One‐Page Research Focus Description  
Research focus   Solar Novel Technologies Developments   
Researchers  S.A.H.Zamzamian  
Related theme  Environment and Green Energies 
Research area  Energy Conversion 
Research sub‐area  Solar Systems 
Research focus 
description 
(Max. 200 words) 
The case of combined conduction, convection and radiation heat transfer usually occurred in solar 
thermal usages is the aim of the present study. Several configurations of solar air heaters (SAHs) 
have  been  developed  in  literature  in  searching  of  a  suitable  design  for  different  types  of 
applications,  various  designs  of  solar  collectors  have  been  the  subject  of  many  theoretical  and 
experimental  investigations.  In  thermal  devices,  improvement  of  convection  heat  transfer 
becomes an important factor in industries like electronic equipment and heat exchangers. 
In industrial processes, another method for improving the convection heat transfer characteristics 
is using porous medium(any material which consists of solid matrix with an interconnected void is 
called porous media such as rocks and open cell aluminum foams) and nanofluid. Convection heat 
transfer  and  fluid  flow  with  nanofluids  and  porous  medium  occur  in  power  stations  of  many 
engineering  applications  where  cooling  or  heating  is  required  such  as  cooling  turbine  blades, 
cooling electronic equipment and combustion systems.
This  research  also  focus  program  aims  to  obtain  lab‐scale  nanofluid  which  will  be  built  in  two 
stages. In this project fluid phase, is silicone oil with temperatures between 200 and 300 Celsius 
degrees and nanoparticles  are silica nanostructures with different morphologies and sizes, silicon 
carbide  and  silicon  dioxide  nano‐structures  will  be  spread  in  silicon  oil  with  different  volume 
percentages  (1‐5%).stability  of  the  mixture  is  one  of  the  most  important  issues  and  will  be 
examined with a suitable method such as zeta potential and particle size and the heat transfer 
properties of oil at high temperatures will be examined with various analyzes such as DSC analysis, 
also K coefficient will be examined. 
Main targets:
Due to their excellent characteristics, nanofluids find wide applications in enhancing heat transfer.  
The aim of this appraisal Research Areas (RA) is the methodology study as an experimental setup 
of the nanofluids in solar thermal Energy applications.  
In order to overcome these drawbacks, achievement of direct solar thermal  absorption collector 
has been used for solar thermal exploitation. 
Hence  it  will  be  a  promising  effort  to  develop  research  projects  on  the  use  of  nanofluids  in 
different solar thermal systems such as solar absorption, solar thermoelectric cells, and thermal 
conductivity of nanofluids, electronic applications, energy storage and solar absorption. 
illustration 
 
 
 
Research 
background 
(Conducted relevant 
projects) 
 Experimental study of the performance of a flat‐plate collector by using Cu nanofluid. (Research project code: ) 
 Experimental investigation of nano‐fluids used in the parabolic trough with respect to increase heat transfer. 
(Research project code: ) 
 Investigation  of    the  performance  of  the  vacuum  tube  collector  (VTC)using  nanofluid  technology. (Research 
project code:     ) 
 
One‐Page Research Focus Description  
 
Research focus   Solar heating & cooling systems   
Researchers  S.A.H.Zamzamian 
Related theme  Environment and clean energies 
Research area  Energy conversion 
Research sub‐area  Solar systems 
Research focus 
description 
(Max. 200 words) 
The main objective is to collect and use solar energy in process and equipment. various flat and 
concentrateCollectors are used to produce thermal energy In two main temperature level as low‐ 
medium  and  high  temperature.  Thermal  energy  are  used  in  Several  process  such  as  drying, 
heating, cooling, refrigeration, desalination, direct and indirect power generation, and so on.         
Research in solar heating, cooling, and power generation are included as:  
‐    science  and  technology  development    in  low  and  medium  temperature  in  process  and 
equipment 
‐ science and technology development in high temperature process and equipment. 
‐  science  and  technology  development  in  direct  and  indirect    conversion  of  solar  energy  to 
electricity and other energy carrier 
‐ the aim of research in this area is developing  of scientific and technical of solar energy basics and 
efficiency  improvement  of  process  and  equipment  ,  access  to  technical  knowledge  and  usage 
development of solar energy conversion in systems and processes.   
Illustration 
 
 
 
Research 
background 
(Conducted relevant 
projects) 
 Design and fabrication of heat pipe solar collector using water‐ ethanol solution as the 
working fluid ( Research project code: 570390051)  
 Design And construction of pilot plant solar liquid desiccant air conditioner (Research 
project code: (568802) 
 
 
 
One‐Page Research Focus Description  
Research focus   Energy Simulation and Modelling   
Researchers  S.A.H.Zamzamian  
Related theme  Environment and Green Energies
Research area  Energy Efficiency and Management
Research sub‐area  Energy Management and Efficient Energy Use
Research focus 
description 
(Max. 200 words) 
Energy-modeling is the virtual or computerized simulation of a thermal-electrical energy for building or
every complex that focuses on modeling energy consumption, utility and life cycle of various energy related
items such as thermal hot water ,air conditioning and also solar power plants or lights. It is also used to
evaluate the simulation and modeling of solar thermal technology using nano-energy such as modeling of
thermal conductivity or heat transfer by nanofluids or porous-media for every energy systems.
Nanofluids are prepared by dispersing solid nanoparticles in fluids such as water, oil, or ethylene glycol.
These fluids represent an innovative way to increase thermal conductivity and, therefore, heat transfer. Unlike
heat transfer in conventional fluids, the exceptionally high thermal conductivity of nanofluids provides for
exceptional heat transfer, a unique feature of nanofluids.
This Research  area  presents a novel model for the prediction of the effective thermal conductivity of
nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a
function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial
shell properties.
According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are
in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based
nanofluids.
The work addresses the utilisation of all resources and all technologies to understand what is happening and
what will happen to the energy system. Through our energy scenario program work we also seek to
identify how country are addressing the challenge and how country and key stakeholders can put in place
policies and structures to deliver a sustainable energy system.The net energy consumption in the scenarios has
been calculated on the basis of a consumption model of energy consumption in 2035 and 2050 analysed by
quality of energy at three different levels of energy savings (moderate, large and extra-large savings).The
following is included: electricity, district heating, process heating, individual heating, and energy for transport
(including aviation and domestic shipping).
Main targets: In this area, Simulation and Modelling of an energy systems as the energy efficiency,
achievement of high efficiency, exergy loss, friction factor, and pumping power parameters were analyzed to
determine the thermal performance of different energy systems like nanofluid coolants in a rectangular
microchannel heat sink and etc.
Illustration 
 
 
Research 
background 
(Conducted relevant 
projects) 
 Experimental study of the performance of a flat‐plate collector by using Cu nanofluid. (Research project code: ) 
 Experimental investigation of nano‐fluids used in the parabolic trough with respect to increase heat transfer. 
(Research project code: ) 
 Investigation of  the performance of the vacuum tube collector (VTC)using nanofluid technology. (Research 
project code:     ) 
 
a b

RA-ZAMZAMIAN

  • 1.
    One‐Page Research Focus Description   Research focus   Solar NovelTechnologies Developments    Researchers  S.A.H.Zamzamian   Related theme  Environment and Green Energies  Research area  Energy Conversion  Research sub‐area  Solar Systems  Research focus  description  (Max. 200 words)  The case of combined conduction, convection and radiation heat transfer usually occurred in solar  thermal usages is the aim of the present study. Several configurations of solar air heaters (SAHs)  have  been  developed  in  literature  in  searching  of  a  suitable  design  for  different  types  of  applications,  various  designs  of  solar  collectors  have  been  the  subject  of  many  theoretical  and  experimental  investigations.  In  thermal  devices,  improvement  of  convection  heat  transfer  becomes an important factor in industries like electronic equipment and heat exchangers.  In industrial processes, another method for improving the convection heat transfer characteristics  is using porous medium(any material which consists of solid matrix with an interconnected void is  called porous media such as rocks and open cell aluminum foams) and nanofluid. Convection heat  transfer  and  fluid  flow  with  nanofluids  and  porous  medium  occur  in  power  stations  of  many  engineering  applications  where  cooling  or  heating  is  required  such  as  cooling  turbine  blades,  cooling electronic equipment and combustion systems. This  research  also  focus  program  aims  to  obtain  lab‐scale  nanofluid  which  will  be  built  in  two  stages. In this project fluid phase, is silicone oil with temperatures between 200 and 300 Celsius  degrees and nanoparticles  are silica nanostructures with different morphologies and sizes, silicon  carbide  and  silicon  dioxide  nano‐structures  will  be  spread  in  silicon  oil  with  different  volume  percentages  (1‐5%).stability  of  the  mixture  is  one  of  the  most  important  issues  and  will  be  examined with a suitable method such as zeta potential and particle size and the heat transfer  properties of oil at high temperatures will be examined with various analyzes such as DSC analysis,  also K coefficient will be examined.  Main targets: Due to their excellent characteristics, nanofluids find wide applications in enhancing heat transfer.   The aim of this appraisal Research Areas (RA) is the methodology study as an experimental setup  of the nanofluids in solar thermal Energy applications.   In order to overcome these drawbacks, achievement of direct solar thermal  absorption collector  has been used for solar thermal exploitation.  Hence  it  will  be  a  promising  effort  to  develop  research  projects  on  the  use  of  nanofluids  in  different solar thermal systems such as solar absorption, solar thermoelectric cells, and thermal  conductivity of nanofluids, electronic applications, energy storage and solar absorption.  illustration        Research  background  (Conducted relevant  projects)   Experimental study of the performance of a flat‐plate collector by using Cu nanofluid. (Research project code: )   Experimental investigation of nano‐fluids used in the parabolic trough with respect to increase heat transfer.  (Research project code: )   Investigation  of    the  performance  of  the  vacuum  tube  collector  (VTC)using  nanofluid  technology. (Research  project code:     )   
  • 2.
    One‐Page Research Focus Description     Research focus   Solar heating & cooling systems    Researchers S.A.H.Zamzamian  Related theme  Environment and clean energies  Research area  Energy conversion  Research sub‐area  Solar systems  Research focus  description  (Max. 200 words)  The main objective is to collect and use solar energy in process and equipment. various flat and  concentrateCollectors are used to produce thermal energy In two main temperature level as low‐  medium  and  high  temperature.  Thermal  energy  are  used  in  Several  process  such  as  drying,  heating, cooling, refrigeration, desalination, direct and indirect power generation, and so on.          Research in solar heating, cooling, and power generation are included as:   ‐    science  and  technology  development    in  low  and  medium  temperature  in  process  and  equipment  ‐ science and technology development in high temperature process and equipment.  ‐  science  and  technology  development  in  direct  and  indirect    conversion  of  solar  energy  to  electricity and other energy carrier  ‐ the aim of research in this area is developing  of scientific and technical of solar energy basics and  efficiency  improvement  of  process  and  equipment  ,  access  to  technical  knowledge  and  usage  development of solar energy conversion in systems and processes.    Illustration        Research  background  (Conducted relevant  projects)   Design and fabrication of heat pipe solar collector using water‐ ethanol solution as the  working fluid ( Research project code: 570390051)    Design And construction of pilot plant solar liquid desiccant air conditioner (Research  project code: (568802)       
  • 3.
    One‐Page Research Focus Description   Research focus   Energy Simulationand Modelling    Researchers  S.A.H.Zamzamian   Related theme  Environment and Green Energies Research area  Energy Efficiency and Management Research sub‐area  Energy Management and Efficient Energy Use Research focus  description  (Max. 200 words)  Energy-modeling is the virtual or computerized simulation of a thermal-electrical energy for building or every complex that focuses on modeling energy consumption, utility and life cycle of various energy related items such as thermal hot water ,air conditioning and also solar power plants or lights. It is also used to evaluate the simulation and modeling of solar thermal technology using nano-energy such as modeling of thermal conductivity or heat transfer by nanofluids or porous-media for every energy systems. Nanofluids are prepared by dispersing solid nanoparticles in fluids such as water, oil, or ethylene glycol. These fluids represent an innovative way to increase thermal conductivity and, therefore, heat transfer. Unlike heat transfer in conventional fluids, the exceptionally high thermal conductivity of nanofluids provides for exceptional heat transfer, a unique feature of nanofluids. This Research  area  presents a novel model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial shell properties. According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based nanofluids. The work addresses the utilisation of all resources and all technologies to understand what is happening and what will happen to the energy system. Through our energy scenario program work we also seek to identify how country are addressing the challenge and how country and key stakeholders can put in place policies and structures to deliver a sustainable energy system.The net energy consumption in the scenarios has been calculated on the basis of a consumption model of energy consumption in 2035 and 2050 analysed by quality of energy at three different levels of energy savings (moderate, large and extra-large savings).The following is included: electricity, district heating, process heating, individual heating, and energy for transport (including aviation and domestic shipping). Main targets: In this area, Simulation and Modelling of an energy systems as the energy efficiency, achievement of high efficiency, exergy loss, friction factor, and pumping power parameters were analyzed to determine the thermal performance of different energy systems like nanofluid coolants in a rectangular microchannel heat sink and etc. Illustration      Research  background  (Conducted relevant  projects)   Experimental study of the performance of a flat‐plate collector by using Cu nanofluid. (Research project code: )   Experimental investigation of nano‐fluids used in the parabolic trough with respect to increase heat transfer.  (Research project code: )   Investigation of  the performance of the vacuum tube collector (VTC)using nanofluid technology. (Research  project code:     )    a b