SlideShare a Scribd company logo
1 of 48
Download to read offline
Recommender	
  Systems	
  
	
  
Ramzi	
  Alqrainy	
  	
  
Search	
  Guru	
  
ramzi.alqrainy@gmail.com	
  
- 1 -
	
  
-
	
  
Recommender	
  Systems	
  
	
  
♣	
  	
  Applica;on	
  areas	
  
	
  
- 3 -
	
  
In	
  the	
  Social	
  Web	
  
	
  
- 4 -
	
  
Even	
  more	
  …	
  
	
  
♣	
  	
  Personalized	
  search	
  
	
  
♣	
  	
  "Computa;onal	
  adver;sing"	
  
	
  
- 5 -
	
  
About	
  the	
  speaker	
  
	
  
♣	
  	
  Ramzi	
  Alqrainy	
  
	
  
-­‐  Ramzi	
  is	
  one	
  of	
  the	
  well	
  recognized	
  experts	
  within	
  Ar8ficial	
  Intelligence	
  and	
  
	
  Informa8on	
  Retrieval	
  fields	
  in	
  Middle	
  East.	
  Ac8ve	
  researcher	
  and	
  technology	
  blogger	
  	
  
with	
  the	
  focus	
  on	
  informa8on	
  retrieval.	
  
- 6 -
	
  
Agenda	
  
	
  
♣	
  	
  What	
  are	
  recommender	
  systems	
  for?	
  
	
   -­‐	
  Introduc8on	
  
	
  
♣	
  	
  How	
  do	
  they	
  work	
  (Part	
  I)	
  ?	
  
	
   -­‐	
  Collabora8ve	
  Filtering	
  
	
  
♣	
  	
  How	
  to	
  measure	
  their	
  success?	
  
	
   -­‐	
  Evalua8on	
  techniques	
  
	
  
♣	
  	
  How	
  do	
  they	
  work	
  (Part	
  II)	
  ?	
  
	
   -­‐	
  Content-­‐based	
  Filtering	
  
	
  -­‐	
  Knowledge-­‐Based	
  Recommenda8ons	
  
	
  -­‐	
  Hybridiza8on	
  Strategies	
  
	
  
♣	
  	
  Advanced	
  topics	
  
	
   -­‐	
  Explana8ons	
  
	
  -­‐	
  Human	
  decision	
  making	
  
	
  
- 7 -
	
  
-
	
  
Why	
  using	
  Recommender	
  Systems?	
  
	
  
♣	
  	
  Value	
  for	
  the	
  customer	
  
	
   -­‐	
  Find	
  things	
  that	
  are	
  interes8ng	
  
	
  -­‐	
  Narrow	
  down	
  the	
  set	
  of	
  choices	
  
	
  -­‐	
  Help	
  me	
  explore	
  the	
  space	
  of	
  op8ons	
  
	
  -­‐	
  Discover	
  new	
  things	
  
	
  -­‐	
  Entertainment	
  
	
  -­‐	
  
	
  
…	
  
	
  
♣	
  	
  Value	
  for	
  the	
  provider	
  
	
   -­‐	
  Addi8onal	
  and	
  probably	
  unique	
  personalized	
  service	
  for	
  the	
  customer	
  
	
  -­‐	
  Increase	
  trust	
  and	
  customer	
  loyalty	
  
	
  -­‐	
  Increase	
  sales,	
  click	
  trough	
  rates,	
  conversion	
  etc.	
  
	
  -­‐	
  Opportuni8es	
  for	
  promo8on,	
  persuasion	
  
	
  -­‐	
  Obtain	
  more	
  knowledge	
  about	
  customers	
  
	
  -­‐	
  
	
  
…	
  
	
  
- 9 -
	
  
Real-­‐world	
  check	
  
	
  
♣	
  	
  Myths	
  from	
  industry	
  
	
   -­‐	
  Amazon.com	
  generates	
  X	
  percent	
  of	
  their	
  sales	
  through	
  the	
  recommenda8on
	
  lists	
  (30	
  <	
  X	
  <	
  70)	
  
	
  -­‐	
  NeVlix	
  (DVD	
  rental	
  and	
  movie	
  streaming)	
  generates	
  X	
  percent	
  of	
  their	
  sales
	
  through	
  the	
  recommenda8on	
  lists	
  (30	
  <	
  X	
  <	
  70)	
  
	
  
♣	
  	
  There	
  must	
  be	
  some	
  value	
  in	
  it	
  
	
   -­‐	
  See	
  recommenda8on	
  of	
  groups,	
  jobs	
  or	
  people	
  on	
  LinkedIn	
  
	
  -­‐	
  Friend	
  recommenda8on	
  and	
  ad	
  personaliza8on	
  on	
  Facebook	
  
	
  -­‐	
  Song	
  recommenda8on	
  at	
  last.fm	
  
	
  -­‐	
  News	
  recommenda8on	
  at	
  Forbes.com	
  (plus	
  37%	
  CTR)
♣	
  	
  Academia	
  
	
   -­‐	
  A	
  few	
  studies	
  exist	
  that	
  show	
  the	
  effect	
  
	
   ♣	
  increased	
  sales,	
  changes	
  in	
  sales	
  behavior	
  
	
  
- 10 -
	
  
Problem	
  domain	
  
	
  
♣	
  	
  Recommenda;on	
  systems	
  (RS)	
  help	
  to	
  match	
  users	
  with	
  items	
  
	
   -­‐	
  Ease	
  informa8on	
  overload	
  
	
  -­‐	
  Sales	
  assistance	
  (guidance,	
  advisory,	
  persuasion,…)	
  
	
  
RS	
  are	
  so)ware	
  agents	
  that	
  elicit	
  the	
  interests	
  and	
  preferences	
  of	
  individual
consumers	
  […]	
  and	
  make	
  recommenda<ons	
  accordingly.	
  
	
  They	
  have	
  the	
  poten<al	
  to	
  support	
  and	
  improve	
  the	
  quality	
  of	
  the	
  
	
  decisions	
  consumers	
  make	
  while	
  searching	
  for	
  and	
  selec<ng	
  products	
  online.	
  
	
   » 	
  [Xiao	
  &	
  Benbasat,	
  MISQ, 2007]
	
  
♣	
  	
  Different	
  system	
  designs	
  /	
  paradigms	
  
	
   -­‐	
  Based	
  on	
  availability	
  of	
  exploitable	
  data	
  
	
  -­‐	
  Implicit	
  and	
  explicit	
  user	
  feedback	
  
	
  -­‐	
  Domain	
  characteris8cs	
  
	
  
- 11 -
	
  
Recommender	
  systems	
  
	
  
♣	
  	
  RS	
  seen	
  as	
  a	
  func;on	
  [AT05]
♣	
  	
  Given:	
  
	
   -­‐	
  User	
  model	
  (e.g.	
  ra8ngs,	
  preferences,	
  demographics,	
  situa8onal	
  context)	
  
	
  -­‐	
  Items	
  (with	
  or	
  without	
  descrip8on	
  of	
  item	
  characteris8cs)
♣	
  	
  Find:	
  
	
  -­‐	
  Relevance	
  score.	
  Used	
  for	
  ranking.
♣	
  	
  Finally:	
  
	
   -­‐	
  Recommend	
  items	
  that	
  are	
  assumed	
  to	
  be	
  relevant
♣	
  	
  But:	
  
	
   -­‐	
  Remember	
  that	
  relevance	
  might	
  be	
  context-­‐dependent	
  
	
  
-­‐	
  Characteris8cs	
  of	
  the	
  list	
  itself	
  might	
  be	
  important	
  (diversity)	
  
	
  
- 12 -
	
  
Paradigms	
  of	
  recommender	
  systems	
  
	
  
Recommender	
  systems	
  reduce	
  
	
  informa;on	
  overload	
  by	
  es;ma;ng
relevance	
  
	
  
- 13 -
	
  
Paradigms	
  of	
  recommender	
  systems	
  
	
  
Personalized	
  recommenda;ons	
  
	
  
- 14 -
	
  
Paradigms	
  of	
  recommender	
  systems	
  
	
  
Collabora;ve:	
  "Tell	
  me	
  what's	
  popular
among	
  my	
  peers"	
  
	
  
- 15 -
	
  
Paradigms	
  of	
  recommender	
  systems	
  
	
  
Content-­‐based:	
  "Show	
  me	
  more	
  of	
  the
same	
  what	
  I've	
  liked"
	
  
- 16 -
	
  
Paradigms	
  of	
  recommender	
  systems	
  
	
  
Knowledge-­‐based:	
  "Tell	
  me	
  what	
  fits
based	
  on	
  my	
  needs"	
  
	
  
- 17 -
	
  
Paradigms	
  of	
  recommender	
  systems	
  
	
  
Hybrid:	
  combina;ons	
  of	
  various	
  inputs
and/or	
  composi;on	
  of	
  different
mechanism	
  
	
  
- 18 -
	
  
Recommender	
  systems:	
  basic	
  techniques	
  
	
  
Pros	
  
	
  
Cons	
  
	
  
Collabora8ve	
  
	
  
No	
  knowledge-­‐	
  
	
  
Requires	
  some	
  form	
  of	
  ra8ng	
  
	
  engineering	
  effort,	
  
	
  
feedback,	
  cold	
  start	
  for	
  new	
  users	
  
	
  serendipity	
  of	
  results,	
  
	
  
and	
  new	
  items	
  
	
  learns	
  market	
  segments	
  
	
  
Content-­‐based	
  
	
  
No	
  community	
  required,	
  
	
  
Content	
  descrip8ons	
  necessary,	
  
	
  comparison	
  between	
  
	
  
cold	
  start	
  for	
  new	
  users,	
  no	
  
	
  items	
  possible	
  
	
  
surprises	
  
	
  
Knowledge-­‐based	
  
	
  
Determinis8c	
  
	
  recommenda8ons,
assured	
  quality,	
  no	
  cold-­‐
start,	
  can	
  resemble	
  sales
dialogue	
  
	
  
Knowledge	
  engineering	
  effort	
  to
bootstrap,	
  basically	
  sta8c,	
  does
not	
  react	
  to	
  short-­‐term	
  trends	
  
	
  
- 19 -
	
  
- 20 -
	
  
Collabora;ve	
  Filtering	
  (CF)	
  
	
  
♣	
  	
  The	
  most	
  prominent	
  approach	
  to	
  generate	
  recommenda;ons	
  
	
   -­‐	
  used	
  by	
  large,	
  commercial	
  e-­‐commerce	
  sites	
  
	
  -­‐	
  well-­‐understood,	
  various	
  algorithms	
  and	
  varia8ons	
  exist	
  
	
  -­‐	
  applicable	
  in	
  many	
  domains	
  (book,	
  movies,	
  DVDs,	
  ..)
♣	
  	
  Approach	
  
	
   -­‐	
  use	
  the	
  "wisdom	
  of	
  the	
  crowd"	
  to	
  recommend	
  items
♣	
  	
  Basic	
  assump;on	
  and	
  idea	
  
	
   -­‐	
  Users	
  give	
  ra8ngs	
  to	
  catalog	
  items	
  (implicitly	
  or	
  explicitly)	
  
	
  
-­‐	
  Customers	
  who	
  had	
  similar	
  tastes	
  in	
  the	
  past,	
  will	
  have	
  similar	
  tastes	
  in	
  the
	
  future	
  
	
  
- 21 -
	
  
User-­‐based	
  nearest-­‐neighbor	
  collabora;ve	
  filtering	
  (1)	
  
	
  
♣	
  The	
  basic	
  technique:	
  
	
   -­‐	
  Given	
  an	
  "ac8ve	
  user"	
  (Alice)	
  and	
  an	
  item	
  I	
  not	
  yet	
  seen	
  by	
  Alice	
  
	
  -­‐	
  The	
  goal	
  is	
  to	
  es<mate	
  Alice's	
  ra<ng	
  for	
  this	
  item,	
  e.g.,	
  by	
  
	
   ♣	
  find	
  a	
  set	
  of	
  users	
  (peers)	
  who	
  liked	
  the	
  same	
  items	
  as	
  Alice	
  in	
  the	
  past	
  and
	
  who	
  have	
  rated	
  item	
  I	
  
	
  ♣	
  use,	
  e.g.	
  the	
  average	
  of	
  their	
  ra8ngs	
  to	
  predict,	
  if	
  Alice	
  will	
  like	
  item	
  I
♣	
  do	
  this	
  for	
  all	
  items	
  Alice	
  has	
  not	
  seen	
  and	
  recommend	
  the	
  best-­‐rated	
  
	
  
Item1	
  
	
  
Item2	
  
	
  
Item3	
  
	
  
Item4	
  
	
  
Item5	
  
	
  Alice	
  
	
  
5	
  
	
  
3	
  
	
  
4	
  
	
  
4	
  
	
  
?	
  
	
  User1	
  
	
  
3	
  
	
  
1	
  
	
  
2	
  
	
  
3	
  
	
  
3	
  
	
  
User2	
  
	
  
4	
  
	
  
3	
  
	
  
4	
  
	
  
3	
  
	
  
5	
  
	
  
User3	
  
	
  
3	
  
	
  
3	
  
	
  
1	
  
	
  
5	
  
	
  
4	
  
	
  
User4	
  
	
  
1	
  
	
  
5	
  
	
  
5	
  
	
  
2	
  
	
  
1	
  
	
   - 24 -
	
  
User-­‐based	
  nearest-­‐neighbor	
  collabora;ve	
  filtering	
  (2)	
  
	
  
♣	
  	
  Some	
  first	
  ques;ons	
  
	
   -­‐	
  How	
  do	
  we	
  measure	
  similarity?	
  
	
  -­‐	
  How	
  many	
  neighbors	
  should	
  we	
  consider?	
  
	
  -­‐	
  How	
  do	
  we	
  generate	
  a	
  predic8on	
  from	
  the	
  neighbors'	
  ra8ngs?	
  
	
  
Item1	
  
	
  
Item2	
  
	
  
Item3	
  
	
  
Item4	
  
	
  
Item5	
  
	
  
Alice	
  
	
  
5	
  
	
  
3	
  
	
  
4	
  
	
  
4	
  
	
  
?	
  
	
  User1	
  
	
  
3	
  
	
  
1	
  
	
  
2	
  
	
  
3	
  
	
  
3	
  
	
  
User2	
  
	
  
4	
  
	
  
3	
  
	
  
4	
  
	
  
3	
  
	
  
5	
  
	
  
User3	
  
	
  
3	
  
	
  
3	
  
	
  
1	
  
	
  
5	
  
	
  
4	
  
	
  
User4	
  
	
  
1	
  
	
  
5	
  
	
  
5	
  
	
  
2	
  
	
  
1	
  
	
  
- 25 -
	
  
Measuring	
  user	
  similarity	
  
	
  
♣	
  	
  A	
  popular	
  similarity	
  measure	
  in	
  user-­‐based	
  CF:	
  Pearson	
  correla;on	
  
	
  
a,	
  b	
  	
  :	
  users	
  
	
  ra,p	
  
	
  
:	
  ra8ng	
  of	
  user	
  a	
  for	
  item	
  p	
  
	
  P	
  
	
  
:	
  set	
  of	
  items,	
  rated	
  both	
  by	
  a	
  and	
  b	
  
	
  Possible	
  similarity	
  values	
  between	
  -­‐1	
  and	
  1;	
  
	
  
!!, !!=	
  user's	
  average	
  ra8ngs	
  
	
  
Item1	
  
	
  
Alice 	
  5	
  
	
  
User1 	
  3	
  
	
  
Item2 	
  Item3	
  
	
  
3 	
  4	
  
	
  
1 	
  2	
  
	
  
Item4 	
  Item5	
  
	
  
4 	
  ?	
  
	
  
3 	
  3	
  
	
  
sim	
  =	
  0,85
sim	
  =	
  0,70	
  
	
   sim	
  =	
  -­‐0,79	
  
	
  User2	
  
	
  
4	
  
	
  
3	
  
	
  
4	
  
	
  
3	
  
	
  
5	
  
	
  
User3	
  
	
  
3	
  
	
  
3	
  
	
  
1	
  
	
  
5	
  
	
  
4	
  
	
  
User4	
  
	
  
1	
  
	
  
5	
  
	
  
5	
  
	
  
2	
  
	
  
1	
  
	
  
- 26 -
	
  
Pearson	
  correla;on	
  
	
  
♣	
  	
  Takes	
  differences	
  in	
  ra;ng	
  behavior	
  into	
  account	
  
	
  
6
	
  
5
	
  
4
	
  
Ratings
	
   3
	
  
2
	
  
1
	
  
0
	
   Item1 Item2
	
  
Alice
	
  
User1
	
  
User4
	
  
Item3 Item4
	
  
♣	
  	
  Works	
  well	
  in	
  usual	
  domains,	
  compared	
  with	
  alterna;ve	
  measures	
  
	
   -­‐	
  such	
  as	
  cosine	
  similarity	
  
	
  
- 27 -
	
  
Making	
  predic;ons	
  
	
  
♣	
  	
  A	
  common	
  predic8on	
  func8on:	
  
	
  
♣	
  	
  Calculate,	
  whether	
  the	
  neighbors'	
  ra8ngs	
  for	
  the	
  unseen	
  item	
  i	
  are	
  higher
	
  or	
  lower	
  than	
  their	
  average	
  
	
  
♣	
  	
  Combine	
  the	
  ra8ng	
  differences	
  -­‐	
  use	
  the	
  similarity	
  as	
  a	
  weight	
  
	
  
♣	
  	
  Add/subtract	
  the	
  	
  neighbors'	
  bias	
  from	
  the	
  ac8ve	
  user's	
  average	
  and	
  use
	
  this	
  as	
  a	
  predic8on	
  
	
  
- 28 -
	
  
Making	
  recommenda;ons	
  
	
  
♣	
  	
  Making	
  predic;ons	
  is	
  typically	
  not	
  the	
  ul;mate	
  goal
♣	
  	
  Usual	
  approach	
  (in	
  academia)	
  
	
   -­‐	
  Rank	
  items	
  based	
  on	
  their	
  predicted	
  ra8ngs
♣	
  	
  However	
  
	
   -­‐	
  This	
  might	
  lead	
  to	
  the	
  inclusion	
  of	
  (only)	
  niche	
  items	
  
	
  
-­‐	
  In	
  prac;ce	
  also:	
  Take	
  item	
  popularity	
  into	
  account
♣	
  	
  Approaches	
  
	
   -­‐	
  "Learning	
  to	
  rank"	
  
	
   ♣	
  Op8mize	
  according	
  to	
  a	
  given	
  rank	
  evalua8on	
  metric	
  (see	
  later)	
  
	
  
- 29 -
	
  
Improving	
  the	
  metrics	
  	
  /	
  predic;on	
  func;on	
  
	
  
♣	
  	
  Not	
  all	
  neighbor	
  ra;ngs	
  might	
  be	
  equally	
  "valuable"	
  
	
   -­‐	
  Agreement	
  on	
  commonly	
  liked	
  items	
  is	
  not	
  so	
  informa8ve	
  as	
  agreement	
  on
	
  controversial	
  items	
  
	
  -­‐	
  Possible	
  solu;on:	
  	
  Give	
  more	
  weight	
  to	
  items	
  that	
  have	
  a	
  higher	
  variance
♣	
  	
  Value	
  of	
  number	
  of	
  co-­‐rated	
  items	
  
	
  
-­‐	
  Use	
  "significance	
  weigh8ng",	
  by	
  e.g.,	
  linearly	
  reducing	
  the	
  weight	
  when	
  the
	
  number	
  of	
  co-­‐rated	
  items	
  is	
  low	
  
	
  
♣	
  	
  Case	
  amplifica;on	
  
	
   -­‐	
  Intui8on:	
  Give	
  more	
  weight	
  to	
  "very	
  similar"	
  neighbors,	
  i.e.,	
  where	
  the
	
  similarity	
  value	
  is	
  close	
  to	
  1.	
  
	
  
♣	
  	
  Neighborhood	
  selec;on	
  
	
   -­‐	
  Use	
  similarity	
  threshold	
  or	
  fixed	
  number	
  of	
  neighbors	
  
	
  
- 30 -
	
  
Memory-­‐based	
  and	
  model-­‐based	
  approaches	
  
	
  
♣	
  	
  User-­‐based	
  CF	
  is	
  said	
  to	
  be	
  "memory-­‐based"	
  
	
   -­‐	
  the	
  ra8ng	
  matrix	
  is	
  directly	
  used	
  to	
  find	
  neighbors	
  /	
  make	
  predic8ons	
  
	
  -­‐	
  does	
  not	
  scale	
  for	
  most	
  real-­‐world	
  scenarios	
  
	
  -­‐	
  large	
  e-­‐commerce	
  sites	
  have	
  tens	
  of	
  millions	
  of	
  customers	
  and	
  millions	
  of
	
  items	
  
	
  
♣	
  	
  Model-­‐based	
  approaches	
  
	
   -­‐	
  based	
  on	
  an	
  offline	
  pre-­‐processing	
  or	
  "model-­‐learning"	
  phase	
  
	
  -­‐	
  at	
  run-­‐8me,	
  only	
  the	
  learned	
  model	
  is	
  used	
  to	
  make	
  predic8ons	
  
	
  -­‐	
  models	
  are	
  updated	
  /	
  re-­‐trained	
  periodically	
  
	
  -­‐	
  large	
  variety	
  of	
  techniques	
  used	
  
	
  -­‐	
  model-­‐building	
  and	
  upda8ng	
  can	
  be	
  computa8onally	
  expensive	
  
	
  
- 31 -
	
  
Item-­‐based	
  collabora;ve	
  filtering	
  
	
  
♣	
  	
  Basic	
  idea:	
  
	
   -­‐	
  Use	
  the	
  similarity	
  between	
  items	
  (and	
  not	
  users)	
  to	
  make	
  predic8ons
♣	
  	
  Example:	
  
	
   -­‐	
  Look	
  for	
  items	
  that	
  are	
  similar	
  to	
  Item5	
  
	
  -­‐	
  Take	
  Alice's	
  ra8ngs	
  for	
  these	
  items	
  to	
  predict	
  the	
  ra8ng	
  for	
  Item5	
  
	
  
Item1	
  
	
  
Item2	
  
	
  
Item3	
  
	
  
Item4	
  
	
  
Item5	
  
	
  
Alice	
  
	
  
5	
  
	
  
3	
  
	
  
4	
  
	
  
4	
  
	
  
?	
  
	
  User1	
  
	
  
3	
  
	
  
1	
  
	
  
2	
  
	
  
3	
  
	
  
3	
  
	
  
User2	
  
	
  
4	
  
	
  
3	
  
	
  
4	
  
	
  
3	
  
	
  
5	
  
	
  
User3	
  
	
  
3	
  
	
  
3	
  
	
  
1	
  
	
  
5	
  
	
  
4	
  
	
  
User4	
  
	
  
1	
  
	
  
5	
  
	
  
5	
  
	
  
2	
  
	
  
1	
  
	
  
- 33 -
	
  
The	
  cosine	
  similarity	
  measure	
  
	
  
♣	
  	
  Produces	
  beber	
  results	
  in	
  item-­‐to-­‐item	
  filtering	
  
	
   -­‐	
  for	
  some	
  datasets,	
  no	
  consistent	
  picture	
  in	
  literature	
  
	
  
♣	
  	
  Ra;ngs	
  are	
  seen	
  as	
  vector	
  in	
  n-­‐dimensional	
  space	
  
	
  
♣	
  	
  Similarity	
  is	
  calculated	
  based	
  on	
  the	
  angle	
  between	
  the	
  vectors	
  
	
  
♣	
  	
  Adjusted	
  cosine	
  similarity	
  
	
   -­‐	
  take	
  average	
  user	
  ra8ngs	
  into	
  account,	
  transform	
  the	
  original	
  ra8ngs	
  
	
  
- 34 -
	
  
Pre-­‐processing	
  for	
  item-­‐based	
  filtering	
  
	
  
♣	
  	
  Item-­‐based	
  filtering	
  does	
  not	
  solve	
  the	
  scalability	
  problem	
  itself
♣	
  	
  Pre-­‐processing	
  approach	
  by	
  Amazon.com	
  (in	
  2003)	
  
	
   -­‐	
  Calculate	
  all	
  pair-­‐wise	
  item	
  similari8es	
  in	
  advance	
  
	
  -­‐	
  The	
  neighborhood	
  to	
  be	
  used	
  at	
  run-­‐8me	
  is	
  typically	
  rather	
  small,	
  because
	
  only	
  items	
  are	
  taken	
  into	
  account	
  which	
  the	
  user	
  has	
  rated	
  
	
  -­‐	
  Item	
  similari8es	
  are	
  supposed	
  to	
  be	
  more	
  stable	
  than	
  user	
  similari8es
♣	
  	
  Memory	
  requirements	
  
	
  
-­‐	
  Up	
  to	
  N2	
  pair-­‐wise	
  similari8es	
  to	
  be	
  memorized	
  (N	
  =	
  number	
  of	
  items)	
  in
	
  theory	
  
	
  -­‐	
  In	
  prac8ce,	
  this	
  is	
  significantly	
  lower	
  (items	
  with	
  no	
  co-­‐ra8ngs)	
  
	
  -­‐	
  Further	
  reduc8ons	
  possible	
  
	
   ♣	
  Minimum	
  threshold	
  for	
  co-­‐ra8ngs	
  (items,	
  which	
  are	
  rated	
  at	
  least	
  by	
  n	
  users)
♣	
  Limit	
  the	
  size	
  of	
  the	
  neighborhood	
  (might	
  affect	
  recommenda8on	
  accuracy)	
  
	
  
- 35 -
	
  
More	
  on	
  ra;ngs	
  
	
  
♣	
  	
  Pure	
  CF-­‐based	
  systems	
  only	
  rely	
  on	
  the	
  ra;ng	
  matrix
♣	
  	
  Explicit	
  ra;ngs	
  
	
   -­‐	
  Most	
  commonly	
  used	
  (1	
  to	
  5,	
  1	
  to	
  7	
  Likert	
  response	
  scales)	
  
	
  -­‐	
  Research	
  topics	
  
	
   ♣	
  "Op8mal"	
  granularity	
  of	
  scale;	
  indica8on	
  that	
  10-­‐point	
  scale	
  is	
  berer	
  accepted	
  in
	
  movie	
  domain	
  
	
  ♣	
  Mul8dimensional	
  ra8ngs	
  (mul8ple	
  ra8ngs	
  per	
  movie)	
  
	
  -­‐	
  Challenge	
  
	
   ♣	
  Users	
  not	
  always	
  willing	
  to	
  rate	
  many	
  items;	
  sparse	
  ra8ng	
  matrices
♣	
  How	
  to	
  s8mulate	
  users	
  to	
  rate	
  more	
  items?	
  
	
  
♣	
  	
  Implicit	
  ra;ngs	
  
	
   -­‐	
  clicks,	
  page	
  views,	
  8me	
  spent	
  on	
  some	
  page,	
  demo	
  downloads	
  …	
  
	
  -­‐	
  Can	
  be	
  used	
  in	
  addi8on	
  to	
  explicit	
  ones;	
  ques8on	
  of	
  correctness	
  of	
  interpreta8on	
  
	
  
- 36 -
	
  
Data	
  sparsity	
  problems	
  
	
  
♣	
  	
  Cold	
  start	
  problem	
  
	
   -­‐	
  How	
  to	
  recommend	
  new	
  items?	
  What	
  to	
  recommend	
  to	
  new	
  users?
♣	
  	
  Straigheorward	
  approaches	
  
	
   -­‐	
  Ask/force	
  users	
  to	
  rate	
  a	
  set	
  of	
  items	
  
	
  -­‐	
  Use	
  another	
  method	
  (e.g.,	
  content-­‐based,	
  demographic	
  or	
  simply	
  non-­‐
	
  personalized)	
  in	
  the	
  ini8al	
  phase	
  
	
  
♣	
  	
  Alterna;ves	
  
	
   -­‐	
  Use	
  berer	
  algorithms	
  (beyond	
  nearest-­‐neighbor	
  approaches)	
  
	
  -­‐	
  Example:	
  
	
   ♣	
  In	
  nearest-­‐neighbor	
  approaches,	
  the	
  set	
  of	
  sufficiently	
  similar	
  neighbors	
  might
	
  be	
  to	
  small	
  to	
  make	
  good	
  predic8ons	
  
	
  ♣	
  Assume	
  "transi8vity"	
  of	
  neighborhoods	
  
	
  
- 37 -
	
  
Example	
  algorithms	
  for	
  sparse	
  datasets	
  
	
  
♣	
  	
  Recursive	
  CF	
  
	
   -­‐	
  Assume	
  there	
  is	
  a	
  very	
  close	
  neighbor	
  n	
  of	
  u	
  who	
  however	
  has	
  not	
  rated	
  the
	
  target	
  item	
  i	
  yet.	
  
	
  -­‐	
  Idea:	
  
	
   ♣	
  Apply	
  CF-­‐method	
  recursively	
  and	
  predict	
  a	
  ra8ng	
  for	
  item	
  i	
  for	
  the	
  neighbor
♣	
  Use	
  this	
  predicted	
  ra8ng	
  instead	
  of	
  the	
  ra8ng	
  of	
  a	
  more	
  distant	
  direct
	
  neighbor	
  
	
  
Item1	
  
	
  
Item2	
  
	
  
Item3	
  
	
  
Item4	
  
	
  
Item5	
  
	
  
Alice	
  
	
  
5	
  
	
  
3	
  
	
  
4	
  
	
  
4	
  
	
  
?	
  
	
   sim	
  =	
  0,85	
  
	
  User1	
  
	
  
3	
  
	
  
1	
  
	
  
2	
  
	
  
3	
  
	
  
?	
  
	
  
User2 	
  4 	
  3	
  
	
  
4 	
  3 	
  5	
  
	
  
Predict	
  
	
  User3 	
  3 	
  3	
  
	
  
User4 	
  1 	
  5	
  
	
  
1 	
  5 	
  4 	
  ra8ng	
  for	
  
	
   User1	
  
	
  
5 	
  2 	
  1	
  
	
   - 38 -
	
  
Graph-­‐based	
  methods	
  
	
  
♣	
  	
  "Spreading	
  ac;va;on"	
  (sketch)	
  
	
   -­‐	
  Idea:	
  Use	
  paths	
  of	
  lengths	
  >	
  3
	
  to	
  recommend	
  items	
  
	
  -­‐	
  Length	
  3:	
  Recommend	
  Item3	
  to	
  User1	
  
	
  -­‐	
  Length	
  5:	
  Item1	
  also	
  recommendable	
  
	
  
- 39 -
	
  
More	
  model-­‐based	
  approaches	
  
	
  
♣	
  	
  Plethora	
  of	
  different	
  techniques	
  proposed	
  in	
  the	
  last	
  years,	
  e.g.,	
  
	
   -­‐	
  Matrix	
  factoriza8on	
  techniques,	
  sta8s8cs	
  
	
   ♣	
  singular	
  value	
  decomposi8on,	
  principal	
  component	
  analysis	
  
	
  -­‐	
  Associa8on	
  rule	
  mining	
  
	
   ♣	
  compare:	
  shopping	
  basket	
  analysis	
  
	
  -­‐	
  Probabilis8c	
  models	
  
	
   ♣	
  clustering	
  models,	
  Bayesian	
  networks,	
  probabilis8c	
  Latent	
  Seman8c	
  Analysis	
  
	
  -­‐	
  Various	
  other	
  machine	
  learning	
  approaches	
  
	
  
♣	
  	
  Costs	
  of	
  pre-­‐processing	
  
	
   -­‐	
  Usually	
  not	
  discussed	
  
	
  -­‐	
  Incremental	
  updates	
  possible?	
  
	
  
- 40 -
	
  
Matrix	
  factoriza;on	
  
	
  
•	
  	
  SVD:	
  
	
  
Uk 	
  Dim1	
  
	
  
Alice 	
  0.47	
  
	
  
M
	
  
k
	
  
Dim2	
  
	
  
-­‐0.30	
  
	
  
T
	
  =U×Σ×V
	
  
k k k
	
  
T	
  
	
  
Vk	
  
	
  
Dim1	
  
	
  
-­‐0.44 	
  -­‐0.57 	
  0.06 	
  0.38 	
  0.57	
  
	
  
Bob 	
  -­‐0.44 	
  0.23	
  
	
  
Dim2 	
  0.58 	
  -­‐0.66	
  
	
  
0.26 	
  0.18 	
  -­‐0.36	
  
	
  
Mary 	
  0.70 	
  -­‐0.06	
  
	
  
Sue 	
  0.31 	
  0.93	
  
	
  
Σ 	
  Dim1 	
  Dim2	
  
	
  
k
	
  
•	
  	
  Predic;on:	
  
	
  
r
	
  
ui
	
  
=
	
  
r +U (Alice)×Σ
	
  
u k
	
  
T
	
  ×V (EPL)
	
  
k k
	
  
Dim1 	
  5.63 	
  0	
  
	
  
Dim2 	
  0 	
  3.23	
  
	
  
=	
  3	
  +	
  0.84	
  =	
  3.84	
  
	
  
- 43 -
	
  
Associa;on	
  rule	
  mining	
  
	
  
♣	
  	
  Commonly	
  used	
  for	
  shopping	
  behavior	
  analysis	
  
	
   -­‐	
  aims	
  at	
  detec8on	
  of	
  rules	
  such	
  as	
  
	
   "If	
  a	
  customer	
  purchases	
  baby-­‐food	
  then	
  he	
  also	
  buys	
  diapers
in	
  70%	
  of	
  the	
  cases"	
  
	
  
♣	
  	
  Associa;on	
  rule	
  mining	
  algorithms	
  
	
   -­‐	
  can	
  detect	
  rules	
  of	
  the	
  form	
  X	
  =>	
  Y	
  (e.g.,	
  baby-­‐food	
  =>	
  diapers)	
  from	
  a	
  set	
  of
	
  sales	
  transac8ons	
  D	
  =	
  {t1,	
  t2,	
  …	
  tn}	
  
	
  -­‐	
  measure	
  of	
  quality:	
  support,	
  confidence	
  
	
  
- 44 -
	
  
Probabilis;c	
  methods	
  
	
  
♣	
  	
  Basic	
  idea	
  (simplis;c	
  version	
  for	
  illustra;on):	
  
	
   -­‐	
  given	
  the	
  user/item	
  ra8ng	
  matrix	
  
	
  -­‐	
  determine	
  the	
  probability	
  that	
  user	
  Alice	
  will	
  like	
  an	
  item	
  i	
  
	
  -­‐	
  base	
  the	
  recommenda8on	
  on	
  such	
  these	
  probabili8es	
  
	
  
♣	
  	
  Calcula;on	
  of	
  ra;ng	
  probabili;es	
  based	
  on	
  Bayes	
  Theorem	
  
	
   -­‐	
  How	
  probable	
  is	
  ra8ng	
  value	
  "1"	
  for	
  Item5	
  given	
  Alice's	
  previous	
  ra8ngs?	
  
	
  -­‐	
  Corresponds	
  to	
  condi8onal	
  probability	
  P(Item5=1	
  |	
  X),	
  where
♣	
  X	
  =	
  Alice's	
  previous	
  ra8ngs	
  =	
  (Item1	
  =1,	
  Item2=3,	
  Item3=	
  …	
  )	
  
	
  -­‐	
  Can	
  be	
  es8mated	
  based	
  on	
  Bayes'	
  Theorem
♣	
  	
  Usually	
  more	
  sophis;cated	
  methods	
  used	
  
	
   -­‐	
  Clustering	
  
	
  
-­‐	
  pLSA	
  …	
  
	
  
- 45 -
	
  
Summarizing	
  recent	
  methods	
  
	
  
♣	
  	
  Recommenda;on	
  is	
  concerned	
  with	
  learning	
  from	
  noisy	
  observa;ons	
  
	
   (x,	
  y),	
  where	
  
	
  
f(x)=ŷ
	
  
2
	
  
has	
  to	
  be	
  determined	
  such	
  	
  that
is	
  minimal.	
  
	
  
∑
	
  ˆ
	
  
( ˆ -y)
	
  
♣	
  	
  A	
  variety	
  of	
  different	
  learning	
  strategies	
  have	
  been	
  applied	
  trying	
  to
	
  es;mate	
  f(x)	
  
	
   -­‐	
  Non	
  parametric	
  neighborhood	
  models	
  
	
  -­‐	
  MF	
  models,	
  SVMs,	
  Neural	
  Networks,	
  Bayesian	
  Networks,…	
  
	
  
- 48 -
	
  
Collabora;ve	
  Filtering	
  Issues	
  
	
  
♣	
  	
  Pros:	
  
	
   -­‐	
  	
  well-­‐understood,	
  works	
  well	
  in	
  some	
  domains,	
  no	
  knowledge	
  engineering	
  required	
  
	
  
♣	
  	
  Cons:	
  
	
   -­‐	
  	
  requires	
  user	
  community,	
  sparsity	
  problems,	
  no	
  integra8on	
  of	
  other	
  knowledge	
  sources,
	
  no	
  explana8on	
  of	
  results	
  
	
  
♣	
  	
  What	
  is	
  the	
  best	
  CF	
  method?	
  
	
   -­‐	
  	
  In	
  which	
  situa8on	
  and	
  which	
  domain?	
  Inconsistent	
  findings;	
  always	
  the	
  same	
  domains
	
  and	
  data	
  sets;	
  differences	
  between	
  methods	
  are	
  o|en	
  very	
  small	
  (1/100)	
  
	
  
♣	
  	
  How	
  to	
  evaluate	
  the	
  predic;on	
  quality?	
  
	
   -­‐	
  	
  MAE	
  /	
  RMSE:	
  What	
  does	
  an	
  MAE	
  of	
  0.7	
  actually	
  mean?	
  
	
  -­‐	
  	
  Serendipity:	
  Not	
  yet	
  fully	
  understood	
  
	
  
♣	
  	
  What	
  about	
  mul;-­‐dimensional	
  ra;ngs?	
  
	
  
- 49 -
	
  
- 50 -
	
  
Recommender	
  Systems	
  in	
  e-­‐Commerce	
  
	
  
♣	
  	
  One	
  Recommender	
  Systems	
  research	
  ques;on	
  
	
   -­‐	
  What	
  should	
  be	
  in	
  that	
  list?	
  
	
  
- 51 -
	
  
Recommender	
  Systems	
  in	
  e-­‐Commerce	
  
	
  
♣	
  	
  Another	
  ques;on	
  both	
  in	
  research	
  and	
  prac;ce	
  
	
   -­‐	
  How	
  do	
  we	
  know	
  that	
  these	
  are	
  good	
  
	
   recommenda8ons?	
  
	
  
- 52 -
	
  
Recommender	
  Systems	
  in	
  e-­‐Commerce	
  
	
  
♣	
  	
  This	
  might	
  lead	
  to	
  …	
  
	
   -­‐	
  	
  What	
  is	
  a	
  good	
  recommenda8on?	
  
	
  -­‐	
  	
  What	
  is	
  a	
  good	
  recommenda8on	
  strategy?	
  
	
  -­‐	
  	
  What	
  is	
  a	
  good	
  recommenda8on	
  strategy	
  for	
  my
	
  business?	
  
	
  
These have been in stock for quite a while now …
	
  
- 53 -
	
  
What	
  is	
  a	
  good	
  recommenda;on?	
  
	
  
What	
  are	
  the	
  measures	
  in	
  prac;ce?	
  
	
  
♣	
  	
  Total	
  sales	
  numbers	
  
	
  
♣	
  	
  Promo;on	
  of	
  certain	
  items	
  
	
  
♣ …	
  
	
  
♣	
  	
  Click-­‐through-­‐rates	
  
	
  
♣	
  	
  Interac;vity	
  on	
  plaeorm	
  
	
  
♣ …	
  
	
  
♣	
  	
  Customer	
  return	
  rates	
  
	
  
♣	
  	
  Customer	
  sa;sfac;on	
  and	
  loyalty	
  
	
  
- 54 -
	
  
You	
  have	
  Ques8ons	
  and	
  we	
  have	
  Answers	
  

More Related Content

Similar to Recommender Systems, Part 1 - Introduction to approaches and algorithms

recommendationsystem-140410131156-phpapp01 (1).pdf
recommendationsystem-140410131156-phpapp01 (1).pdfrecommendationsystem-140410131156-phpapp01 (1).pdf
recommendationsystem-140410131156-phpapp01 (1).pdfssuserff0096
 
recommendation system techunique and issue
recommendation system techunique and issuerecommendation system techunique and issue
recommendation system techunique and issueNutanBhor
 
Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101
Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101
Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101MaRS Discovery District
 
IRJET- E-Commerce Recommendation based on Users Rating Data
IRJET-  	  E-Commerce Recommendation based on Users Rating DataIRJET-  	  E-Commerce Recommendation based on Users Rating Data
IRJET- E-Commerce Recommendation based on Users Rating DataIRJET Journal
 
Data-Ed Webinar: Data Warehouse Strategies
Data-Ed Webinar: Data Warehouse StrategiesData-Ed Webinar: Data Warehouse Strategies
Data-Ed Webinar: Data Warehouse StrategiesDATAVERSITY
 
chap1.ppt
chap1.pptchap1.ppt
chap1.pptImXaib
 
Impersonal Recommendation system on top of Hadoop
Impersonal Recommendation system on top of HadoopImpersonal Recommendation system on top of Hadoop
Impersonal Recommendation system on top of HadoopKostiantyn Kudriavtsev
 
Slash n 2018 - Just In Time Personalization
Slash n  2018 - Just In Time Personalization Slash n  2018 - Just In Time Personalization
Slash n 2018 - Just In Time Personalization FlipkartStories
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendationAravindharamanan S
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendationAravindharamanan S
 
Putting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth ChurchillPutting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth ChurchillIT as a Utility Network+ (ITaaU)
 
Competitive Intelligence Analysis
Competitive Intelligence AnalysisCompetitive Intelligence Analysis
Competitive Intelligence AnalysisGeorge Giannakeas
 
Us retail online store customer ratings and reviews full version
Us retail online store customer ratings and reviews full versionUs retail online store customer ratings and reviews full version
Us retail online store customer ratings and reviews full versionDana Harrold
 
Recommender System _Module 1_Introduction to Recommender System.pptx
Recommender System _Module 1_Introduction to Recommender System.pptxRecommender System _Module 1_Introduction to Recommender System.pptx
Recommender System _Module 1_Introduction to Recommender System.pptxSatyam Sharma
 

Similar to Recommender Systems, Part 1 - Introduction to approaches and algorithms (20)

recommendationsystem-140410131156-phpapp01 (1).pdf
recommendationsystem-140410131156-phpapp01 (1).pdfrecommendationsystem-140410131156-phpapp01 (1).pdf
recommendationsystem-140410131156-phpapp01 (1).pdf
 
Tutorial recommender systems
Tutorial recommender systemsTutorial recommender systems
Tutorial recommender systems
 
recommendation system techunique and issue
recommendation system techunique and issuerecommendation system techunique and issue
recommendation system techunique and issue
 
Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101
Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101
Customer Discovery and Market Intelligence - MaRS Entrepreneurship 101
 
Fashiondatasc
FashiondatascFashiondatasc
Fashiondatasc
 
IRJET- E-Commerce Recommendation based on Users Rating Data
IRJET-  	  E-Commerce Recommendation based on Users Rating DataIRJET-  	  E-Commerce Recommendation based on Users Rating Data
IRJET- E-Commerce Recommendation based on Users Rating Data
 
Fair Recommender Systems
Fair Recommender Systems Fair Recommender Systems
Fair Recommender Systems
 
Data-Ed Webinar: Data Warehouse Strategies
Data-Ed Webinar: Data Warehouse StrategiesData-Ed Webinar: Data Warehouse Strategies
Data-Ed Webinar: Data Warehouse Strategies
 
chap1.ppt
chap1.pptchap1.ppt
chap1.ppt
 
chap1.ppt
chap1.pptchap1.ppt
chap1.ppt
 
chap1.ppt
chap1.pptchap1.ppt
chap1.ppt
 
Impersonal Recommendation system on top of Hadoop
Impersonal Recommendation system on top of HadoopImpersonal Recommendation system on top of Hadoop
Impersonal Recommendation system on top of Hadoop
 
Slash n 2018 - Just In Time Personalization
Slash n  2018 - Just In Time Personalization Slash n  2018 - Just In Time Personalization
Slash n 2018 - Just In Time Personalization
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendation
 
Chapter 02 collaborative recommendation
Chapter 02   collaborative recommendationChapter 02   collaborative recommendation
Chapter 02 collaborative recommendation
 
MBA Dissertation
MBA DissertationMBA Dissertation
MBA Dissertation
 
Putting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth ChurchillPutting the Person into Personalization by Elizabeth Churchill
Putting the Person into Personalization by Elizabeth Churchill
 
Competitive Intelligence Analysis
Competitive Intelligence AnalysisCompetitive Intelligence Analysis
Competitive Intelligence Analysis
 
Us retail online store customer ratings and reviews full version
Us retail online store customer ratings and reviews full versionUs retail online store customer ratings and reviews full version
Us retail online store customer ratings and reviews full version
 
Recommender System _Module 1_Introduction to Recommender System.pptx
Recommender System _Module 1_Introduction to Recommender System.pptxRecommender System _Module 1_Introduction to Recommender System.pptx
Recommender System _Module 1_Introduction to Recommender System.pptx
 

More from Ramzi Alqrainy

Non English Search as a Machine Learning Problem
Non English Search as a Machine Learning Problem Non English Search as a Machine Learning Problem
Non English Search as a Machine Learning Problem Ramzi Alqrainy
 
OpenSooq Image Recognition on AWS - AWS ML Lab
OpenSooq Image Recognition on AWS - AWS ML LabOpenSooq Image Recognition on AWS - AWS ML Lab
OpenSooq Image Recognition on AWS - AWS ML LabRamzi Alqrainy
 
A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019
A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019
A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019Ramzi Alqrainy
 
Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices
Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices
Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices Ramzi Alqrainy
 
Infrastructure OpenSooq Mobile @ Scale
Infrastructure OpenSooq Mobile @ ScaleInfrastructure OpenSooq Mobile @ Scale
Infrastructure OpenSooq Mobile @ ScaleRamzi Alqrainy
 
Choosing the Right Technologies for OpenSooq
Choosing the Right Technologies for OpenSooqChoosing the Right Technologies for OpenSooq
Choosing the Right Technologies for OpenSooqRamzi Alqrainy
 
Retrieving Information From Solr
Retrieving Information From SolrRetrieving Information From Solr
Retrieving Information From SolrRamzi Alqrainy
 
Arabic Content with Apache Solr
Arabic Content with Apache SolrArabic Content with Apache Solr
Arabic Content with Apache SolrRamzi Alqrainy
 
Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...
Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...
Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...Ramzi Alqrainy
 
Evaluating Search Engines
Evaluating Search EnginesEvaluating Search Engines
Evaluating Search EnginesRamzi Alqrainy
 
Starting From Zero - Winning Strategies for Zero Results Page
Starting From Zero - Winning Strategies for Zero Results PageStarting From Zero - Winning Strategies for Zero Results Page
Starting From Zero - Winning Strategies for Zero Results PageRamzi Alqrainy
 
Search Behavior Patterns
Search Behavior PatternsSearch Behavior Patterns
Search Behavior PatternsRamzi Alqrainy
 
Intel microprocessor history
Intel microprocessor historyIntel microprocessor history
Intel microprocessor historyRamzi Alqrainy
 
How to prevent the cache problem in AJAX
How to prevent the cache problem in AJAXHow to prevent the cache problem in AJAX
How to prevent the cache problem in AJAXRamzi Alqrainy
 
Linked stacks and queues
Linked stacks and queuesLinked stacks and queues
Linked stacks and queuesRamzi Alqrainy
 
Advance Data Structure
Advance Data StructureAdvance Data Structure
Advance Data StructureRamzi Alqrainy
 

More from Ramzi Alqrainy (20)

Non English Search as a Machine Learning Problem
Non English Search as a Machine Learning Problem Non English Search as a Machine Learning Problem
Non English Search as a Machine Learning Problem
 
OpenSooq Image Recognition on AWS - AWS ML Lab
OpenSooq Image Recognition on AWS - AWS ML LabOpenSooq Image Recognition on AWS - AWS ML Lab
OpenSooq Image Recognition on AWS - AWS ML Lab
 
A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019
A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019
A Few Milliseconds in the Life of an HTTP Request - AWS Summit 2019
 
Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices
Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices
Mastering Chaos - OpenSooq’s journey from Monolithic to Microservices
 
Infrastructure OpenSooq Mobile @ Scale
Infrastructure OpenSooq Mobile @ ScaleInfrastructure OpenSooq Mobile @ Scale
Infrastructure OpenSooq Mobile @ Scale
 
Choosing the Right Technologies for OpenSooq
Choosing the Right Technologies for OpenSooqChoosing the Right Technologies for OpenSooq
Choosing the Right Technologies for OpenSooq
 
Retrieving Information From Solr
Retrieving Information From SolrRetrieving Information From Solr
Retrieving Information From Solr
 
MemSQL
MemSQLMemSQL
MemSQL
 
Arabic Content with Apache Solr
Arabic Content with Apache SolrArabic Content with Apache Solr
Arabic Content with Apache Solr
 
Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...
Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...
Apache Solr 4 Part 1 - Introduction, Features, Recency Ranking and Popularity...
 
Evaluating Search Engines
Evaluating Search EnginesEvaluating Search Engines
Evaluating Search Engines
 
Starting From Zero - Winning Strategies for Zero Results Page
Starting From Zero - Winning Strategies for Zero Results PageStarting From Zero - Winning Strategies for Zero Results Page
Starting From Zero - Winning Strategies for Zero Results Page
 
Search Behavior Patterns
Search Behavior PatternsSearch Behavior Patterns
Search Behavior Patterns
 
Intel microprocessor history
Intel microprocessor historyIntel microprocessor history
Intel microprocessor history
 
How to prevent the cache problem in AJAX
How to prevent the cache problem in AJAXHow to prevent the cache problem in AJAX
How to prevent the cache problem in AJAX
 
Linked stacks and queues
Linked stacks and queuesLinked stacks and queues
Linked stacks and queues
 
Advance Data Structure
Advance Data StructureAdvance Data Structure
Advance Data Structure
 
Hashing
HashingHashing
Hashing
 
Markov Matrix
Markov MatrixMarkov Matrix
Markov Matrix
 
STACK
STACKSTACK
STACK
 

Recently uploaded

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 

Recently uploaded (20)

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 

Recommender Systems, Part 1 - Introduction to approaches and algorithms

  • 1. Recommender  Systems     Ramzi  Alqrainy     Search  Guru   ramzi.alqrainy@gmail.com   - 1 -  
  • 3. Recommender  Systems     ♣    Applica;on  areas     - 3 -  
  • 4. In  the  Social  Web     - 4 -  
  • 5. Even  more  …     ♣    Personalized  search     ♣    "Computa;onal  adver;sing"     - 5 -  
  • 6. About  the  speaker     ♣    Ramzi  Alqrainy     -­‐  Ramzi  is  one  of  the  well  recognized  experts  within  Ar8ficial  Intelligence  and    Informa8on  Retrieval  fields  in  Middle  East.  Ac8ve  researcher  and  technology  blogger     with  the  focus  on  informa8on  retrieval.   - 6 -  
  • 7. Agenda     ♣    What  are  recommender  systems  for?     -­‐  Introduc8on     ♣    How  do  they  work  (Part  I)  ?     -­‐  Collabora8ve  Filtering     ♣    How  to  measure  their  success?     -­‐  Evalua8on  techniques     ♣    How  do  they  work  (Part  II)  ?     -­‐  Content-­‐based  Filtering    -­‐  Knowledge-­‐Based  Recommenda8ons    -­‐  Hybridiza8on  Strategies     ♣    Advanced  topics     -­‐  Explana8ons    -­‐  Human  decision  making     - 7 -  
  • 9. Why  using  Recommender  Systems?     ♣    Value  for  the  customer     -­‐  Find  things  that  are  interes8ng    -­‐  Narrow  down  the  set  of  choices    -­‐  Help  me  explore  the  space  of  op8ons    -­‐  Discover  new  things    -­‐  Entertainment    -­‐     …     ♣    Value  for  the  provider     -­‐  Addi8onal  and  probably  unique  personalized  service  for  the  customer    -­‐  Increase  trust  and  customer  loyalty    -­‐  Increase  sales,  click  trough  rates,  conversion  etc.    -­‐  Opportuni8es  for  promo8on,  persuasion    -­‐  Obtain  more  knowledge  about  customers    -­‐     …     - 9 -  
  • 10. Real-­‐world  check     ♣    Myths  from  industry     -­‐  Amazon.com  generates  X  percent  of  their  sales  through  the  recommenda8on  lists  (30  <  X  <  70)    -­‐  NeVlix  (DVD  rental  and  movie  streaming)  generates  X  percent  of  their  sales  through  the  recommenda8on  lists  (30  <  X  <  70)     ♣    There  must  be  some  value  in  it     -­‐  See  recommenda8on  of  groups,  jobs  or  people  on  LinkedIn    -­‐  Friend  recommenda8on  and  ad  personaliza8on  on  Facebook    -­‐  Song  recommenda8on  at  last.fm    -­‐  News  recommenda8on  at  Forbes.com  (plus  37%  CTR) ♣    Academia     -­‐  A  few  studies  exist  that  show  the  effect     ♣  increased  sales,  changes  in  sales  behavior     - 10 -  
  • 11. Problem  domain     ♣    Recommenda;on  systems  (RS)  help  to  match  users  with  items     -­‐  Ease  informa8on  overload    -­‐  Sales  assistance  (guidance,  advisory,  persuasion,…)     RS  are  so)ware  agents  that  elicit  the  interests  and  preferences  of  individual consumers  […]  and  make  recommenda<ons  accordingly.    They  have  the  poten<al  to  support  and  improve  the  quality  of  the    decisions  consumers  make  while  searching  for  and  selec<ng  products  online.     »  [Xiao  &  Benbasat,  MISQ, 2007]   ♣    Different  system  designs  /  paradigms     -­‐  Based  on  availability  of  exploitable  data    -­‐  Implicit  and  explicit  user  feedback    -­‐  Domain  characteris8cs     - 11 -  
  • 12. Recommender  systems     ♣    RS  seen  as  a  func;on  [AT05] ♣    Given:     -­‐  User  model  (e.g.  ra8ngs,  preferences,  demographics,  situa8onal  context)    -­‐  Items  (with  or  without  descrip8on  of  item  characteris8cs) ♣    Find:    -­‐  Relevance  score.  Used  for  ranking. ♣    Finally:     -­‐  Recommend  items  that  are  assumed  to  be  relevant ♣    But:     -­‐  Remember  that  relevance  might  be  context-­‐dependent     -­‐  Characteris8cs  of  the  list  itself  might  be  important  (diversity)     - 12 -  
  • 13. Paradigms  of  recommender  systems     Recommender  systems  reduce    informa;on  overload  by  es;ma;ng relevance     - 13 -  
  • 14. Paradigms  of  recommender  systems     Personalized  recommenda;ons     - 14 -  
  • 15. Paradigms  of  recommender  systems     Collabora;ve:  "Tell  me  what's  popular among  my  peers"     - 15 -  
  • 16. Paradigms  of  recommender  systems     Content-­‐based:  "Show  me  more  of  the same  what  I've  liked"   - 16 -  
  • 17. Paradigms  of  recommender  systems     Knowledge-­‐based:  "Tell  me  what  fits based  on  my  needs"     - 17 -  
  • 18. Paradigms  of  recommender  systems     Hybrid:  combina;ons  of  various  inputs and/or  composi;on  of  different mechanism     - 18 -  
  • 19. Recommender  systems:  basic  techniques     Pros     Cons     Collabora8ve     No  knowledge-­‐     Requires  some  form  of  ra8ng    engineering  effort,     feedback,  cold  start  for  new  users    serendipity  of  results,     and  new  items    learns  market  segments     Content-­‐based     No  community  required,     Content  descrip8ons  necessary,    comparison  between     cold  start  for  new  users,  no    items  possible     surprises     Knowledge-­‐based     Determinis8c    recommenda8ons, assured  quality,  no  cold-­‐ start,  can  resemble  sales dialogue     Knowledge  engineering  effort  to bootstrap,  basically  sta8c,  does not  react  to  short-­‐term  trends     - 19 -  
  • 20. - 20 -  
  • 21. Collabora;ve  Filtering  (CF)     ♣    The  most  prominent  approach  to  generate  recommenda;ons     -­‐  used  by  large,  commercial  e-­‐commerce  sites    -­‐  well-­‐understood,  various  algorithms  and  varia8ons  exist    -­‐  applicable  in  many  domains  (book,  movies,  DVDs,  ..) ♣    Approach     -­‐  use  the  "wisdom  of  the  crowd"  to  recommend  items ♣    Basic  assump;on  and  idea     -­‐  Users  give  ra8ngs  to  catalog  items  (implicitly  or  explicitly)     -­‐  Customers  who  had  similar  tastes  in  the  past,  will  have  similar  tastes  in  the  future     - 21 -  
  • 22. User-­‐based  nearest-­‐neighbor  collabora;ve  filtering  (1)     ♣  The  basic  technique:     -­‐  Given  an  "ac8ve  user"  (Alice)  and  an  item  I  not  yet  seen  by  Alice    -­‐  The  goal  is  to  es<mate  Alice's  ra<ng  for  this  item,  e.g.,  by     ♣  find  a  set  of  users  (peers)  who  liked  the  same  items  as  Alice  in  the  past  and  who  have  rated  item  I    ♣  use,  e.g.  the  average  of  their  ra8ngs  to  predict,  if  Alice  will  like  item  I ♣  do  this  for  all  items  Alice  has  not  seen  and  recommend  the  best-­‐rated     Item1     Item2     Item3     Item4     Item5    Alice     5     3     4     4     ?    User1     3     1     2     3     3     User2     4     3     4     3     5     User3     3     3     1     5     4     User4     1     5     5     2     1     - 24 -  
  • 23. User-­‐based  nearest-­‐neighbor  collabora;ve  filtering  (2)     ♣    Some  first  ques;ons     -­‐  How  do  we  measure  similarity?    -­‐  How  many  neighbors  should  we  consider?    -­‐  How  do  we  generate  a  predic8on  from  the  neighbors'  ra8ngs?     Item1     Item2     Item3     Item4     Item5     Alice     5     3     4     4     ?    User1     3     1     2     3     3     User2     4     3     4     3     5     User3     3     3     1     5     4     User4     1     5     5     2     1     - 25 -  
  • 24. Measuring  user  similarity     ♣    A  popular  similarity  measure  in  user-­‐based  CF:  Pearson  correla;on     a,  b    :  users    ra,p     :  ra8ng  of  user  a  for  item  p    P     :  set  of  items,  rated  both  by  a  and  b    Possible  similarity  values  between  -­‐1  and  1;     !!, !!=  user's  average  ra8ngs     Item1     Alice  5     User1  3     Item2  Item3     3  4     1  2     Item4  Item5     4  ?     3  3     sim  =  0,85 sim  =  0,70     sim  =  -­‐0,79    User2     4     3     4     3     5     User3     3     3     1     5     4     User4     1     5     5     2     1     - 26 -  
  • 25. Pearson  correla;on     ♣    Takes  differences  in  ra;ng  behavior  into  account     6   5   4   Ratings   3   2   1   0   Item1 Item2   Alice   User1   User4   Item3 Item4   ♣    Works  well  in  usual  domains,  compared  with  alterna;ve  measures     -­‐  such  as  cosine  similarity     - 27 -  
  • 26. Making  predic;ons     ♣    A  common  predic8on  func8on:     ♣    Calculate,  whether  the  neighbors'  ra8ngs  for  the  unseen  item  i  are  higher  or  lower  than  their  average     ♣    Combine  the  ra8ng  differences  -­‐  use  the  similarity  as  a  weight     ♣    Add/subtract  the    neighbors'  bias  from  the  ac8ve  user's  average  and  use  this  as  a  predic8on     - 28 -  
  • 27. Making  recommenda;ons     ♣    Making  predic;ons  is  typically  not  the  ul;mate  goal ♣    Usual  approach  (in  academia)     -­‐  Rank  items  based  on  their  predicted  ra8ngs ♣    However     -­‐  This  might  lead  to  the  inclusion  of  (only)  niche  items     -­‐  In  prac;ce  also:  Take  item  popularity  into  account ♣    Approaches     -­‐  "Learning  to  rank"     ♣  Op8mize  according  to  a  given  rank  evalua8on  metric  (see  later)     - 29 -  
  • 28. Improving  the  metrics    /  predic;on  func;on     ♣    Not  all  neighbor  ra;ngs  might  be  equally  "valuable"     -­‐  Agreement  on  commonly  liked  items  is  not  so  informa8ve  as  agreement  on  controversial  items    -­‐  Possible  solu;on:    Give  more  weight  to  items  that  have  a  higher  variance ♣    Value  of  number  of  co-­‐rated  items     -­‐  Use  "significance  weigh8ng",  by  e.g.,  linearly  reducing  the  weight  when  the  number  of  co-­‐rated  items  is  low     ♣    Case  amplifica;on     -­‐  Intui8on:  Give  more  weight  to  "very  similar"  neighbors,  i.e.,  where  the  similarity  value  is  close  to  1.     ♣    Neighborhood  selec;on     -­‐  Use  similarity  threshold  or  fixed  number  of  neighbors     - 30 -  
  • 29. Memory-­‐based  and  model-­‐based  approaches     ♣    User-­‐based  CF  is  said  to  be  "memory-­‐based"     -­‐  the  ra8ng  matrix  is  directly  used  to  find  neighbors  /  make  predic8ons    -­‐  does  not  scale  for  most  real-­‐world  scenarios    -­‐  large  e-­‐commerce  sites  have  tens  of  millions  of  customers  and  millions  of  items     ♣    Model-­‐based  approaches     -­‐  based  on  an  offline  pre-­‐processing  or  "model-­‐learning"  phase    -­‐  at  run-­‐8me,  only  the  learned  model  is  used  to  make  predic8ons    -­‐  models  are  updated  /  re-­‐trained  periodically    -­‐  large  variety  of  techniques  used    -­‐  model-­‐building  and  upda8ng  can  be  computa8onally  expensive     - 31 -  
  • 30. Item-­‐based  collabora;ve  filtering     ♣    Basic  idea:     -­‐  Use  the  similarity  between  items  (and  not  users)  to  make  predic8ons ♣    Example:     -­‐  Look  for  items  that  are  similar  to  Item5    -­‐  Take  Alice's  ra8ngs  for  these  items  to  predict  the  ra8ng  for  Item5     Item1     Item2     Item3     Item4     Item5     Alice     5     3     4     4     ?    User1     3     1     2     3     3     User2     4     3     4     3     5     User3     3     3     1     5     4     User4     1     5     5     2     1     - 33 -  
  • 31. The  cosine  similarity  measure     ♣    Produces  beber  results  in  item-­‐to-­‐item  filtering     -­‐  for  some  datasets,  no  consistent  picture  in  literature     ♣    Ra;ngs  are  seen  as  vector  in  n-­‐dimensional  space     ♣    Similarity  is  calculated  based  on  the  angle  between  the  vectors     ♣    Adjusted  cosine  similarity     -­‐  take  average  user  ra8ngs  into  account,  transform  the  original  ra8ngs     - 34 -  
  • 32. Pre-­‐processing  for  item-­‐based  filtering     ♣    Item-­‐based  filtering  does  not  solve  the  scalability  problem  itself ♣    Pre-­‐processing  approach  by  Amazon.com  (in  2003)     -­‐  Calculate  all  pair-­‐wise  item  similari8es  in  advance    -­‐  The  neighborhood  to  be  used  at  run-­‐8me  is  typically  rather  small,  because  only  items  are  taken  into  account  which  the  user  has  rated    -­‐  Item  similari8es  are  supposed  to  be  more  stable  than  user  similari8es ♣    Memory  requirements     -­‐  Up  to  N2  pair-­‐wise  similari8es  to  be  memorized  (N  =  number  of  items)  in  theory    -­‐  In  prac8ce,  this  is  significantly  lower  (items  with  no  co-­‐ra8ngs)    -­‐  Further  reduc8ons  possible     ♣  Minimum  threshold  for  co-­‐ra8ngs  (items,  which  are  rated  at  least  by  n  users) ♣  Limit  the  size  of  the  neighborhood  (might  affect  recommenda8on  accuracy)     - 35 -  
  • 33. More  on  ra;ngs     ♣    Pure  CF-­‐based  systems  only  rely  on  the  ra;ng  matrix ♣    Explicit  ra;ngs     -­‐  Most  commonly  used  (1  to  5,  1  to  7  Likert  response  scales)    -­‐  Research  topics     ♣  "Op8mal"  granularity  of  scale;  indica8on  that  10-­‐point  scale  is  berer  accepted  in  movie  domain    ♣  Mul8dimensional  ra8ngs  (mul8ple  ra8ngs  per  movie)    -­‐  Challenge     ♣  Users  not  always  willing  to  rate  many  items;  sparse  ra8ng  matrices ♣  How  to  s8mulate  users  to  rate  more  items?     ♣    Implicit  ra;ngs     -­‐  clicks,  page  views,  8me  spent  on  some  page,  demo  downloads  …    -­‐  Can  be  used  in  addi8on  to  explicit  ones;  ques8on  of  correctness  of  interpreta8on     - 36 -  
  • 34. Data  sparsity  problems     ♣    Cold  start  problem     -­‐  How  to  recommend  new  items?  What  to  recommend  to  new  users? ♣    Straigheorward  approaches     -­‐  Ask/force  users  to  rate  a  set  of  items    -­‐  Use  another  method  (e.g.,  content-­‐based,  demographic  or  simply  non-­‐  personalized)  in  the  ini8al  phase     ♣    Alterna;ves     -­‐  Use  berer  algorithms  (beyond  nearest-­‐neighbor  approaches)    -­‐  Example:     ♣  In  nearest-­‐neighbor  approaches,  the  set  of  sufficiently  similar  neighbors  might  be  to  small  to  make  good  predic8ons    ♣  Assume  "transi8vity"  of  neighborhoods     - 37 -  
  • 35. Example  algorithms  for  sparse  datasets     ♣    Recursive  CF     -­‐  Assume  there  is  a  very  close  neighbor  n  of  u  who  however  has  not  rated  the  target  item  i  yet.    -­‐  Idea:     ♣  Apply  CF-­‐method  recursively  and  predict  a  ra8ng  for  item  i  for  the  neighbor ♣  Use  this  predicted  ra8ng  instead  of  the  ra8ng  of  a  more  distant  direct  neighbor     Item1     Item2     Item3     Item4     Item5     Alice     5     3     4     4     ?     sim  =  0,85    User1     3     1     2     3     ?     User2  4  3     4  3  5     Predict    User3  3  3     User4  1  5     1  5  4  ra8ng  for     User1     5  2  1     - 38 -  
  • 36. Graph-­‐based  methods     ♣    "Spreading  ac;va;on"  (sketch)     -­‐  Idea:  Use  paths  of  lengths  >  3  to  recommend  items    -­‐  Length  3:  Recommend  Item3  to  User1    -­‐  Length  5:  Item1  also  recommendable     - 39 -  
  • 37. More  model-­‐based  approaches     ♣    Plethora  of  different  techniques  proposed  in  the  last  years,  e.g.,     -­‐  Matrix  factoriza8on  techniques,  sta8s8cs     ♣  singular  value  decomposi8on,  principal  component  analysis    -­‐  Associa8on  rule  mining     ♣  compare:  shopping  basket  analysis    -­‐  Probabilis8c  models     ♣  clustering  models,  Bayesian  networks,  probabilis8c  Latent  Seman8c  Analysis    -­‐  Various  other  machine  learning  approaches     ♣    Costs  of  pre-­‐processing     -­‐  Usually  not  discussed    -­‐  Incremental  updates  possible?     - 40 -  
  • 38. Matrix  factoriza;on     •    SVD:     Uk  Dim1     Alice  0.47     M   k   Dim2     -­‐0.30     T  =U×Σ×V   k k k   T     Vk     Dim1     -­‐0.44  -­‐0.57  0.06  0.38  0.57     Bob  -­‐0.44  0.23     Dim2  0.58  -­‐0.66     0.26  0.18  -­‐0.36     Mary  0.70  -­‐0.06     Sue  0.31  0.93     Σ  Dim1  Dim2     k   •    Predic;on:     r   ui   =   r +U (Alice)×Σ   u k   T  ×V (EPL)   k k   Dim1  5.63  0     Dim2  0  3.23     =  3  +  0.84  =  3.84     - 43 -  
  • 39. Associa;on  rule  mining     ♣    Commonly  used  for  shopping  behavior  analysis     -­‐  aims  at  detec8on  of  rules  such  as     "If  a  customer  purchases  baby-­‐food  then  he  also  buys  diapers in  70%  of  the  cases"     ♣    Associa;on  rule  mining  algorithms     -­‐  can  detect  rules  of  the  form  X  =>  Y  (e.g.,  baby-­‐food  =>  diapers)  from  a  set  of  sales  transac8ons  D  =  {t1,  t2,  …  tn}    -­‐  measure  of  quality:  support,  confidence     - 44 -  
  • 40. Probabilis;c  methods     ♣    Basic  idea  (simplis;c  version  for  illustra;on):     -­‐  given  the  user/item  ra8ng  matrix    -­‐  determine  the  probability  that  user  Alice  will  like  an  item  i    -­‐  base  the  recommenda8on  on  such  these  probabili8es     ♣    Calcula;on  of  ra;ng  probabili;es  based  on  Bayes  Theorem     -­‐  How  probable  is  ra8ng  value  "1"  for  Item5  given  Alice's  previous  ra8ngs?    -­‐  Corresponds  to  condi8onal  probability  P(Item5=1  |  X),  where ♣  X  =  Alice's  previous  ra8ngs  =  (Item1  =1,  Item2=3,  Item3=  …  )    -­‐  Can  be  es8mated  based  on  Bayes'  Theorem ♣    Usually  more  sophis;cated  methods  used     -­‐  Clustering     -­‐  pLSA  …     - 45 -  
  • 41. Summarizing  recent  methods     ♣    Recommenda;on  is  concerned  with  learning  from  noisy  observa;ons     (x,  y),  where     f(x)=ŷ   2   has  to  be  determined  such    that is  minimal.     ∑  ˆ   ( ˆ -y)   ♣    A  variety  of  different  learning  strategies  have  been  applied  trying  to  es;mate  f(x)     -­‐  Non  parametric  neighborhood  models    -­‐  MF  models,  SVMs,  Neural  Networks,  Bayesian  Networks,…     - 48 -  
  • 42. Collabora;ve  Filtering  Issues     ♣    Pros:     -­‐    well-­‐understood,  works  well  in  some  domains,  no  knowledge  engineering  required     ♣    Cons:     -­‐    requires  user  community,  sparsity  problems,  no  integra8on  of  other  knowledge  sources,  no  explana8on  of  results     ♣    What  is  the  best  CF  method?     -­‐    In  which  situa8on  and  which  domain?  Inconsistent  findings;  always  the  same  domains  and  data  sets;  differences  between  methods  are  o|en  very  small  (1/100)     ♣    How  to  evaluate  the  predic;on  quality?     -­‐    MAE  /  RMSE:  What  does  an  MAE  of  0.7  actually  mean?    -­‐    Serendipity:  Not  yet  fully  understood     ♣    What  about  mul;-­‐dimensional  ra;ngs?     - 49 -  
  • 43. - 50 -  
  • 44. Recommender  Systems  in  e-­‐Commerce     ♣    One  Recommender  Systems  research  ques;on     -­‐  What  should  be  in  that  list?     - 51 -  
  • 45. Recommender  Systems  in  e-­‐Commerce     ♣    Another  ques;on  both  in  research  and  prac;ce     -­‐  How  do  we  know  that  these  are  good     recommenda8ons?     - 52 -  
  • 46. Recommender  Systems  in  e-­‐Commerce     ♣    This  might  lead  to  …     -­‐    What  is  a  good  recommenda8on?    -­‐    What  is  a  good  recommenda8on  strategy?    -­‐    What  is  a  good  recommenda8on  strategy  for  my  business?     These have been in stock for quite a while now …   - 53 -  
  • 47. What  is  a  good  recommenda;on?     What  are  the  measures  in  prac;ce?     ♣    Total  sales  numbers     ♣    Promo;on  of  certain  items     ♣ …     ♣    Click-­‐through-­‐rates     ♣    Interac;vity  on  plaeorm     ♣ …     ♣    Customer  return  rates     ♣    Customer  sa;sfac;on  and  loyalty     - 54 -  
  • 48. You  have  Ques8ons  and  we  have  Answers