SlideShare a Scribd company logo
1
Regular Expressions
Definitions
Equivalence to Finite Automata
2
RE’s: Introduction
Regular expressions are an algebraic
way to describe languages.
They describe exactly the regular
languages.
If E is a regular expression, then L(E) is
the language it defines.
We’ll describe RE’s and their languages
recursively.
3
RE’s: Definition
Basis 1: If a is any symbol, then a is a
RE, and L(a) = {a}.
 Note: {a} is the language containing one
string, and that string is of length 1.
Basis 2: ε is a RE, and L(ε) = {ε}.
Basis 3: ∅ is a RE, and L(∅) = ∅.
4
RE’s: Definition – (2)
Induction 1: If E1 and E2 are regular
expressions, then E1+E2 is a regular
expression, and L(E1+E2) =
L(E1)L(E2).
Induction 2: If E1 and E2 are regular
expressions, then E1E2 is a regular
expression, and L(E1E2) = L(E1)L(E2).
Concatenation : the set of strings wx such that w
Is in L(E1) and x is in L(E2).
5
RE’s: Definition – (3)
Induction 3: If E is a RE, then E* is a
RE, and L(E*) = (L(E))*.
Closure, or “Kleene closure” = set of strings
w1w2…wn, for some n > 0, where each wi is
in L(E).
Note: when n=0, the string is ε.
6
Precedence of Operators
Parentheses may be used wherever
needed to influence the grouping of
operators.
Order of precedence is * (highest),
then concatenation, then + (lowest).
7
Examples: RE’s
L(01) = {01}.
L(01+0) = {01, 0}.
L(0(1+0)) = {01, 00}.
 Note order of precedence of operators.
L(0*) = {ε, 0, 00, 000,… }.
L((0+10)*(ε+1)) = all strings of 0’s
and 1’s without two consecutive 1’s.
8
Equivalence of RE’s and
Automata
We need to show that for every RE,
there is an automaton that accepts the
same language.
 Pick the most powerful automaton type: the
ε-NFA.
And we need to show that for every
automaton, there is a RE defining its
language.
 Pick the most restrictive type: the DFA.
9
Converting a RE to an ε-NFA
Proof is an induction on the number of
operators (+, concatenation, *) in the
RE.
We always construct an automaton of a
special form (next slide).
10
Form of ε-NFA’s Constructed
No arcs from outside,
no arcs leaving
Start state:
Only state
with external
predecessors
“Final” state:
Only state
with external
successors
11
RE to ε-NFA: Basis
Symbol a:
ε:
∅:
a
ε
12
RE to ε-NFA: Induction 1 – Union
For E1
For E2
For E1  E2
ε
ε ε
ε
13
RE to ε-NFA: Induction 2 –
Concatenation
For E1 For E2
For E1E2
ε
14
RE to ε-NFA: Induction 3 – Closure
For E
For E*
ε
ε
ε
ε
15
DFA-to-RE
A strange sort of induction.
States of the DFA are assumed to be
1,2,…,n.
We construct RE’s for the labels of
restricted sets of paths.
 Basis: single arcs or no arc at all.
 Induction: paths that are allowed to
traverse next state in order.
16
k-Paths
A k-path is a path through the graph of
the DFA that goes though no state
numbered higher than k.
Endpoints are not restricted; they can
be any state.
17
Example: k-Paths
1
3
2
0
0
0
1
1 1
0-paths from 2 to 3:
RE for labels = 0.
1-paths from 2 to 3:
RE for labels = 0+11.
2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1
3-paths from 2 to 3:
RE for labels = ??
18
k-Path Induction
Let Rij
k be the regular expression for
the set of labels of k-paths from state i
to state j.
Basis: k=0. Rij
0 = sum of labels of arc
from i to j.
 ∅ if no such arc.
 But add ε if i=j.
19
Example: Basis
R12
0 = 0.
R11
0 = ∅ + ε = ε.
1
3
2
0
0
0
1
1 1
20
k-Path Inductive Case
 A k-path from i to j either:
1. Never goes through state k, or
2. Goes through k one or more times.
Rij
k = Rij
k-1 + Rik
k-1(Rkk
k-1)* Rkj
k-1.
Doesn’t go
through k
Goes from
i to k the
first time Zero or
more times
from k to k
Then, from
k to j
21
Illustration of Induction
States < k
k
i
j
Paths not going
through k
From k
to j
From k to k
Several times
Path to k
22
Final Step
 The RE with the same language as the
DFA is the sum (union) of Rij
n, where:
1. n is the number of states; i.e., paths are
unconstrained.
2. i is the start state.
3. j is one of the final states.
23
Example
R23
3 = R23
2 + R23
2(R33
2)*R33
2 =
R23
2(R33
2)*
R23
2 = (10)*0+1(01)*1
R33
2 = 0(01)*(1+00) + 1(10)*(0+11)
R23
3 = [(10)*0+1(01)*1]
[(0(01)*(1+00) + 1(10)*(0+11))]*
1
3
2
0
0
0
1
1 1
24
Summary
Each of the three types of automata
(DFA, NFA, ε-NFA) we discussed, and
regular expressions as well, define
exactly the same set of languages: the
regular languages.
25
Algebraic Laws for RE’s
Union and concatenation behave sort of
like addition and multiplication.
 + is commutative and associative;
concatenation is associative.
 Concatenation distributes over +.
 Exception: Concatenation is not
commutative.
26
Identities and Annihilators
∅ is the identity for +.
 R + ∅ = R.
 ε is the identity for concatenation.
 εR = Rε = R.
 ∅ is the annihilator for concatenation.
 ∅R = R∅ = ∅.

More Related Content

What's hot

Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
Mohammad Ilyas Malik
 
Finite automata-for-lexical-analysis
Finite automata-for-lexical-analysisFinite automata-for-lexical-analysis
Finite automata-for-lexical-analysis
Dattatray Gandhmal
 
2. context free langauages
2. context free langauages2. context free langauages
2. context free langauagesdanhumble
 
Finite Automata
Finite AutomataFinite Automata
Finite Automata
parmeet834
 
Formal Languages and Automata Theory Unit 1
Formal Languages and Automata Theory Unit 1Formal Languages and Automata Theory Unit 1
Formal Languages and Automata Theory Unit 1
Srimatre K
 
context free language
context free languagecontext free language
context free language
khush_boo31
 
Nondeterministic Finite Automata
Nondeterministic Finite AutomataNondeterministic Finite Automata
Nondeterministic Finite AutomataAdel Al-Ofairi
 
Optimization of dfa
Optimization of dfaOptimization of dfa
Optimization of dfa
Kiran Acharya
 
1.3.2 non deterministic finite automaton
1.3.2 non deterministic finite automaton1.3.2 non deterministic finite automaton
1.3.2 non deterministic finite automaton
Sampath Kumar S
 
Context free grammars
Context free grammarsContext free grammars
Context free grammarsRonak Thakkar
 
Formal Languages and Automata Theory unit 5
Formal Languages and Automata Theory unit 5Formal Languages and Automata Theory unit 5
Formal Languages and Automata Theory unit 5
Srimatre K
 
Regular expression with DFA
Regular expression with DFARegular expression with DFA
Regular expression with DFA
Maulik Togadiya
 
Theory of Computation - Lectures 4 and 5
Theory of Computation - Lectures 4 and 5Theory of Computation - Lectures 4 and 5
Theory of Computation - Lectures 4 and 5
Dr. Maamoun Ahmed
 
Finite automata examples
Finite automata examplesFinite automata examples
Finite automata examplesankitamakin
 
Nondeterministic Finite Automat
Nondeterministic Finite AutomatNondeterministic Finite Automat
Nondeterministic Finite AutomatAdel Al-Ofairi
 
Context free langauges
Context free langaugesContext free langauges
Context free langauges
sudhir sharma
 

What's hot (20)

Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
 
Finite automata-for-lexical-analysis
Finite automata-for-lexical-analysisFinite automata-for-lexical-analysis
Finite automata-for-lexical-analysis
 
Nfa vs dfa
Nfa vs dfaNfa vs dfa
Nfa vs dfa
 
2. context free langauages
2. context free langauages2. context free langauages
2. context free langauages
 
Finite Automata
Finite AutomataFinite Automata
Finite Automata
 
Formal Languages and Automata Theory Unit 1
Formal Languages and Automata Theory Unit 1Formal Languages and Automata Theory Unit 1
Formal Languages and Automata Theory Unit 1
 
context free language
context free languagecontext free language
context free language
 
Ch3
Ch3Ch3
Ch3
 
Nondeterministic Finite Automata
Nondeterministic Finite AutomataNondeterministic Finite Automata
Nondeterministic Finite Automata
 
Optimization of dfa
Optimization of dfaOptimization of dfa
Optimization of dfa
 
1.3.2 non deterministic finite automaton
1.3.2 non deterministic finite automaton1.3.2 non deterministic finite automaton
1.3.2 non deterministic finite automaton
 
Context free grammars
Context free grammarsContext free grammars
Context free grammars
 
Formal Languages and Automata Theory unit 5
Formal Languages and Automata Theory unit 5Formal Languages and Automata Theory unit 5
Formal Languages and Automata Theory unit 5
 
Regular expression with DFA
Regular expression with DFARegular expression with DFA
Regular expression with DFA
 
Theory of Computation - Lectures 4 and 5
Theory of Computation - Lectures 4 and 5Theory of Computation - Lectures 4 and 5
Theory of Computation - Lectures 4 and 5
 
Finite automata examples
Finite automata examplesFinite automata examples
Finite automata examples
 
Final fa part1
Final fa part1Final fa part1
Final fa part1
 
Finite automata
Finite automataFinite automata
Finite automata
 
Nondeterministic Finite Automat
Nondeterministic Finite AutomatNondeterministic Finite Automat
Nondeterministic Finite Automat
 
Context free langauges
Context free langaugesContext free langauges
Context free langauges
 

Similar to Re1 (3)

Unit ii
Unit iiUnit ii
Unit ii
TPLatchoumi
 
Formal Languages and Automata Theory unit 2
Formal Languages and Automata Theory unit 2Formal Languages and Automata Theory unit 2
Formal Languages and Automata Theory unit 2
Srimatre K
 
RegularExpressions.pdf
RegularExpressions.pdfRegularExpressions.pdf
RegularExpressions.pdf
ImranBhatti58
 
Unit2 Toc.pptx
Unit2 Toc.pptxUnit2 Toc.pptx
Unit2 Toc.pptx
viswanath kani
 
Regular expression
Regular expressionRegular expression
Regular expression
MONIRUL ISLAM
 
Flat unit 2
Flat unit 2Flat unit 2
Flat unit 2
VenkataRaoS1
 
Regular Expressions To Finite Automata
Regular Expressions To Finite AutomataRegular Expressions To Finite Automata
Regular Expressions To Finite Automata
International Institute of Information Technology (I²IT)
 
QB104541.pdf
QB104541.pdfQB104541.pdf
QB104541.pdf
MrRRajasekarCSE
 
1LECTURE 8 Regular_Expressions.ppt
1LECTURE 8 Regular_Expressions.ppt1LECTURE 8 Regular_Expressions.ppt
1LECTURE 8 Regular_Expressions.ppt
Marvin886766
 
Automata
AutomataAutomata
Automata
Gaditek
 
Automata
AutomataAutomata
Automata
Gaditek
 
PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...
PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...
PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...
ArjunMehra32
 
compiler Design course material chapter 2
compiler Design course material chapter 2compiler Design course material chapter 2
compiler Design course material chapter 2
gadisaAdamu
 
rs1.ppt
rs1.pptrs1.ppt
rs1.ppt
ssuser47f7f2
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
Mohammed Waris Senan
 
Regular expressions
Regular expressionsRegular expressions
Regular expressions
Shiraz316
 
02. chapter 3 lexical analysis
02. chapter 3   lexical analysis02. chapter 3   lexical analysis
02. chapter 3 lexical analysisraosir123
 
unit 2 part b.docx
unit 2 part b.docxunit 2 part b.docx
unit 2 part b.docx
karthikeyan Muthusamy
 
UNIT_-_II.docx
UNIT_-_II.docxUNIT_-_II.docx
UNIT_-_II.docx
karthikeyan Muthusamy
 

Similar to Re1 (3) (20)

Unit ii
Unit iiUnit ii
Unit ii
 
FLAT.pdf
FLAT.pdfFLAT.pdf
FLAT.pdf
 
Formal Languages and Automata Theory unit 2
Formal Languages and Automata Theory unit 2Formal Languages and Automata Theory unit 2
Formal Languages and Automata Theory unit 2
 
RegularExpressions.pdf
RegularExpressions.pdfRegularExpressions.pdf
RegularExpressions.pdf
 
Unit2 Toc.pptx
Unit2 Toc.pptxUnit2 Toc.pptx
Unit2 Toc.pptx
 
Regular expression
Regular expressionRegular expression
Regular expression
 
Flat unit 2
Flat unit 2Flat unit 2
Flat unit 2
 
Regular Expressions To Finite Automata
Regular Expressions To Finite AutomataRegular Expressions To Finite Automata
Regular Expressions To Finite Automata
 
QB104541.pdf
QB104541.pdfQB104541.pdf
QB104541.pdf
 
1LECTURE 8 Regular_Expressions.ppt
1LECTURE 8 Regular_Expressions.ppt1LECTURE 8 Regular_Expressions.ppt
1LECTURE 8 Regular_Expressions.ppt
 
Automata
AutomataAutomata
Automata
 
Automata
AutomataAutomata
Automata
 
PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...
PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...
PPT 2.1.1(The Pumping Lemma for Regular sets, Application of the Pumping Lemm...
 
compiler Design course material chapter 2
compiler Design course material chapter 2compiler Design course material chapter 2
compiler Design course material chapter 2
 
rs1.ppt
rs1.pptrs1.ppt
rs1.ppt
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
 
Regular expressions
Regular expressionsRegular expressions
Regular expressions
 
02. chapter 3 lexical analysis
02. chapter 3   lexical analysis02. chapter 3   lexical analysis
02. chapter 3 lexical analysis
 
unit 2 part b.docx
unit 2 part b.docxunit 2 part b.docx
unit 2 part b.docx
 
UNIT_-_II.docx
UNIT_-_II.docxUNIT_-_II.docx
UNIT_-_II.docx
 

Recently uploaded

platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
alishadewangan1
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
NoelManyise1
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 

Recently uploaded (20)

platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 

Re1 (3)

  • 2. 2 RE’s: Introduction Regular expressions are an algebraic way to describe languages. They describe exactly the regular languages. If E is a regular expression, then L(E) is the language it defines. We’ll describe RE’s and their languages recursively.
  • 3. 3 RE’s: Definition Basis 1: If a is any symbol, then a is a RE, and L(a) = {a}.  Note: {a} is the language containing one string, and that string is of length 1. Basis 2: ε is a RE, and L(ε) = {ε}. Basis 3: ∅ is a RE, and L(∅) = ∅.
  • 4. 4 RE’s: Definition – (2) Induction 1: If E1 and E2 are regular expressions, then E1+E2 is a regular expression, and L(E1+E2) = L(E1)L(E2). Induction 2: If E1 and E2 are regular expressions, then E1E2 is a regular expression, and L(E1E2) = L(E1)L(E2). Concatenation : the set of strings wx such that w Is in L(E1) and x is in L(E2).
  • 5. 5 RE’s: Definition – (3) Induction 3: If E is a RE, then E* is a RE, and L(E*) = (L(E))*. Closure, or “Kleene closure” = set of strings w1w2…wn, for some n > 0, where each wi is in L(E). Note: when n=0, the string is ε.
  • 6. 6 Precedence of Operators Parentheses may be used wherever needed to influence the grouping of operators. Order of precedence is * (highest), then concatenation, then + (lowest).
  • 7. 7 Examples: RE’s L(01) = {01}. L(01+0) = {01, 0}. L(0(1+0)) = {01, 00}.  Note order of precedence of operators. L(0*) = {ε, 0, 00, 000,… }. L((0+10)*(ε+1)) = all strings of 0’s and 1’s without two consecutive 1’s.
  • 8. 8 Equivalence of RE’s and Automata We need to show that for every RE, there is an automaton that accepts the same language.  Pick the most powerful automaton type: the ε-NFA. And we need to show that for every automaton, there is a RE defining its language.  Pick the most restrictive type: the DFA.
  • 9. 9 Converting a RE to an ε-NFA Proof is an induction on the number of operators (+, concatenation, *) in the RE. We always construct an automaton of a special form (next slide).
  • 10. 10 Form of ε-NFA’s Constructed No arcs from outside, no arcs leaving Start state: Only state with external predecessors “Final” state: Only state with external successors
  • 11. 11 RE to ε-NFA: Basis Symbol a: ε: ∅: a ε
  • 12. 12 RE to ε-NFA: Induction 1 – Union For E1 For E2 For E1  E2 ε ε ε ε
  • 13. 13 RE to ε-NFA: Induction 2 – Concatenation For E1 For E2 For E1E2 ε
  • 14. 14 RE to ε-NFA: Induction 3 – Closure For E For E* ε ε ε ε
  • 15. 15 DFA-to-RE A strange sort of induction. States of the DFA are assumed to be 1,2,…,n. We construct RE’s for the labels of restricted sets of paths.  Basis: single arcs or no arc at all.  Induction: paths that are allowed to traverse next state in order.
  • 16. 16 k-Paths A k-path is a path through the graph of the DFA that goes though no state numbered higher than k. Endpoints are not restricted; they can be any state.
  • 17. 17 Example: k-Paths 1 3 2 0 0 0 1 1 1 0-paths from 2 to 3: RE for labels = 0. 1-paths from 2 to 3: RE for labels = 0+11. 2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1 3-paths from 2 to 3: RE for labels = ??
  • 18. 18 k-Path Induction Let Rij k be the regular expression for the set of labels of k-paths from state i to state j. Basis: k=0. Rij 0 = sum of labels of arc from i to j.  ∅ if no such arc.  But add ε if i=j.
  • 19. 19 Example: Basis R12 0 = 0. R11 0 = ∅ + ε = ε. 1 3 2 0 0 0 1 1 1
  • 20. 20 k-Path Inductive Case  A k-path from i to j either: 1. Never goes through state k, or 2. Goes through k one or more times. Rij k = Rij k-1 + Rik k-1(Rkk k-1)* Rkj k-1. Doesn’t go through k Goes from i to k the first time Zero or more times from k to k Then, from k to j
  • 21. 21 Illustration of Induction States < k k i j Paths not going through k From k to j From k to k Several times Path to k
  • 22. 22 Final Step  The RE with the same language as the DFA is the sum (union) of Rij n, where: 1. n is the number of states; i.e., paths are unconstrained. 2. i is the start state. 3. j is one of the final states.
  • 23. 23 Example R23 3 = R23 2 + R23 2(R33 2)*R33 2 = R23 2(R33 2)* R23 2 = (10)*0+1(01)*1 R33 2 = 0(01)*(1+00) + 1(10)*(0+11) R23 3 = [(10)*0+1(01)*1] [(0(01)*(1+00) + 1(10)*(0+11))]* 1 3 2 0 0 0 1 1 1
  • 24. 24 Summary Each of the three types of automata (DFA, NFA, ε-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.
  • 25. 25 Algebraic Laws for RE’s Union and concatenation behave sort of like addition and multiplication.  + is commutative and associative; concatenation is associative.  Concatenation distributes over +.  Exception: Concatenation is not commutative.
  • 26. 26 Identities and Annihilators ∅ is the identity for +.  R + ∅ = R.  ε is the identity for concatenation.  εR = Rε = R.  ∅ is the annihilator for concatenation.  ∅R = R∅ = ∅.