 0.484113 0.866628 Yes 347795 0.001145 0.068093 0.292857 0.386622 0.49003 0.649625 0.872965 Ciprofloxacin vs amoxicillin Ciprofloxacin No 1348672 0.002086 0.008307 0.022776 0.073864 0.177116 0.36137 0.984417 Yes 264626 0.003003 0.05582 0.175478 0.294214 0.650018 0.843497 0.982692 Appendix Table 3.より抜粋 21 Ray WA et al:N Engl J Med 2012;366:1881-90. :6つのPSを作成
  • 22.
    アウトカム 22 • primary endpoints:心血管疾患による死亡 インデックス日 5 10日目 AZM内服 追跡期間 Amoxicilin内服 Ray WA et al:N Engl J Med 2012;366:1881-90.  STUDY END POINTS ・死亡の系統的誤分類(differential misclassification) を避けるため、全ての理由による死亡も解析 :疾病によって感度が異なる可能性 • secondary end points:心臓突然死 short-term なriskに限定 全ての理由による死亡
  • 23.
    23Chung CP, RayWA et al. pharmacoepidemiology and drug safety 2010; 19: 563–572 thetic) generally not performed on patients in cardiac arrest. Validation sample. The validation study cohort had 1870 deaths that met the computer case definition for sudden cardiac death (Figure 1). To avoid overlap with the development sample, the validation sample was restricted to deaths that occurred between 1994 and 2005. To reduce the time and expense of record retrieval, the sample was further restricted to 316 deaths in counties within a 100 mile radius of Nash- ville. Of these, records were not sought for 74 (23.4%) because they had no institutional (hospital, emergency department, or hospital-based clinic) or emergency medical services encounters in the year preceding death. Our past experience suggested that absent these types of encounters, information on the circumstances of death would be insufficient to permit adjudication. Medical records were sought for the remaining 242 deaths; access was refused for 5 (2.0%) and the records had inadequate documentation for 63 (26.0%). This left 174 deaths for which medical records (redacted to remove personal identifiers and medication history) were adjudicated (Figure 1) by both a study physician and a cardiac electrophysiologist. Figure 2. Computer case definition for sudden cardiac death Copyright # 2009 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2010; 19: 563–572 DOI: 10.1002/pds computer case definition for sudden cardiac death 567 心臓突然死の定義 RESULTS Development sample The 926 adjudicated deaths in the development sample were the basis for constructing the computer case definition for sudden cardiac death. Of these deaths, 706 were classified as cases of sudden cardiac death (49% probable, 51% possible), a positive predictive value of 76.2% (Table 2). We assessed the effect of the successive application of each of the three criteria in the computer case definition intended to reduce misclassification by restricting deaths to those more likely to represent true sudden cardiac deaths (Figure 2). Restriction to deaths with no evidence of a terminal institutional stay (Figure 2, criterion 1, 800 deaths) increased the positive predictive value to 79.6% (Table 2). Restric- tion to those with an underlying cause of death diagnosis code more compatible with sudden cardiac death (Table 1 and Figure 2, criterion 2, 644 deaths) increased the positive predictive value to 85.1%. Finally, excluding those deaths where terminal medical care was inconsistent with cardiac arrest (Figure 2, criterion 3, 616 deaths) increased the positive predictive value to 86.0%. These further restrictions led to misclassification of 176 deaths adjudicated as sudden cardiac deaths, a false negative proportion of 24.9%. We assessed the performance of the individual cause of death codes used to identify the deaths in the development sample (Table 3). This assessment utilized the 800 cases in the development sample with no evidence of a terminal hospitalization and included both codes ultimately used and not used for the computer case definition. For the codes used in the computer case definition, the most frequently recorded were myocardial infarction (285 deaths, positive predictive value of 82.1%) and cardiovascular NOS denotes ‘not otherwise specified’. Table 2. Development study sample. Adjudication by medical record review of potential cases of sudden cardiac death Deaths adjudicated Confirmed cases sudden cardiac death PPV,% FN FN,% Entire development study sample 926 706 76.2 0 0 Additional restrictions in computer case definition 1. No terminal institutional stayà 800 637 79.6 69 9.8 2. Underlying cause of death consistent with sudden cardiac death 644 548 85.1 158 22.4 3. No terminal procedure inconsistent with sudden cardiac death 616 530 86.0 176 24.9 The positive predictive values (PPVs) and false negative (FN) proportions are shown for the entire development sample and for subsets of that sample identified by successively applying the three criteria of the computer case definition for sudden cardiac death (see Figure 2). à Did not include the State Hospital Discharge File, which was unavailable at the time the development study was performed. Copyright # 2009 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2010; 19: 563–572 DOI: 10.1002/pds Databaseから抽出で きるように Ray WAらが自ら定義 カルテ検証で 高い陽性適中率
  • 24.
    24 The new england jour nal of medicine Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.* Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795 Mean age (yr) 48.6 47.7 50.5 51.5 48.6 Female sex (%) 77.5 73.3 75.5 73.5 77.5 Current or past use of medications (%) Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1 Beta-blocker 21.6 17.3 20.9 24.8 21.5 Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2 Digoxin 2.5 3.5 3.8 3.6 2.5 Loop diuretic 17.3 15.1 20.1 23.8 17.2 Other diuretic 25.9 22.4 26.3 28.9 25.9 Statin 28.1 17.9 25.2 34.5 28.0 Insulin 6.5 6.9 10.2 10.2 6.5 Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5 Beta-agonist 40.5 28.1 28.6 43.5 40.3 Glucocorticoid 3.3 2.8 3.8 4.8 3.3 Coexisting conditions (%) Heart failure 4.3 3.9 5.3 6.8 4.3 Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4 Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5 Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9 Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3 Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2 Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8 Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9 Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§ Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3 * Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com- parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use The new engl and journal of medicine Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled e Control Period for Persons Who Received No Antibiotic Treatment.* No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin 1,391,180 1,348,672 264,626 193,906 347,795 48.6 47.7 50.5 51.5 48.6 77.5 73.3 75.5 73.5 77.5 dications (%) g–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1 21.6 17.3 20.9 24.8 21.5 ker 20.2 19.9 22.8 24.3 20.2 2.5 3.5 3.8 3.6 2.5 17.3 15.1 20.1 23.8 17.2 25.9 22.4 26.3 28.9 25.9 28.1 17.9 25.2 34.5 28.0 6.5 6.9 10.2 10.2 6.5 nt 16.5 13.1 18.9 21.9 16.5 40.5 28.1 28.6 43.5 40.3 3.3 2.8 3.8 4.8 3.3 4.3 3.9 5.3 6.8 4.3 ulmonary disease 5.5 4.6 5.1 6.8 5.4 etes‡ 7.4 6.5 11.3 11.7 7.5 or feces 2.9 2.1 4.6 4.3 2.9 alker 2.3 1.6 3.2 3.8 2.3 vascular condition (%) 7.2 6.0 8.5 9.5 7.2 condition (%) 15.7 14.8 19.1 20.4 15.8 ment in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9 e past 30 days (%) 27.9 28.4 38.6 40.3 27.0§ risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3 nd medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com- teristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use Table 1.より抜粋 • AZM群と対象群で共変量 は均一な背景 • balancingの評価なし   推奨法:標準化差 (standardized difference) 結果 患者背景(インデックス日時点): AZM群 vs No antibitotics群 Ray WA et al:N Engl J Med 2012;366:1881-90.
  • 25.
    25 Table 1.より抜粋 結果 患者背景(インデックス日時点): AZM群 vsAmoxicillin群 • AZM群とno antibiotics群 とは違うマッチング方法を 採用(IPTW変法) • AZM群とAmoxicillin群で 共変量は均一か疑問有り: balancingの評価なし(SD の検証なし) • 22項目中18項目で(性別、 処方数を除く)AZMの背景 因子が悪い。特にstatinと β刺激薬服用に違いが顕著 (コメント論文より) Ray WA et al:N Engl J Med 2012;366:1881-90. The new engl and jour nal o f medicine Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.* Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795 Mean age (yr) 48.6 47.7 50.5 51.5 48.6 Female sex (%) 77.5 73.3 75.5 73.5 77.5 Current or past use of medications (%) Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1 Beta-blocker 21.6 17.3 20.9 24.8 21.5 Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2 Digoxin 2.5 3.5 3.8 3.6 2.5 Loop diuretic 17.3 15.1 20.1 23.8 17.2 Other diuretic 25.9 22.4 26.3 28.9 25.9 Statin 28.1 17.9 25.2 34.5 28.0 Insulin 6.5 6.9 10.2 10.2 6.5 Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5 Beta-agonist 40.5 28.1 28.6 43.5 40.3 Glucocorticoid 3.3 2.8 3.8 4.8 3.3 Coexisting conditions (%) Heart failure 4.3 3.9 5.3 6.8 4.3 Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4 Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5 Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9 Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3 Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2 Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8 Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9 Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§ Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3 * Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com- parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use The new engl and jour nal o f medicine Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.* Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795 Mean age (yr) 48.6 47.7 50.5 51.5 48.6 Female sex (%) 77.5 73.3 75.5 73.5 77.5 Current or past use of medications (%) Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1 Beta-blocker 21.6 17.3 20.9 24.8 21.5 Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2 Digoxin 2.5 3.5 3.8 3.6 2.5 Loop diuretic 17.3 15.1 20.1 23.8 17.2 Other diuretic 25.9 22.4 26.3 28.9 25.9 Statin 28.1 17.9 25.2 34.5 28.0 Insulin 6.5 6.9 10.2 10.2 6.5 Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5 Beta-agonist 40.5 28.1 28.6 43.5 40.3 Glucocorticoid 3.3 2.8 3.8 4.8 3.3 Coexisting conditions (%) Heart failure 4.3 3.9 5.3 6.8 4.3 Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4 Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5 Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9 Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3 Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2 Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8 Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9 Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§ Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3 * Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com- parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use The new engl and jour nal of medicine Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled e Control Period for Persons Who Received No Antibiotic Treatment.* No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin 1,391,180 1,348,672 264,626 193,906 347,795 48.6 47.7 50.5 51.5 48.6 77.5 73.3 75.5 73.5 77.5 dications (%) g–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1 21.6 17.3 20.9 24.8 21.5 er 20.2 19.9 22.8 24.3 20.2 2.5 3.5 3.8 3.6 2.5 17.3 15.1 20.1 23.8 17.2 25.9 22.4 26.3 28.9 25.9 28.1 17.9 25.2 34.5 28.0 6.5 6.9 10.2 10.2 6.5 nt 16.5 13.1 18.9 21.9 16.5 40.5 28.1 28.6 43.5 40.3 3.3 2.8 3.8 4.8 3.3 4.3 3.9 5.3 6.8 4.3 lmonary disease 5.5 4.6 5.1 6.8 5.4 etes‡ 7.4 6.5 11.3 11.7 7.5 or feces 2.9 2.1 4.6 4.3 2.9 alker 2.3 1.6 3.2 3.8 2.3 ascular condition (%) 7.2 6.0 8.5 9.5 7.2 ondition (%) 15.7 14.8 19.1 20.4 15.8 ment in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9 past 30 days (%) 27.9 28.4 38.6 40.3 27.0§ isk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3 nd medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com- teristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use
  • 26.
    26 Table 1.より抜粋 Ray WAet al:N Engl J Med 2012;366:1881-90. 結果 患者背景(インデックス日時点): AZM群 vs Amoxicillin群 The new engl and jour nal o f medicine Table 1. Demographic and Clinical Characteristics of Patients at the Time That the Prescriptions for the Study Antibiotics Were Filled and at the Beginning of the Control Period for Persons Who Received No Antibiotic Treatment.* Characteristic No Antibiotic Amoxicillin† Ciprofloxacin Levofloxacin Azithromycin Prescriptions (no.) 1,391,180 1,348,672 264,626 193,906 347,795 Mean age (yr) 48.6 47.7 50.5 51.5 48.6 Female sex (%) 77.5 73.3 75.5 73.5 77.5 Current or past use of medications (%) Angiotensin-converting–enzyme inhibitor 28.1 24.0 28.4 32.8 28.1 Beta-blocker 21.6 17.3 20.9 24.8 21.5 Calcium-channel blocker 20.2 19.9 22.8 24.3 20.2 Digoxin 2.5 3.5 3.8 3.6 2.5 Loop diuretic 17.3 15.1 20.1 23.8 17.2 Other diuretic 25.9 22.4 26.3 28.9 25.9 Statin 28.1 17.9 25.2 34.5 28.0 Insulin 6.5 6.9 10.2 10.2 6.5 Oral hypoglycemic agent 16.5 13.1 18.9 21.9 16.5 Beta-agonist 40.5 28.1 28.6 43.5 40.3 Glucocorticoid 3.3 2.8 3.8 4.8 3.3 Coexisting conditions (%) Heart failure 4.3 3.9 5.3 6.8 4.3 Chronic obstructive pulmonary disease 5.5 4.6 5.1 6.8 5.4 Complications of diabetes‡ 7.4 6.5 11.3 11.7 7.5 Incontinence of urine or feces 2.9 2.1 4.6 4.3 2.9 Use of wheelchair or walker 2.3 1.6 3.2 3.8 2.3 Hospitalization for cardiovascular condition (%) 7.2 6.0 8.5 9.5 7.2 Hospitalization for other condition (%) 15.7 14.8 19.1 20.4 15.8 Visit to emergency department in the past 30 days (%) 13.9 11.3 15.6 18.0 13.9 Use of any antibiotic in the past 30 days (%) 27.9 28.4 38.6 40.3 27.0§ Mean summary score for risk of cardiovascular disease¶ 9.2 9.5 10.3 10.6 9.3 * Medications, diagnoses, and medical care encounters were for the 365 days before the time the prescription was filled, unless otherwise specified. Control periods with no antibiotic treatment were propensity-score–matched with the azithromycin prescriptions. P<0.01 for com- parison of baseline characteristics between the amoxicillin, ciprofloxacin, and levofloxacin groups and the group of persons who did not use antibiotics. See Table 7 in the Supplementary Appendix for additional cohort characteristics. • AZM群とAmoxicillin 群で共変数は均一か疑 問有り。statinとβ刺 激薬服用に違いが顕著 • balancingの評価なし (SDの検証なし)
  • 27.
    PS調整された抗生剤の服用理由 AmoxicillinとAZMで均一 27 Appendix: Azithromycin andthe Risk of Cardiovascular Death 18 Appendix Table 9. Propensity-score adjusted antibiotic indicationsa . Amoxicillin Azithromycin Days of prescribed therapy      Median 10  5 Inter-quartile range 8‐10  5‐5   Recorded indication, % a       Ear-nose-throat 41.8  41.8 Bronchitis 19.7  20.0 Pneumonia 2.5  2.4 Respiratory symptoms 12.6  12.6 Chronic obstructive pulmonary disease 6.8  6.9 Other respiratory 3.2  3.2 Gastrointestinal 0.8  0.8 Genitourinary 3.5  3.4 Skin/soft tissue/joint/bone 2.5  2.4 Wounds 3.3  3.4 Pyrexia unknown origin 1.1  1.1 Other serious infectionsb 0.8  0.7 Other 1.5  1.5 a Based on proportion with known indication, see MS Table 2. The propensity score is for azithromycin vs amoxicillin. Ray WA et al:N Engl J Med 2012;366:1881-90.
  • 28.
    • No Abxと比較して、 Day1-5における心 血管死増あり(HR 2.88) •一方で、Amoxicillin のNo Abxと比較 における心血管死 増あり(HR 0.95) 28 Ray WA et al:N Engl J Med 2012;366:1881-90. 結果:Day1-5の累積死亡
  • 29.
    29 The regression modelcoefficients for the study covariates must be interpreted cautiously. Because controlling for confounding relies upon the propensity score, these coefficients are not completely adjusted for other factors. For example, male sex is associated with increased risk. However, the corresponding HRs for these covariates are not well adjusted for other cardiovascular risk factors, as the propensity score can only be demonstrated to perform this adjustment for azithromycin. Appendix Table 10. Proportional hazards regression model estimates. These are for azithromycin 5 day course of therapy versus comparable period for amoxicillin, cardiovascular death endpoint. Obs  Parameter  ClassVal0  Prob ChiSq  Hazard Ratio  CL Low  CL High  1  Year before 1995  0.4179 1.5253  0.5490 4.2360 2  Age, 1 year increase  <.0001  1.0551  1.0330 1.0770 3  Female vs male  <.0001  0.3461  0.2150 0.5560 4  Antibiotic  4: azithromycin  0.0025 2.4909  1.3790 4.5010 5  Propensity Score Decile  9 0.0675 4.7179  0.8940 24.8870 6  8 0.2658 2.6600  0.4750 14.9000 7  7 0.1557 3.3763  0.6290 18.1160 8  6 0.7043 0.6687  0.0840 5.3420 9  5 0.9109 1.1149  0.1660 7.4960 10  4 0.2334 2.4878  0.5560 11.1390 11  3 0.1396 2.7965  0.7150 10.9420 12  2 0.1358 2.7582  0.7270 10.4600 13  1 0.4808 1.6736  0.4000 7.0050 Appendix Figure 2 shows cardiovascular and total mortality for the comparison of ciprofloxacin and levofloxacin versus amoxicillin. Appendix: Azithromycin and the Risk of Cardiovascular Death 22 Appendix Table 11 shows alternative analyses for the comparison of cardiovascular deaths during a 5 day course of azithromycin therapy versus a comparable time period for amoxicillin. The analyses include a propensity-score stratified analysis, in which we calculated the HR for each decile of the azithromycin: amoxicillin propensity score. The model for each stratum included age and gender. The pooled estimated was calculated as the inverse-variance weighted mean of the stratum-specific estimates.11 The pooled HR was 2.53 (1.37-4.67), essentially identical to that of 2.49 (1.38-4.50) from the primary analysis. We also performed the same analysis for the azithromycin vs nonuser control comparison; the HR from the propensity-score stratified analysis was 3.01 (1.84-4.94), very similar to that of 2.88 (1.79-4.63) from the primary analysis. We also performed a repeated measures analysis that controls for possible within-person dependencies (although theoretically the use of non-overlapping time periods and only one endpoint per person should make this unnecessary) as well as one that includes terms for other potentially proarrhythmic drugs. The latter include non-study macrolides/fluoroquinolones, methadone,12 anti-arrhythmic medications that can cause torsade de pointes (disopyramide, procainamide, amiodarone, sotalol, quinidine, dofetilide),13;14 cisapride,15 terfenadine,16 and astemizole.17 Findings for both of these analyses were essentially identical to those of the primary analysis. Appendix Table 11. Alternative analyses. All Cardiovascular Death HR 95% CI Primary analysis 2.49 1.38-4.50 Propensity-score stratified analysis 2.53 1.37-4.67 Repeated measures analysis to control for possible dependence between different time periods within the same patient. 2.49 1.40-4.42 Model includes terms for other proarrhythmic drugs 2.51 1.38-4.54 様々なモデルで検証 AZMによる心血管死↑
  • 30.
  • 31.
    • Day1-5において, Amoxicillin群と比較してもAZM群 は心血管死が増加(2.49倍),一方で,Day 6-10にお いてはAZM群とAmoxicillin群は死亡率に差なし 31 Ray WA et al:N Engl J Med 2012;366:1881-90. 結果:10日間の累積死亡  AZM群 vs Amoxicillin 群
  • 32.
    32 Appendix: Azithromycin andthe Risk of Cardiovascular Death 19 Cardiovascular Deaths 0 1 2 3 4 5 6 7 8 9 10 0 50 100 150 Nonuser Amoxicillin Days 1 to 5: p = 0.85 HR = 0.95 (0.55-1.63) Entire 10 Days: p = 0.47, HR = 0.87 (0.59-1.28) Days 6 to 10: p = 0.40 HR = 0.81 (0.49-1.33) Deaths: Amoxicillin 6 11 12 9 4 9 10 4 6 9 Nonuser 7 10 6 8 10 11 8 9 9 6 Days Since Prescription Fill CumulativeDeathsper106 Prescriptions All Deaths 0 1 2 3 4 5 6 7 8 9 10 0 50 100 150 Nonuser Amoxicillin Days 1 to 5: p = 0.45 HR = 0.86 (0.58-1.28) Entire 10 Days: p = 0.80, HR = 1.04 (0.79-1.36) Days 6 to 10: p = 0.56 HR = 1.11 (0.78-1.57) Deaths: Amoxicillin 11 17 20 11 11 19 20 10 16 16 Nonuser 17 15 19 12 16 19 14 15 19 13 Days Since Prescription Fill CumulativeDeathsper106 Prescriptions Appendix Figure 1. Cardiovascular and total mortality for amoxicillin users versus nonuser controls. See also MS Figure 1. 結果:Nouser群 vs Amoxicillin群  AmoxicillinはNouserと比較して、心血管死・全ての死 共にリスク変わらない、時期による差もなし Appendix Figure 1より
  • 33.
    33 Appendix: Azithromycin andthe Risk of Cardiovascular Death 23 Appendix Table 12. Azithromycin user characteristics according to cardiovascular risk score deciles. Characteristics are those as of the date of the prescription fill. Also see footnotes to MS Table 1. Deciles 1-5 Deciles 6-9 Decile 10 N of prescriptions 179,317 135,931 32,547 Demographic characteristics Calendar year t0, mean 2003.2 2002.9 2002.7 Age in years, mean 42.7 53.9 59.4 Female, % 91.7% 66.8% 43.7% White, % 81.6% 76.8% 74.8% Urban residence,% 48.8% 52.4% 55.4% Medicaid enrollment disability,% 33.0% 64.5% 79.3% Cardiovascular medications, % Angiotensin converting enzyme inhibitors 16.8% 36.6% 54.9% Anti-arrhythmic 0.9% 1.7% 4.5% Anticoagulants 1.6% 4.0% 12.4% Non-aspirin platelet inhibitor 2.3% 6.3% 13.7% Beta-blockers 13.4% 26.9% 44.0% Calcium-channel blockers 11.7% 26.9% 38.6% Digoxin 0.2% 2.0% 17.9% Loop diuretic 7.3% 22.4% 50.0% Other diuretic 19.5% 31.8% 36.7% Nitrate 4.1% 12.9% 31.1% Statin 19.0% 35.4% 46.8% Cardiovascular diagnoses, % Myocardial infarction 0.1% 0.8% 3.1% Revascularization 0.9% 1.4% 2.1% Cardiac valve disease 1.8% 3.4% 7.6% Heart failure 0.5% 4.0% 27.0% Cerebrovascular disease 1.9% 2.7% 5.9% Peripheral vascular disease 1.1% 3.6% 9.3% Cardiovascular risk summary Summary cardiovascular risk score, mean 4.4 13.4 18.5 Other comorbidity, % Insulin 3.5% 7.8% 17.1% Oral hypoglycemic 11.6% 20.2% 28.4% Antipsychotic prescription 6.1% 16.3% 24.8% Figure3背景:心血管リスクスコアを3分割して比較 最大リスク群はかなりハイリスク
  • 34.
  • 35.
  • 36.
    36 コメント論文 • 過去にRCTあり • 抗生剤非使用群でも死亡率が高い。テネシー・メディケイドに合併 症を伴う患者が多い可能性 •背景に差があるのでは?←(Ray WAら)マッチさせると標本が減 り、検出力が減ってしまう。傾向スコアで調整しており問題ない。 • 抗生剤の処方理由が死因に寄与しているはず。 • 潜在的な交絡を調整するために統計を駆使しているが、上手く交絡 を調整できているかは不明である。 • 本研究は真に抗生剤が必要な人に処方されているか疑問あり。
  • 37.
    37Albert RK etal. N Engl J Med 2011;365:689-698 コメント論文 AZMによるCOPD急性増悪の予防ができるか調査したRCT QT延長のリスク がある患者は対象 から除外 Azithromycin for prevention of exacerbations of COPD リスクが高い人はQT間 隔をモニタリングすれば AZMは使用可能 AZMによるQT延長なし
  • 38.
    Azithromycin for theSecondary Prevention of Coronary Events 38 P: 安定狭心症の4012人 E: アジスロマイシン600mg/週を1年間服用 C: Placebo薬 週1回を1年間服用 O: 冠動脈疾患による死亡、非致死的な心筋 塞、 冠動脈再建の施行、不安定狭心症による入院 T: 平均で3.9年follow Grayston JT et al:N Engl J Med 2005;352:1637-45. 2005年NEJM 発表 RCT • 仮説:Chlamydia Pneumoniae感染と動脈硬化の関連性あり ➡AZM服用により冠動脈イベントを二次的に減らせる Ray WAとの相違 ・対象者が異なる ・アウトカムの差異 ・暴露期間が異なる
  • 39.
    患者背景 39Grayston JT etal:N Engl J Med 2005;352:1637-45.
  • 40.
    結果: 40 • 冠動脈疾患死に限定し て参考にできる Grayston JTet al:N Engl J Med 2005;352:1637-45. • primary end pointが 全く異なるため、カプ ランマイヤー曲線は参 考にならない
  • 41.
    The cardiovascular riskof azithromycin was increased in a large observational cohort study, contradicting findings from prior randomised trials. • ①RCTではない • ②保険支払いデータの情報の正確性に疑問 • ③AZM群と対照群の間に「選択バイアス」 41Muhlestein JB:Evid Based Med. 2013 Jun;18(3):e28. • Ray WAらの研究の問題点. コメント論文
  • 42.
    Use of Azithromycin andDeath from Cardiovascular Causes 42 P: Danish Registyに登録された18-64歳の患者 (1997-2010年) E: アジスロマイシンを5日間服用 C: 抗生剤を服用しない(Penicillin Vの使用) O: 心臓血管病による死亡 T: 抗生剤処方日から5日間(最大35日間) Svanström H et al:N Engl J Med 2013;368:1704-912 2013年NEJM発表  Database研究 • 背景:リスクが高い患者ではAzithromycinの心血管死が増加する ➡通常リスクの患者においては、心血管死は増えるか? 研究デザイン:コホート研究 Ray WAより 若年
  • 43.
  • 44.
  • 45.
    • AZMと3項目をマッチさせたものを、 AZM 1件に対して1-10件採用 45SvanströmH et al:N Engl J Med 2013;368:1704-912 対象(No Abx)群の抽出 分析の単位が処方であり、(同一患者の)複数 回組み入れあり インデックス日 性別 生年月日 61項目の共変量で傾向スコアを推定 →potential control poolの作成 →1対1の割付け比でマッチング
  • 46.
    アクティブな対象群 46 分類 催不整脈作用 Azithromycin マクロライド系? Penicillin V ペニシリン系 ー 要因 AZM服用 アウトカム 死亡 交絡因子 感染症 AZM服用の適応(感染症) による交絡を調整する 目的で作成 Svanström H et al:N Engl J Med 2013;368:1704-912
  • 47.
    アウトカム 47 • primary endpoints:心血管疾患による死亡 • secondary end points:心血管疾患以外による死亡 他の抗生剤への切り替え, 入院,死亡 いずれかでfollow中止 最大で35日目までfollow インデックス日 5 AZM内服 追跡期間 Penicillin V内服 10 35日目 Current use Recent use Past use 治療のタイミング Ray WAより follow期間長い
  • 48.
  • 49.
    49 背景 :balanceの評価はp値で良いのか Svanström Het al:N Engl J Med 2013;368:1704-912 マッチング • AZMとPenicillin Vの 比較では, 有意差があ る項目が多い • AZMとNo Abxの比較 でもPS matchしてい るが、有意差のある項 目が数カ所あり • Ray WAと比較して合 併症が少ない
  • 50.
    50 Svanström H etal:N Engl J Med 2013;368:1704-912 Primary outcome (No Abxと比較)AZM current useでは心血管死増 RR 2.85 Recent, Past useではリスク増加無し AZM vs Penicillin V サブ解析
  • 51.
    51 Svanström H etal:N Engl J Med 2013;368:1704-912 Primary outcome:AZM current use による心血管死 サブ解析(Penicillin Vと比較) 性別、年齢、心疾患の既往の有無に分けた、 いずれも有意差なし
  • 52.
    52 Svanström H etal:N Engl J Med 2013;368:1704-912 感度分析 AZMとAmoxicillinを1:1でマッチさせた場合 • 心血管死亡に有意 差なし • 両群64.8万まで 減らしたマッチン グでも有意差なし (Suppelmentar y Table S6)
  • 53.
    結論 • Azithromycinは、一般の若者・中年成人におい ては、心血管死を増やさない。 • RayWAは、心血管イベントのハイリスク患者を 対象としている。相反する結果ではなく、母集団 の違いによるものと考えられる。 • AZMは一般外来では問題なく処方できる。心疾 患のハイリスク患者における処方では注意すべき である。 53
  • 54.
    • Ray WA研究とSvanströmH研究の比較 54 Ray WA(2012) Svansöm H(2013) 対象者 テネシー・メディケイド加入者 (低所得者・障害者多い) デンマーク一般市民 n 約34.8万 約110.2万 治療時期 1992-2006 1997-2010 平均年齢 48.6歳 39.7歳 男性 22.5% 35% インスリン使用 6.5% 1% 心不全既往 4.3% 1% アウトカム Day1-5の心血管死 (100万コースあたり) 85.2人 15.4人 HR (vs No Abx) 2.88 2.85 結論: AZMによる心血管リスク 有り 無し PS match後のAZM群を比較
  • 55.
  • 56.
    まとめ • 薬剤による稀な副作用を調査するためのデータベース研究を 紹介した。 • 暴露群のインデックス日を定義後に、対照群を定義した。対 照群の抽出は、共変量を元にして計算された傾向スコアを用 いて、暴露群とマッチングさせた。 •薬剤の処方理由の交絡を調整するために、アクティブな対照 群を用意した。しかしながら、交絡が調整できているかは懐 疑的である。 • 結果の解釈においては、母集団と標本を考慮する必要がある。 56
  • 57.
    傾向スコアの理解のために • 星野崇宏, 岡田謙介.傾向スコアを用いた共変量調整による因果 関係の推定と臨床医学・疫学・薬学・公衆衛生分野での応用に ついて J. Natl. Inst. Public Health, 55(3) : 2006 • 奥村泰之「傾向スコアの概念とその実践」(slide share) • 白石淳「傾向スコアマッチと多重補完法の解説」(slide share) 57