SlideShare a Scribd company logo
XRSA - Relazione Gruppo 20 (Scienze dei Materiali 2010/2011)
(Michael Nones, Davide Occello, Giorgio Zanoni, William Segata, Matteo Sembenotti)
Introduzione:
CRISTALLOGRAFIA A RAGGI X
L’analisi cristallografica a raggi X è una tecnica in cui l'immagine, prodotta dalla diffrazione dei raggi X attraverso lo
spazio del reticolo atomico in un cristallo, viene registrata e quindi analizzata per rivelare la natura del reticolo. In
genere, questo porta a determinare che tipo di materiale sia e la struttura molecolare di una sostanza.
La distanza interatomica nel reticolo cristallino può essere determinata con la legge di Bragg. Gli elettroni che
circondano gli atomi, piuttosto che i nuclei degli atomi stessi, sono le particelle che interagiscono fisicamente con i
fotoni dei raggi X.
In questa tecnica cristallografica un fascio di raggi X colpisce il cristallo stesso e viene quindi diffratto in direzioni
specifiche. A seconda degli angoli e dell'intensità di questi raggi diffratti un cristallografo può produrre un'immagine
tridimensionale della densità di elettroni nel cristallo. Da questa è possibile ricavare la posizione media degli atomi, così
come anche i loro legami chimici ed altre informazioni.
DIFFRAZIONE
La diffrazione è un fenomeno che avviene tutte le volte che in qualche modo si limita o si ostacola un fronte d’onda e le
dimensioni dell’ostacolo o dell’apertura su uno schermo opaco (non trasparente
all’onda) sono confrontabili con la lunghezza d’onda dell’onda (che sia
meccanica o elettromagnetica).
La figura rappresenta una luce laser diffratta da un’apertura di qualche decimo di
mm, su uno schermo posto ad una distanza di circa 1 m.
Si può subito notare come la distribuzione di intensità alternata tra zone di
interferenza costruttiva e distruttiva si sviluppi in una direzione ortogonale alla
simmetria dell’apertura.
Nel caso di particolari simmetrie degli ostacoli o aperture la distribuzione di intensità è prevedibile analiticamente. Per
questo motivo il fenomeno della diffrazione può essere sfruttato in maniera inversa: dall’analisi della distribuzione
dell’energia, nei casi in cui essa presenti qualche particolare simmetria, è possibile risalire al sistema (ostacolo, reticolo)
che la genera. Un esempio tipico è l’utilizzo della diffrazione da raggi X per lo studio dei reticoli cristallini.
Per determinare gli effetti della diffrazione occorre in precedenza trovare la fase e l'intensità di ciascuna sorgente di
Huygens in ogni punto dello spazio; ciò significa calcolare per ogni punto la sua distanza dal fronte d'onda: se la
distanza di ciascun punto differisce a meno di un numero intero di lunghezze d'onda, tutte le sorgenti sono in fase e
daranno luogo ad una interferenza costruttiva; se al contrario la distanza differisce di un numero intero più mezza
lunghezza d'onda, l'interferenza sarà distruttiva. In generale, è sufficiente determinare le posizioni di questi massimi e
minimi per ottenere una completa descrizione del fenomeno.
LEGGE DI BRAGG
Nel 1913 Bragg diede una semplice spiegazione della diffrazione di raggi X da parte di un cristallo. Egli assunse i raggi
X incidenti fossero riflessi specularmente (cioè l’angolo di incidenza fosse uguale all’angolo di riflessione) da parte di
piani paralleli di atomi (Figura a).
Inoltre, ogni piano di atomi deve riflettere solo una piccola frazione della radiazione incidente (fatto consistente con la
grande profondità di penetrazione dei raggi X). Quindi, macchie di diffrazione vengono osservate quando i raggi
provenienti da piani adiacenti si sommano costruttivamente. La geometria del fenomeno (Figura) richiede che la
differenza di cammino tra raggi riflessi specularmente da due piani sia 2dsin θ.
Quando questa differenza è un numero intero di lunghezze d’onda si osserva interferenza costruttiva.
Questa è la legge di Bragg:
2d sin θ = nλ
d : distanza tra i piani in esame
n :ordine della riflessione
θ :angolo di diffrazione
λ: lunghezza d’onda
Poiché sin θ ≤ 1 ne segue che λ ≤ 2d, e quindi è fissato il valore massimo che può avere la lunghezza d’onda della
radiazione X utilizzabile. E’ ovvio quindi che radiazioni del tipo UV-visibile non possono essere utilizzate in questo
contesto.
L’angolo di Bragg può essere determinato sperimentalmente come la metà dell’angolo tra la direzione incidente e quella
riflessa, Figura (b). Dall’equazione di Bragg si ha che per n = 2 misureremo un valore maggiore di θ che per n = 1.
L’angolo corrispondente a n = 2 si riferisce ad altri piani cristallografici.
Possiamo riscrivere la legge di Bragg come:
2d’ sin θ = λ
dove d’ = d/n è la spaziatura tra famiglie di piani cristallografici.
TENSIONI RESIDUE
La tecnica dell’analisi cristallografica a raggi x, può essere utilizzata anche per determinare sperimentalmente l’entità
delle tensioni residue introdotte nel reticolo cristallino.
Le tensioni residue sono sforzi che rimangono stabili nel materiale dopo che ogni sforzo esterno è stato rimosso
(fintanto che la temperatura rimane al di sotto di quella necessaria ad attivare la diffusione) .
Il fenomeno si ottiene producendo sforzi notevoli sulla superficie del materiale, sufficienti a deformare plasticamente
l’immediata superficie, che però lascino una zona sottostante deformata solo in campo elastico. Tramite questa
differenza, la zona deformata plasticamente avrà un recupero elastico, come la zona sotto, ma rimarrà comunque
deformata permanentemente di una percentuale dipendente dall’intensità dello sforzo, il recupero elastico quindi non
esaurirà totalmente lo stato tensionale sulla superficie, rimarrà comunque uno sforzo residuo tra la zona deformata
plasticamente e la zona deformata elasticamente.
Questo può avere effetti vari sul materiale, nel caso gli sforzi residui siano di compressione, un aumento delle
prestazioni a trazione del materiale e nel caso siano di trazione una diminuzione delle prestazioni.
STRESS TOTALE = STRESS ESTERNO + STRESS RESIDUI
quindi se gli stress residui sono di compressione (negativi) lo stress totale è minore di quello che sarebbe se non ci
fossero.
Vista l’importanza delle tensioni residue nelle prestazioni di un materiale, diventa importante la determinazione
dell’intensità di tali sforzi residui, cosa che può essere ottenuta anche tramite HOLE DRILLING e XRSA.
XRSA (X-Ray Stress Analysis)
Questa tecnica di misura delle tensioni residue è usata in
alternativa a quella dell’HOLE DRILLING, nel caso di
materiali policristallini a grana fine, perché più sensibile
dell’HOLE DRILLING in questi casi specifici.
Viene chiamato spesso anche, metodo del a
causa del particolare metodo di analisi.
Apparato Sperimentale (in figura)
L’apparato sperimentale consiste in:
Un fascio monocromatico di raggi x, diretto contro un provino policristallino a grana fine. Dall’altra parte è messo un
sensore che riceve il raggio diffratto.
2 è l’angolo di diffrazione e è l’angolo di rotazione del provino.
LA MISURA
Come si vede in figura il picco di diffrazione dei raggi x si sposta in relazione all’inclinazione del provino (angolo psi)
l’entità dello spostamento è legata alla deformazione tramite la legge di Bragg.
A sua volta la deformazione è messa in relazione a tramite la seguente formula:
dove:
E - modulo di Young (69GPa per l’Alluminio)
v - modulo di Poisson (0.33 per l’Alluminio)
ε - deformazione
- angolo di inclinazione (come in figura)
L’intensità degli stress residui presenti sulla superficie del
pezzo, viene determinata sperimentalmente confrontando il
coefficiente angolare della retta data dalla formula, con
l’inclinazione della retta approssimante i dati ricavati per
via sperimentale, come verrà chiarito nello svolgimento
dell’esercizio.
Nel caso fossero presenti sforzi di taglio, o deformato
plasticamente in modo anisotropo, o ancora che presenti
una tessitura, la linearità della relazione tra e la
deformazione non è garantita, il calcolo degli stress residui
risulta quindi più complesso.
Procedura seguita nell’esercizio:
La procedura seguita per portare a termine l’esercizio è stata:
1) Disegno dei Grafici (intensità-2 ) eseguiti sul picco 422 a partire dai dati forniti e approssimazione con cubica
2) Determinazione massimi relativi delle cubiche approssimanti
3) Determinazione Distanza interplanare (tra {422}) per diversi ψ tramite la legge di Bragg
4) Determinazione dipendenza lineare tra Deformazione e Sin2(ψ) e Disegno Grafico
5) Confronto del Coefficiente Angolare della retta approssimante con la formula fornita
ESERCIZIO : 1) Disegno dei Grafici e approssimazione con cubica
Qui ci sono solo 6 scansioni (abbiamo allegato le altre per completezza)
Scansione 1 (Ψ= -70.00°)
132.900 103 96 88 101 92 100 128 99 117 100
134.900 101 132 137 123 134 125 143 167 196 251
136.900 322 399 554 725 833 804 793 684 613 487
138.900 386 284 242 202 178 157 122 147 116 101
140.900 122 103 103 113 0 0 0 0 0 0
Scansione 4 (Ψ= -47.98°)
132.900 106 111 102 106 99 103 108 100 105 101
134.900 130 99 116 144 119 126 123 156 179 222
136.900 282 393 480 515 545 455 446 375 308 266
138.900 216 169 166 146 135 111 123 122 121 118
140.900 126 117 104 113 0 0 0 0 0 0
Scansione 9 (Ψ= 0.00°)
132.900 108 109 99 117 121 123 91 113 146 122
134.900 125 159 131 140 151 159 181 206 272 363
136.900 447 477 492 468 436 341 304 263 227 190
138.900 175 170 174 154 163 150 154 156 143 154
140.900 165 152 172 167 0 0 0 0 0 0
Scansione 12 (Ψ= 28.02°)
132.900 127 110 122 113 107 109 119 121 138 130
134.900 112 131 128 159 165 183 196 235 310 466
136.900 750 987 1111 1122 1029 930 759 628 462 322
138.900 252 200 199 174 165 155 138 140 138 107
140.900 135 97 124 118 0 0 0 0 0 0
Scansione 15 (Ψ= 54.47°)
132.900 114 97 138 106 120 107 100 122 133 109
134.900 127 140 128 116 135 151 165 197 252 270
136.900 291 461 594 660 682 651 606 501 430 320
138.900 270 195 205 189 135 155 153 154 125 143
140.900 128 140 142 131 0 0 0 0 0 0
Scansione 17 (Ψ= 70.00°)
132.900 111 107 103 103 120 94 112 134 110 132
134.900 112 118 126 145 150 139 194 221 245 285
136.900 402 578 782 1009 1149 1082 1043 883 746 608
138.900 468 344 267 219 201 176 166 131 152 132
140.900 121 149 130 139 0 0 0 0 0 0
Ecco i picchi di diffrazione delle posizioni estreme, per vedere lo spostamento
2) Determinazione massimi relativi delle cubiche approssimanti
Dopo aver approssimato la distribuzione di punti sul grafico con la cubica migliore, si procede con il calcolo della
posizione angolare del massimo relativo (2θ).
Esempio Scan. 1
N° Scan. Angolo 2θ
1 137.946
2 137.87
3 137.798
4 137.683
5 137.628
6 137.56
7 137.469
8 137.36
9 137.332
10 137.351
11 137.506
12 137.52
13 137.655
14 137.714
15 137.783
16 137.86
17 137.876
18 137.917
3) Determinazione Distanza interplanare (tra {422}) per diversi ψ
Tramite la leege di Bragg:
2d sin θ = nλ
d : distanza tra i piani in esame
n :ordine della riflessione
θ :angolo di diffrazione
λ: lunghezza d’onda raggi x
Ponendo l’ordine di riflessione come n=1
e λ=154pm poiché i raggi x provengono
da un anodo di Rame
Si ottengono i seguenti valori di dn e deformazione ε = dove do è dn con n=9 cioè dove
Ψ=0.00°
n° Scan. dn Deformazione
1 82.4931 -0.00207
2 82.5142 -0.00182
3 82.5341 -0.00158
4 82.5662 -0.00119
5 82.5815 -0.00100
6 82.6005 -0.00077
7 82.626 -0.00047
8 82.6567 -0.00009
9 82.6645 0.00000
10 82.6592 -0.00006
11 82.6156 -0.00059
12 82.6117 -0.00064
13 82.574 -0.00109
14 82.5575 -0.00129
15 82.5383 -0.00153
16 82.5169 -0.00179
17 82.5124 -0.00184
18 82.5011 -0.00198
4) Determinazione dipendenza lineare tra Deformazione e Sin2(ψ)
5) Confronto del Coefficiente Angolare della retta approssimante con la
seguente formula
Che da come risultato:
Dove è la tensione residua nel materiale (E=69GPa,v=0.33 rif. Callister)
Deformazione Sin2(ψ)
-0.00207 0.88302
-0.00182 0.77261
-0.00158 0.66229
-0.00119 0.55192
-0.00100 0.44149
-0.00077 0.33112
-0.00047 0.22069
-0.00009 0.11033
0.00000 0.00000
-0.00006 0.11033
-0.00059 0.22069
-0.00064 0.33112
-0.00109 0.44149
-0.00129 0.55192
-0.00153 0.66229
-0.00179 0.77261
-0.00184 0.88302
-0.00198 0.88302
Conclusioni
Lo studio dei dati sperimentali derivanti da analisi ai raggi x del picco relativo ai piani 422 eseguita
su un campione di alluminio, ha portato alla determinazione sperimentale delle tensioni residue
pre-esistenti nel materiale, tramite lo studio dello spostamento del picco 422 in funzione dell’angolo
di inclinazione ψ del provino. Si è confermata sperimentalmente la linearità della dipendenza della
deformazione εda sin2(ψ).
L’intensità degli stress residui misurati è:
Cioè ci sono delle tensioni residue di compressione sulla superficie del materiale, le quali aumenteranno le prestazioni
di questo campione di alluminio, aumentando ad esempio la vita a fatica e il limite di rottura.
BIBLIOGRAFIA
W. D. Callister - Scienze dei Materiali - Una Introduzione (pag. da 66 a 70 e 137)
Icaf 2009, Bridging the Gap Between Theory and Operational Practice ... Di M. J. Bos (Google Books) (pag 1286)
http://www.ing.unitn.it/~maud/facts/Stress_Caen2005.pdf (pag. 4 e 7)
http://www.h-and-m-analytical.com/pdfs/residual_stress.pdf (pag. 1)
http://www.protoxrd.com/pdf/rsintro.pdf (pag.2)
http://www.lambda-research.com/html/resources/200.pdf (pag da 1 a 6)

More Related Content

Similar to X-Ray Stress Analisys - Tensioni Residue

Slides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe TerzaSlides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe Terza
Massimo Bubani
 
Calcolo FEM - Volano
Calcolo FEM - VolanoCalcolo FEM - Volano
Calcolo FEM - Volano
Stefano Manca
 

Similar to X-Ray Stress Analisys - Tensioni Residue (20)

La TAC
La TACLa TAC
La TAC
 
Summary of "Enhancing MIMO antenna isolation characteristic by manipulating t...
Summary of "Enhancing MIMO antenna isolation characteristic by manipulating t...Summary of "Enhancing MIMO antenna isolation characteristic by manipulating t...
Summary of "Enhancing MIMO antenna isolation characteristic by manipulating t...
 
TESI Finale
TESI FinaleTESI Finale
TESI Finale
 
Diffrazione
DiffrazioneDiffrazione
Diffrazione
 
Modulo A - La tecnologia Laser per Odontoiatri
Modulo A - La tecnologia Laser per OdontoiatriModulo A - La tecnologia Laser per Odontoiatri
Modulo A - La tecnologia Laser per Odontoiatri
 
I. Electronic properties of nanomaterials
I. Electronic properties of nanomaterialsI. Electronic properties of nanomaterials
I. Electronic properties of nanomaterials
 
Thermal project of the core
Thermal project of the coreThermal project of the core
Thermal project of the core
 
Psicofisica
PsicofisicaPsicofisica
Psicofisica
 
Ginger2
Ginger2Ginger2
Ginger2
 
Slides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe TerzaSlides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe Terza
 
Presentazione Tesi di Laurea
Presentazione Tesi di LaureaPresentazione Tesi di Laurea
Presentazione Tesi di Laurea
 
Cinetica
CineticaCinetica
Cinetica
 
Analisi tridimensionale di pile da ponte a doppia lama.
Analisi tridimensionale di pile da ponte a doppia lama.Analisi tridimensionale di pile da ponte a doppia lama.
Analisi tridimensionale di pile da ponte a doppia lama.
 
La infagine termografica sulle chiese
La infagine termografica sulle chieseLa infagine termografica sulle chiese
La infagine termografica sulle chiese
 
Extended Summary of "Analytical Investigation on a New Approach for Achieving...
Extended Summary of "Analytical Investigation on a New Approach for Achieving...Extended Summary of "Analytical Investigation on a New Approach for Achieving...
Extended Summary of "Analytical Investigation on a New Approach for Achieving...
 
EC_: mio dispensario_calcolo_semiprobabilistico
EC_: mio dispensario_calcolo_semiprobabilisticoEC_: mio dispensario_calcolo_semiprobabilistico
EC_: mio dispensario_calcolo_semiprobabilistico
 
Metodi di ricostruzione delle immagini in medicina nucleare
Metodi di ricostruzione delle immagini in medicina nucleare Metodi di ricostruzione delle immagini in medicina nucleare
Metodi di ricostruzione delle immagini in medicina nucleare
 
Simulazioni di fluidi non newtoniani in OpenFOAM
Simulazioni di fluidi non newtoniani in OpenFOAMSimulazioni di fluidi non newtoniani in OpenFOAM
Simulazioni di fluidi non newtoniani in OpenFOAM
 
Presentazione
PresentazionePresentazione
Presentazione
 
Calcolo FEM - Volano
Calcolo FEM - VolanoCalcolo FEM - Volano
Calcolo FEM - Volano
 

X-Ray Stress Analisys - Tensioni Residue

  • 1. XRSA - Relazione Gruppo 20 (Scienze dei Materiali 2010/2011) (Michael Nones, Davide Occello, Giorgio Zanoni, William Segata, Matteo Sembenotti) Introduzione: CRISTALLOGRAFIA A RAGGI X L’analisi cristallografica a raggi X è una tecnica in cui l'immagine, prodotta dalla diffrazione dei raggi X attraverso lo spazio del reticolo atomico in un cristallo, viene registrata e quindi analizzata per rivelare la natura del reticolo. In genere, questo porta a determinare che tipo di materiale sia e la struttura molecolare di una sostanza. La distanza interatomica nel reticolo cristallino può essere determinata con la legge di Bragg. Gli elettroni che circondano gli atomi, piuttosto che i nuclei degli atomi stessi, sono le particelle che interagiscono fisicamente con i fotoni dei raggi X. In questa tecnica cristallografica un fascio di raggi X colpisce il cristallo stesso e viene quindi diffratto in direzioni specifiche. A seconda degli angoli e dell'intensità di questi raggi diffratti un cristallografo può produrre un'immagine tridimensionale della densità di elettroni nel cristallo. Da questa è possibile ricavare la posizione media degli atomi, così come anche i loro legami chimici ed altre informazioni. DIFFRAZIONE La diffrazione è un fenomeno che avviene tutte le volte che in qualche modo si limita o si ostacola un fronte d’onda e le dimensioni dell’ostacolo o dell’apertura su uno schermo opaco (non trasparente all’onda) sono confrontabili con la lunghezza d’onda dell’onda (che sia meccanica o elettromagnetica). La figura rappresenta una luce laser diffratta da un’apertura di qualche decimo di mm, su uno schermo posto ad una distanza di circa 1 m. Si può subito notare come la distribuzione di intensità alternata tra zone di interferenza costruttiva e distruttiva si sviluppi in una direzione ortogonale alla simmetria dell’apertura. Nel caso di particolari simmetrie degli ostacoli o aperture la distribuzione di intensità è prevedibile analiticamente. Per questo motivo il fenomeno della diffrazione può essere sfruttato in maniera inversa: dall’analisi della distribuzione dell’energia, nei casi in cui essa presenti qualche particolare simmetria, è possibile risalire al sistema (ostacolo, reticolo) che la genera. Un esempio tipico è l’utilizzo della diffrazione da raggi X per lo studio dei reticoli cristallini. Per determinare gli effetti della diffrazione occorre in precedenza trovare la fase e l'intensità di ciascuna sorgente di Huygens in ogni punto dello spazio; ciò significa calcolare per ogni punto la sua distanza dal fronte d'onda: se la distanza di ciascun punto differisce a meno di un numero intero di lunghezze d'onda, tutte le sorgenti sono in fase e daranno luogo ad una interferenza costruttiva; se al contrario la distanza differisce di un numero intero più mezza lunghezza d'onda, l'interferenza sarà distruttiva. In generale, è sufficiente determinare le posizioni di questi massimi e minimi per ottenere una completa descrizione del fenomeno. LEGGE DI BRAGG Nel 1913 Bragg diede una semplice spiegazione della diffrazione di raggi X da parte di un cristallo. Egli assunse i raggi X incidenti fossero riflessi specularmente (cioè l’angolo di incidenza fosse uguale all’angolo di riflessione) da parte di piani paralleli di atomi (Figura a). Inoltre, ogni piano di atomi deve riflettere solo una piccola frazione della radiazione incidente (fatto consistente con la grande profondità di penetrazione dei raggi X). Quindi, macchie di diffrazione vengono osservate quando i raggi provenienti da piani adiacenti si sommano costruttivamente. La geometria del fenomeno (Figura) richiede che la differenza di cammino tra raggi riflessi specularmente da due piani sia 2dsin θ. Quando questa differenza è un numero intero di lunghezze d’onda si osserva interferenza costruttiva.
  • 2. Questa è la legge di Bragg: 2d sin θ = nλ d : distanza tra i piani in esame n :ordine della riflessione θ :angolo di diffrazione λ: lunghezza d’onda Poiché sin θ ≤ 1 ne segue che λ ≤ 2d, e quindi è fissato il valore massimo che può avere la lunghezza d’onda della radiazione X utilizzabile. E’ ovvio quindi che radiazioni del tipo UV-visibile non possono essere utilizzate in questo contesto. L’angolo di Bragg può essere determinato sperimentalmente come la metà dell’angolo tra la direzione incidente e quella riflessa, Figura (b). Dall’equazione di Bragg si ha che per n = 2 misureremo un valore maggiore di θ che per n = 1. L’angolo corrispondente a n = 2 si riferisce ad altri piani cristallografici. Possiamo riscrivere la legge di Bragg come: 2d’ sin θ = λ dove d’ = d/n è la spaziatura tra famiglie di piani cristallografici. TENSIONI RESIDUE La tecnica dell’analisi cristallografica a raggi x, può essere utilizzata anche per determinare sperimentalmente l’entità delle tensioni residue introdotte nel reticolo cristallino. Le tensioni residue sono sforzi che rimangono stabili nel materiale dopo che ogni sforzo esterno è stato rimosso (fintanto che la temperatura rimane al di sotto di quella necessaria ad attivare la diffusione) . Il fenomeno si ottiene producendo sforzi notevoli sulla superficie del materiale, sufficienti a deformare plasticamente l’immediata superficie, che però lascino una zona sottostante deformata solo in campo elastico. Tramite questa differenza, la zona deformata plasticamente avrà un recupero elastico, come la zona sotto, ma rimarrà comunque deformata permanentemente di una percentuale dipendente dall’intensità dello sforzo, il recupero elastico quindi non esaurirà totalmente lo stato tensionale sulla superficie, rimarrà comunque uno sforzo residuo tra la zona deformata plasticamente e la zona deformata elasticamente. Questo può avere effetti vari sul materiale, nel caso gli sforzi residui siano di compressione, un aumento delle prestazioni a trazione del materiale e nel caso siano di trazione una diminuzione delle prestazioni. STRESS TOTALE = STRESS ESTERNO + STRESS RESIDUI quindi se gli stress residui sono di compressione (negativi) lo stress totale è minore di quello che sarebbe se non ci fossero. Vista l’importanza delle tensioni residue nelle prestazioni di un materiale, diventa importante la determinazione dell’intensità di tali sforzi residui, cosa che può essere ottenuta anche tramite HOLE DRILLING e XRSA. XRSA (X-Ray Stress Analysis) Questa tecnica di misura delle tensioni residue è usata in alternativa a quella dell’HOLE DRILLING, nel caso di materiali policristallini a grana fine, perché più sensibile dell’HOLE DRILLING in questi casi specifici. Viene chiamato spesso anche, metodo del a causa del particolare metodo di analisi.
  • 3. Apparato Sperimentale (in figura) L’apparato sperimentale consiste in: Un fascio monocromatico di raggi x, diretto contro un provino policristallino a grana fine. Dall’altra parte è messo un sensore che riceve il raggio diffratto. 2 è l’angolo di diffrazione e è l’angolo di rotazione del provino. LA MISURA Come si vede in figura il picco di diffrazione dei raggi x si sposta in relazione all’inclinazione del provino (angolo psi) l’entità dello spostamento è legata alla deformazione tramite la legge di Bragg. A sua volta la deformazione è messa in relazione a tramite la seguente formula: dove: E - modulo di Young (69GPa per l’Alluminio) v - modulo di Poisson (0.33 per l’Alluminio) ε - deformazione - angolo di inclinazione (come in figura) L’intensità degli stress residui presenti sulla superficie del pezzo, viene determinata sperimentalmente confrontando il coefficiente angolare della retta data dalla formula, con l’inclinazione della retta approssimante i dati ricavati per via sperimentale, come verrà chiarito nello svolgimento dell’esercizio. Nel caso fossero presenti sforzi di taglio, o deformato plasticamente in modo anisotropo, o ancora che presenti una tessitura, la linearità della relazione tra e la deformazione non è garantita, il calcolo degli stress residui risulta quindi più complesso. Procedura seguita nell’esercizio: La procedura seguita per portare a termine l’esercizio è stata: 1) Disegno dei Grafici (intensità-2 ) eseguiti sul picco 422 a partire dai dati forniti e approssimazione con cubica 2) Determinazione massimi relativi delle cubiche approssimanti 3) Determinazione Distanza interplanare (tra {422}) per diversi ψ tramite la legge di Bragg 4) Determinazione dipendenza lineare tra Deformazione e Sin2(ψ) e Disegno Grafico 5) Confronto del Coefficiente Angolare della retta approssimante con la formula fornita
  • 4. ESERCIZIO : 1) Disegno dei Grafici e approssimazione con cubica Qui ci sono solo 6 scansioni (abbiamo allegato le altre per completezza) Scansione 1 (Ψ= -70.00°) 132.900 103 96 88 101 92 100 128 99 117 100 134.900 101 132 137 123 134 125 143 167 196 251 136.900 322 399 554 725 833 804 793 684 613 487 138.900 386 284 242 202 178 157 122 147 116 101 140.900 122 103 103 113 0 0 0 0 0 0 Scansione 4 (Ψ= -47.98°) 132.900 106 111 102 106 99 103 108 100 105 101 134.900 130 99 116 144 119 126 123 156 179 222 136.900 282 393 480 515 545 455 446 375 308 266 138.900 216 169 166 146 135 111 123 122 121 118 140.900 126 117 104 113 0 0 0 0 0 0
  • 5. Scansione 9 (Ψ= 0.00°) 132.900 108 109 99 117 121 123 91 113 146 122 134.900 125 159 131 140 151 159 181 206 272 363 136.900 447 477 492 468 436 341 304 263 227 190 138.900 175 170 174 154 163 150 154 156 143 154 140.900 165 152 172 167 0 0 0 0 0 0 Scansione 12 (Ψ= 28.02°) 132.900 127 110 122 113 107 109 119 121 138 130 134.900 112 131 128 159 165 183 196 235 310 466 136.900 750 987 1111 1122 1029 930 759 628 462 322 138.900 252 200 199 174 165 155 138 140 138 107 140.900 135 97 124 118 0 0 0 0 0 0
  • 6. Scansione 15 (Ψ= 54.47°) 132.900 114 97 138 106 120 107 100 122 133 109 134.900 127 140 128 116 135 151 165 197 252 270 136.900 291 461 594 660 682 651 606 501 430 320 138.900 270 195 205 189 135 155 153 154 125 143 140.900 128 140 142 131 0 0 0 0 0 0 Scansione 17 (Ψ= 70.00°) 132.900 111 107 103 103 120 94 112 134 110 132 134.900 112 118 126 145 150 139 194 221 245 285 136.900 402 578 782 1009 1149 1082 1043 883 746 608 138.900 468 344 267 219 201 176 166 131 152 132 140.900 121 149 130 139 0 0 0 0 0 0
  • 7. Ecco i picchi di diffrazione delle posizioni estreme, per vedere lo spostamento 2) Determinazione massimi relativi delle cubiche approssimanti Dopo aver approssimato la distribuzione di punti sul grafico con la cubica migliore, si procede con il calcolo della posizione angolare del massimo relativo (2θ). Esempio Scan. 1 N° Scan. Angolo 2θ 1 137.946 2 137.87 3 137.798 4 137.683 5 137.628 6 137.56 7 137.469 8 137.36 9 137.332 10 137.351 11 137.506 12 137.52 13 137.655 14 137.714 15 137.783 16 137.86 17 137.876 18 137.917
  • 8. 3) Determinazione Distanza interplanare (tra {422}) per diversi ψ Tramite la leege di Bragg: 2d sin θ = nλ d : distanza tra i piani in esame n :ordine della riflessione θ :angolo di diffrazione λ: lunghezza d’onda raggi x Ponendo l’ordine di riflessione come n=1 e λ=154pm poiché i raggi x provengono da un anodo di Rame Si ottengono i seguenti valori di dn e deformazione ε = dove do è dn con n=9 cioè dove Ψ=0.00° n° Scan. dn Deformazione 1 82.4931 -0.00207 2 82.5142 -0.00182 3 82.5341 -0.00158 4 82.5662 -0.00119 5 82.5815 -0.00100 6 82.6005 -0.00077 7 82.626 -0.00047 8 82.6567 -0.00009 9 82.6645 0.00000 10 82.6592 -0.00006 11 82.6156 -0.00059 12 82.6117 -0.00064 13 82.574 -0.00109 14 82.5575 -0.00129 15 82.5383 -0.00153 16 82.5169 -0.00179 17 82.5124 -0.00184 18 82.5011 -0.00198
  • 9. 4) Determinazione dipendenza lineare tra Deformazione e Sin2(ψ) 5) Confronto del Coefficiente Angolare della retta approssimante con la seguente formula Che da come risultato: Dove è la tensione residua nel materiale (E=69GPa,v=0.33 rif. Callister) Deformazione Sin2(ψ) -0.00207 0.88302 -0.00182 0.77261 -0.00158 0.66229 -0.00119 0.55192 -0.00100 0.44149 -0.00077 0.33112 -0.00047 0.22069 -0.00009 0.11033 0.00000 0.00000 -0.00006 0.11033 -0.00059 0.22069 -0.00064 0.33112 -0.00109 0.44149 -0.00129 0.55192 -0.00153 0.66229 -0.00179 0.77261 -0.00184 0.88302 -0.00198 0.88302
  • 10. Conclusioni Lo studio dei dati sperimentali derivanti da analisi ai raggi x del picco relativo ai piani 422 eseguita su un campione di alluminio, ha portato alla determinazione sperimentale delle tensioni residue pre-esistenti nel materiale, tramite lo studio dello spostamento del picco 422 in funzione dell’angolo di inclinazione ψ del provino. Si è confermata sperimentalmente la linearità della dipendenza della deformazione εda sin2(ψ). L’intensità degli stress residui misurati è: Cioè ci sono delle tensioni residue di compressione sulla superficie del materiale, le quali aumenteranno le prestazioni di questo campione di alluminio, aumentando ad esempio la vita a fatica e il limite di rottura. BIBLIOGRAFIA W. D. Callister - Scienze dei Materiali - Una Introduzione (pag. da 66 a 70 e 137) Icaf 2009, Bridging the Gap Between Theory and Operational Practice ... Di M. J. Bos (Google Books) (pag 1286) http://www.ing.unitn.it/~maud/facts/Stress_Caen2005.pdf (pag. 4 e 7) http://www.h-and-m-analytical.com/pdfs/residual_stress.pdf (pag. 1) http://www.protoxrd.com/pdf/rsintro.pdf (pag.2) http://www.lambda-research.com/html/resources/200.pdf (pag da 1 a 6)