SlideShare a Scribd company logo
1 of 45
Download to read offline
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   1/34
                           Motivation        Characterization                  In­beam tests                
Prototype of a new calorimeter for the studies of nuclear 
reactions with relativistic radioactive beams
Santiago de Compostela                                                    10th. December, 2010
 Martín Gascón
                                     
         
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   2/34
                           Motivation        Characterization                  In­beam tests                
MotivationMotivation
FAIR, R3
B, CALIFA, ProtoZero (CALIFA's prototype)
Characterization of CsI(Tl) crystals and photosensorsCharacterization of CsI(Tl) crystals and photosensors
Photosensors
Bench­tests on small and prototype crystals
In­beam tests of the prototype In­beam tests of the prototype and prototype simulationsand prototype simulations
Results of the proton beam test 
Results of the gamma beam tests
ConclusionsConclusions
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   3/34
                           Motivation        Characterization                  In­beam tests                
FAIR: Facility for Antiproton Ion Research
New accelerator facility in Darmstadt (Germany)
Antiprotons, stable and radioactive­ion beams 
Primary intensity: (1012 
ions/s)@ 2­30 GeV/u
Nuclear structure and Astrophysics with exotic nuclei
Antiproton Physics
Relativistic heavy ions collisions
Atomic and Plasma Physics
Motivation
FAIR                 R3
B               CALIFA             ProtoZeroFAIR
Scientific Program
FAIR
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   4/34
                           Motivation        Characterization                  In­beam tests                
R3
B: Reactions with Relativistic Radioactive Beams
  Calorimeter / gamma spectrometer 
  Silicon arrays around target for recoils
  Large acceptance superconducting dipole  
  High resolution neutron detectors
  ToF wall for charged­particle id.
  High resolution magnetic spectrometer
Motivation
FAIR                 R3
B               CALIFA             ProtoZeroR3
B
 R3B experimental subjects
Detectors
Challenging research program including QFS, 
knockout,  fragmentation,  fission, ...
  Nuclear structure far from stability
  Reactions of astrophysical interest
  Study of the EOS of asymmetric matter
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   5/34
                           Motivation        Characterization                  In­beam tests                
 CALIFA requirements (R3B LoI, 2005) :
 
CALIFA: CALorimeter for In­Flight emitted gAmmas 
Motivation
FAIR                 R3
B               CALIFA            ProtoZeroCALIFA
Gamma sum energy
Gamma multiplicity
Gamma energy resolution
Calorimeter for high energy light charged particles Up to   MeV in Lab system300
Good light­charged particles energy resolution
(Esum
)/<Esum
> < 10%
(N)/<N> < 10 %
< 5 % E/E (gammas at 1 MeV)
Total absortion efficiency 80 % (up to ESRF
 = 5 MeV)
< 1%  p/Ep (protons at 300 MeV)
H. Álvarez-Pol et al. Nucl. Inst. and Meth. B 266 (2008) 4616-4620
  To fulfill all these requirements is a challenge that 
gives CALIFA its unique characteristics.
  This challenge is even greater if we take into account 
the constraints imposed by experiments with relativistic 
ions in inverse kinematics.
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   6/34
                           Motivation        Characterization                  In­beam tests                
CALIFA: Geometry
Motivation
  Gammas emitted by moving sources at relativistic energies suffer the relativistic 
Doppler Effect.
  Calculation of their energy in the Source Reference Frame (SRF) requires an 
accurate measurement of both the Lab energy (LRF) and the emission polar angle. 
A limited polar angle resolution 
would contribute to the uncertainty 
of the gamma energy in SRF
Doppler Effect Constraint
Doppler factor as a 
function of the polar 
angle.
Angular distribution of gammas in the LRF
Detector design
 The optimal polar angle granularity to guarantee the required 
energy resolution should be determined 
  Total­absorption efficiency requirement is determined by the 
length of the scintillating material and dead volume (empty space 
and material as wrapping and support structures)    
FAIR                 R3
B               CALIFA            ProtoZeroCALIFA
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   7/34
                           Motivation        Characterization                  In­beam tests                
What scintillating material ?
Motivation
               CsI(Tl) emission spectrum
CsI(Tl) 
 Advantages
well known properties
relatively high density 
high light yield 
cheap to make, easy to handle
slightly hygroscopic
good energy resolution with 
APDs
Inconvenient
Long scintillating decay time
NaI(Tl) CsI(Tl) CsI(Na) BGO LYSO PWO CsI (pure)
5.29 3.86 3.67 4.51 4.51 7.13 7.1 8.29 4.51
63000 49000 39000 60000 45000 9000 32000 100 16800
< 3% 3.5% 7% 6% 7.5% 10% 7.1% >10% 7.5%
N/A N/A 3.8% 4.9% N/A 8.3% N/A N/A 4.3%
380
350 310 fast
550 420 480 420 420 315
430 415
25 25/213 620 fast 1000 630 300 41 6 35/6
Hygroscopic yes yes yes slightly yes no no no slightly
Cost (per cm3) $30 $30 $2 $5 $5 $9 N/A $2 $5
LaBr3
LaCl3
Density (g/cm3
)
Light Yield (ph/MeV)
E/E 662 keV (PMT)
E/E 662 keV (APD)
Peak(nm)
Fast Decay (ns)
FAIR                 R3
B               CALIFA            ProtoZeroCALIFA
              APD quantum efficiency
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   8/34
                           Motivation        Characterization                  In­beam tests                
CsI: what length?
Three different crystal sets 
were evaluated in 
simulations for the 
CALIFA calorimeter
 Barrel specifications
 short:       9­ 12 cm
 medium: 11­15 cm
 large:      14­18 cm
Motivation
Conclusions
  The geometrical efficiency was higher than 80% for large and medium specifications
  The full­energy peak efficiency decreased from 70% (0.5 MeV) to 50 % (10 MeV)
  Crystal Multiplicity goes from 2 crystals (0.5 MeV) to 7 (10 MeV) for the whole calorimeter. It can 
reach 9 crystals in the Endcap, and it is limited to 4 crystals in the Barrel due to the Lorentz Boost
  Energy resolution contribution due to polar angle uncertainty is below 3%
Geometrical efficiency Several observables were studied to define the crystal geometry
FAIR                 R3
B               CALIFA            ProtoZeroCALIFA
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   9/34
                           Motivation        Characterization                  In­beam tests                
ProtoZero: Design and construction
Crystal sample corresponding to ~ 90º polar angle           
APDs tested in this prototype       
 15/16 bi frustum­shaped CsI(Tl) crystals  ­      
 15/16 LAAPDs (7x14 mm       2
, 10x10 mm    2
an 
d 10x10 2ch)   
 16 preamplifiers (Cremat, Mesytec) 
ProtoZero
Motivation
FAIR                 R3
B               CALIFA            ProtoZeroProtoZero
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   10/34
                           Motivation        Characterization                  In­beam tests                
Motivation
FAIR, R3
B, CALIFA, ProtoZero (CALIFA's prototype)
Characterization of CsI(Tl) crystals and photosensorsCharacterization of CsI(Tl) crystals and photosensors
Photosensors
Bench­tests on small and prototype crystals
In­beam tests of the prototype and prototype simulations
Results of the proton beam test 
Results of the gamma beam tests
Characterization
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   11/34
                           Motivation        Characterization                  In­beam tests                
Test with small samples: APDs vs. PMTs
CsI(Tl) + APD CsI(Tl) + PMT
    Crystal Length  cm1  cm5  cm10
XP1901
PMT XP1918
XP3102
7.0±0.1 8.4±0.1 12.8±0.1
6.1±0.1 7.4±0.1 10.7±0.1
9.1±0.1 9.9±0.1 16.5±0.2
ER at 662 keV for a 1 cm3 
CsI(Tl)  coupled to  a S8664­1010 APD and to a Photonis XP1918 PMT for 8 s shaping time.
Characterization
Shaping                 Crystal Length 
time 1 cm 5 cm 10 cm
4.68±0.12 5.11±0.12 4.74±0.12
4.42±0.12 4.87±0.09 4.72±0.08
4 s
8 s
Energy resolutions in % (FWHM) (at 662 keV) 
obtained for different PMTs and different crystal 
lengths at 4 s shaping time
Best energy resolution values in % (FWHM) 
(at 662 keV), obtained for different crystal 
sizes using a Hamamatsu S8664­1010 APD.
M. Gascón et al., IEEE Trans. Nuc. Sci 55 (2008) 1259-1262
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   12/34
                           Motivation        Characterization                  In­beam tests                
APD characterization
Procedure to compare different APD series and to disentangle the APD contribution to the energy resolution
Characterization
 The APD contribution to the energy resolution was found to be 0.12% for the 10x10 APD.
 These LAAPDs were proven to work properly in a wide dynamic range 
M. Gascón et al, IEEE Trans. Nuc. Sci 57 No. 3 (2010) 1465-1469
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   13/34
                           Motivation        Characterization                  In­beam tests                
APD characterization
Procedure to compare different APD series and to disentangle the APD contribution to the energy resolution
APD #   A.A.  Cap. LPR 
1 10x10 std 406 5.2% 20
2 10x10 std 404 5.4% 22
3 10x10 std 410 5.3% 8
4 10x10 std 411 5.5% 7
5 7x14 std 332 7.2% 23
6 7x14 std 322 8.1% 23
7 7x14 std 332 8.7% 32
8 7x14 std 333 9.2% 39
9 7x14 low 491 7.5% 24
10 7x14 low 484 8.0% 30
11 7x14 low 493 8.2% 31
12 7x14 low 492 9.8% 32
Cap=Capacitance 
O.Vb ID
(nA)
A.A.=active area (mm2
)   
O.Vb = Optimal bias voltage (Volts)
LPR = Light pulse resolution @ 5.105
 e­h 
Characterization
   The best performance was found for the 10x10 Hamamatsu APDs 
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   14/34
                           Motivation        Characterization                  In­beam tests                
APDs: Bias voltage and gain curves
Left: Energy resolution (Cs­137) vs. bias voltage for a 5 cm long crystals  coupled to Hamamatsu S8664­1010 APDs. 
Right: Typical gain curves of the S8664­1010 APD using  5 cm length CsI(Tl) crystals. 
Conclusions 
 Gain variation smaller than 1% 
can only be achieved with bias 
voltage variations below 350 mV 
Relative gain variation due 
to bias voltage variation at 
optimal bias voltage for  
CsI(Tl) crystals coupled to 
S8664­1010 APDs
Characterization
Crystal length Gain variation (%/V)
1 cm
5 cm
10 cm
2.84 ± 0.01
2.83 ± 0.01
2.83 ± 0.01
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   15/34
                           Motivation        Characterization                  In­beam tests                
APDs: Temperature drifts
(dM/dT)M­1
 = ­2.8 %/ºC
compares well with the ­2.5 %/ºC 
provided by Hamamatsu
Characterization
APD Gain Drift  at RT
Mean Peak position and Temperature vs. time.
Total and gain drift corrected 
spectra for a 137
Cs radioactive 
source.
 A PT­1000 probe was placed near the 
APD to get the temperature information
  The detectors  were cooled down using 
LN2 vapor and warmed up by a heater
Experimental setup
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   16/34
                           Motivation        Characterization                  In­beam tests                
Test with prototype samples: crystal quality and optical coupling
 Photograph of raw crystal samples from five providers.   P1­P5:  Amcrys, Hilger Lanzhou, Saint Gobain, Scionix 
Characterization
Crystal quality
Optical coupling
  For temporary bonds:  optical grease, and optical pads.   
  For permanent bonds:  Scionix RTV 681 optical cement
  The result was found to be strongly dependent on details of the 
contact, such as the amount of optical grease used, homogeneity or 
the presence of air bubbles 
Optical cement and optical greases
  The crystal quality depends on a set of factors such as 
transparency, surface treatment, polishing, and cutting edges. 
  The samples with the best quality in the visual inspection did 
not necessarily provide the best values for energy resolution and 
light­output
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   17/34
                           Motivation        Characterization                  In­beam tests                
Test with prototype samples: crystal wrapping
Averaged Light­pulse resolutions 
(FWHM) obtained using a LED 
with different 10x10 mm2
 exit face 
crystals and different wrapping 
configurations, coupled to an 
XP5A08 PMT without optical 
grease. 1x,2x,3x,6x are the number 
of layers of 75 m Teflon tape
  The ideal wrapping has not only to reflect 
the incident light but also to break up internal 
reflections and preferentially direct reflected 
light towards the photosensor.
  Best results for prototype crystals are 
generally achieved with 2 layers of ESR (2x 
65 m thickness)
Characterization
Conclusions
Setup for determining the optimal wrapping configuration for prototype crystals.
 Wrapping configuration for prototype crystals
Wrapping L.P.R (%)
5.90
5.97
1x ESR + 1x TF 6.01
1x ESR + 2x TF 6.03
1x ESR + 3x TF 6.02
1x ESR + 6x TF 6.11
2x 65 m ESR
65 m ESR
Different wrapping 
materials: aluminized 
Mylar, ESR, LEF.
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   18/34
                           Motivation        Characterization                  In­beam tests                
Test with prototype samples: Light Output
The largest Light Output was found for crystals 
with the largest exit face.
Conclusions 
Characterization
Energy resolution (FWHM) vs. photopeak channel for different samples, 
without optical grease between the crystal and the photomultiplier.
Setup used to compare 
the crystal light output 
Tested crystals with 10x10 and 
7x14 mm2
 exit faces
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   19/34
                           Motivation        Characterization                  In­beam tests                
Test with prototype samples: Non­uniformity in light collection (N.U.)
Conclusions 
  Important differences in light­collection non­
uniformity for each crystal, even for two samples 
coming from the same provider
  The E.R. can be bad for a good N.U. and vices 
versa because the E.R. is measured only at the 
crystal entrance face
N.U. and energy 
resolution E/E (662 
keV) for some samples 
tested in this work
P: Provider 
S: Sample (S1 or S2)
Characterization
Light collection non­uniformity determination 
for P1­S1 (best) and P5­S2 (worst) samples.
M. Gascón et al., IEEE Trans. Nuc. Sci 56 (2009) 962-967.
sample N.U. (%) E.R. (%)
P1-S1 1.1 9.3
P1-S2 4.5 6.4
P2-S1 2.2 5.9
P3-S2 2.3 6.6
P4-S1 1.8 6.5
P4-S2 4.3 7.3
P5-S2 10.4 7.4
Setup used for  
N.U. measurements
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   20/34
                           Motivation        Characterization                  In­beam tests                
Study of the energy resolution
Comments
  Remarkably different performances were 
found among the measured samples, even for 
two samples coming from the same provider.
  The best energy resolution values obtained  
were around 6% at 662 keV  (5% at 1 MeV) 
which are close to the CALIFA requirements
Top:  Experimental energy resolution as a function 
of the incident gamma energy.
Bottom:Experimental spectra of the two detection 
systems P1­S1 (red curve), and P2­S1 (blue curve), 
in response to 662 keV ­rays. The energy 
resolution values obtained for the P2­S1 sample are 
significantly better than P1­S1
Characterization
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   21/34
                           Motivation        Characterization                  In­beam tests                
Motivation
FAIR, R3
B, CALIFA, ProtoZero (CALIFA's prototype)
Characterization of CsI(Tl) crystals and photosensors
Photosensors
Bench­tests on small and prototype crystals
In­beam tests of the prototype and prototype simulationsIn­beam tests of the prototype and prototype simulations
Results of the proton beam test 
Results of the gamma beam tests
In­beam tests
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   22/34
                           Motivation        Characterization                  In­beam tests                
The Svedberg Laboratory (Uppsala, Sweden)
 10x20 mm2
 exit face bi­frustum shaped CsI(Tl) crystals,
  coupled to Hamamatsu 6867­10x20 APDs (2 channels)
  preamplifiers: 4 ch. Cremat CR­110 mounted in a 
common card in our laboratory
  crystal wrapping ESR (Enhanced Specular Reflector)     
130 m thick per crystal
  Proton beam energy 180 MeV
   A 2 mm thick Double Sided Silicon Strip 
Detectors (DSSSDs)  consisting of 32x32 
perpendicular strips
  25 mm thick copper and iron degraders for 
calibration  (protons at 92.7 and 120 MeV)
ProtoZero Experiment
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD
In­beam tests
180 MeV proton beam at TSL   
                     
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   23/34
                           Motivation        Characterization                  In­beam tests                
Energy spectra
Comments
 Energy resolutions are 
around 1%, which fulfills 
one of the main 
calorimeter requirements
  This values seem easily 
achievable for protons at 
this energy.
  Beam was impinging  in 
the boundary between 
crystals #1 and #3
 To the left of the peaks,  
those events losing  a 
certain energy can be 
observed
Spectra of incident 180 MeV protons obtained for each crystal of this prototype configuration
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD180 MeV proton beam at TSL   
                     
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   24/34
                           Motivation        Characterization                  In­beam tests                
Proton identification
 Comments
  Certain peak 
degradation 
  energy 
resolution ~3%
Events sharing the 
proton energy between 
crystals  #1 and #3 
produce a peak which is 
more than 1 MeV below 
the main peak
      Conclusion
 Correlation between Crystals #1 and #3.          Addback between Crystals #1 and #3.
Left: Beam profile obtained with the DSSSDs, relative positions of all the detectors (#1 to #4), 
and selection of protons hitting A) the boundary between crystals B) region inside Crystal #3. 
Right: Spectra obtained for protons hitting in regions A, B and Total.
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD180 MeV proton beam at TSL   
                     
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   25/34
                           Motivation        Characterization                  In­beam tests                
R3BSim (GEANT4 and ROOT)
Wrapping
130 m  per 
crystal
(2 ESR layers)
Peak degradation can be reduced using 
thinner crystal wrappingsProtons at 90, 120, 180 and 220 MeV, hitting  close to the 
boundary between 2 crystals (case B) wrapped with ESR 130 
m thick (2 layers)
In­beam tests
Conclusion
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD180 MeV proton beam at TSL   
                     
The ProtoZero reconstructed energy spectrum 
for 180 MeV protons. The wrapping thicknesses 
ranges from 0 to 260 m.
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   26/34
                           Motivation        Characterization                  In­beam tests                
Centro de Microanálisis de Materiales (CMAM)
 Protons 
Wrapping
 5 MV Cockroft­Walton 
accelerator.
 Protons at 1 MeV
 The Teflon target (LiF) 
was 30 mm in diameter, 
5 mm thick
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD6.1 MeV gamma beam at CMAM
O. Tengblad. GSI Meeting. April 2009
CMAM
 CsI(Tl) crystals + APDs (7x14, 
10x10, 10x20)
 4 ch. Cremat CR­110
  Mesytec MSCF­16 amplifiers
  DAQ Midas (IEM­CSIC)
ProtoZero
6.129 resonance
1 5.618 single escape
5.107
0.511
Ep
 (MeV) E (MeV)
19
F
doble escape
19
F(p,)16
O
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   27/34
                           Motivation        Characterization                  In­beam tests                
 Protons 
Wrapping
 6.1 MeV gamma­rays produced at 
the target
 E.R = 2.8 % (FWHM) not so far 
from 2.2 % (simulation)
Energy resolution
In­beam tests
Energy reconstruction
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD6.1 MeV gamma beam at CMAM
Energy spectra 
of 6 crystals 
from this 
prototype 
configuration
Addback spectrum of 6 neighbor crystals
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   28/34
                           Motivation        Characterization                  In­beam tests                
 Protons 
Wrapping
 Energy range from 3 – 20 MeV
 25 keV @ 10 MeV  energy resolution
  photon flux is about 1000 ph/keV/s/cm2
.
  Radiator target: 10 microns Au foil
  64 scintillation fibres: 1x1mm2
Photon Tagger
 2x  8 channels Mesytec preamplifiers (MSI­8)
 Mesytec MSCF­16 amplifiers 
 32 channel sensing ADC (CAEN V785)
 DAQ based on the MultiBranch System (MBS)
 A PT­1000 temperature probe for monitoring
ProtoZero
NEPTUN Facility@S­DALINAC  ­ TUD, Darmstadt, Germany
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD4­10 MeV gamma beam at TUD
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   29/34
                           Motivation        Characterization                  In­beam tests                
Calibration
 Spectra obtained for 
a prototype 
configuration with 15 
crystals using 137
Cs 
and 60
Co radioactive 
sources.
ProtoZero
Energy reconstruction
Addback
Addback energy spectrum for 60
Co and 137
Cs 
radioactive sources.
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD4­10 MeV gamma beam at TUD
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   30/34
                           Motivation        Characterization                  In­beam tests                
Calibration
Wrapping
ProtoZero
Time Coincidences
   The photon tagger has 64 pairs of fibers.  Fibers give a signal after each electron hit.
  These signals are in time coincidence with the master trigger (MA) given by any prototype crystal
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD4­10 MeV gamma beam at TUD
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   31/34
                           Motivation        Characterization                  In­beam tests                
Calibration
Wrapping
ProtoZero
4­10 MeV energy spectra 
   The higher the tagged energy, the lower the statistic due to a lower gamma yield at the radiator
Energy spectra of 
the reconstructed 
gammas after 
selection of several 
fibers at different 
tagged energies
Peak (MeV)    E.R. (FWHM)
      2.9........................ 4.9 %
      4.0........................ 4.0 %
      7.6........................ 3.4 %
      8.6........................ 2.7 %
      9.6........................ 2.6 %
      10.3 ..................... 2.5 %
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD4­10 MeV gamma beam at TUD
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   32/34
                           Motivation        Characterization                  In­beam tests                
Calibration
Wrapping
ProtoZero
Comparison with simulations
Comparison for 4 MeV 
tagged gammas
Left: frontal view in the R3BSim 
program of the beam profile, 
together with the entrance 
position in the prototype for 
1000 emitted gammas (depicted 
in red dots).
Right: Beam Profile as tested in 
the R3BSim program.
     Energy deposition  (%)                         Multiplicity distribution
EXPERIMENTALSIMULATED
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD
Mean Multiplicity
  Experimental: 2.32
  Simulation:     2.45 
4­10 MeV gamma beam at TUD
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   33/34
                           Motivation        Characterization                  In­beam tests                
Wrapping
Comparison with simulations
   Experimental and simulated observables as a function of the tagged gamma energies.
Comparison between 
simulation and 
experiment, adding­
back  the energy 
deposited in the15 
crystals, for three 
different tagged 
gamma energies. 
In­beam tests
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD
                    energy resolution                               full energy peak efficiency                                    crystal multiplicity 
4­10 MeV gamma beam at TUD
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   34/34
                           Motivation        Characterization                  In­beam tests                
The main parameters affecting the energy resolution have been systematically studied.
The 4.4% at 662 keV obtained with small samples coupled to 1 cm2
APD was better than those
previously reported in literature.
The energy resolution for 13 cm crystals get worse since their light output is lower, however the
values obtained for some of the APD-crystal assemblies were close to 5% @ 1 MeV, indicating that
they are a suitable solution for the CALIFA Barrel.
Remarkably different performances were found among the measured samples, even for two
samples coming from the same provider.
Prototype CsI(Tl) crystals + APDs were found to have a linear response for protons with
energies between 90 and 180 MeV and for gammas between few keV and 10 MeV.
The obtained energy resolutions for protons fulfills the Calorimeter requirements.
The tests performed at TU Darmstadt showed the effectiveness of the addback procedure.
The simulation of these prototypes reproduced the experimental results with regard of the
observables obtained in the CALIFA simulation and particularly in terms of energy deposition and
crystal multiplicity distribution.
Conclusions
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   35/34
                           Motivation        Characterization                  In­beam tests                
Thank you for your attention
 
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   36/34
                           Motivation        Characterization                  In­beam tests                
Extra slides
 
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   37/34
                           Motivation        Characterization                  In­beam tests                
Test with prototype samples: LAAPD readout
Config. 1: single power suply and preamp.
 Modest improvement in the energy 
resolution (from 6.7% to 6.5%)
E.R. depends on 
 Crystal quality
 Optical coupling
 Crystal wrapping
 Light output 
 Temperature drifts
 LAAPD readout
 Amplifier gain
 Shaping time
 Bias voltage
 Non­Uniformity
Config. 2: two power supply and 2 preamps.
Energy resolution as a function of the bias voltage. Config. 1 used a single power supply and a preamplifier; 
config. 2 used two independent voltage supplies and the currents were added in.
Conclusions 
Characterization
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   38/34
                           Motivation        Characterization                  In­beam tests                
Calibration
Wrapping
 Spectra obtained for 
a prototype 
configuration with 15 
crystals using Co­56 
radioactive source.
ProtoZero
Addback 
spectrum for 
Co­56 
radioactive 
source.
In­beam tests
Energy reconstruction
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD4­10 MeV gamma beam at TUD
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   39/34
                           Motivation        Characterization                  In­beam tests                
Energy calibration
Correlation between neighbors
  A gain relation between #1 and 
#2 and between #3 and #4 allows 
calibration
   The energy calibration was performed  
with protons at 92, 120 and 180 MeV         
( 84, 117 and 173 MeV after DSSSD, Box)
Energy calibration
In­beam tests
Correlation spectra 
obtained for neighbor 
crystals
180 MeV proton beam at TSL                         6.1 MeV gamma beam at CMAM               4­10 MeV gamma beam at TUD180 MeV proton beam at TSL   
                     
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   40/34
                           Motivation        Characterization                  In­beam tests                
Prototype crystals characterization
  In­beam test with 6.1 MeV gamma beam at CMAM
CsI(Tl) crystals + APDs  have a linear response between 511 keV and 6.1 MeV,
The reconstructed peak for 6.1 MeV gammas showed an E.R.=  2.8%, not so far from the 2.2% estimated by 
the simulation.
  In­beam test with 4­10 MeV gamma beam at TUD Darmstadt
This test showed the effectiveness of the addback procedure in the range (0.5­10 MeV)
The simulation reproduces the experimental results in terms of energy deposition and crystal multiplicity 
distribution
   In­beam tests with 180 MeV proton beam at TSL
   CsI(Tl) crystals + APDs have a linear response  between 90 and 180 MeV
   E.R.  = 1% (180 MeV) which fulfills Calorimeter requirements.
   Peak degradation can be solved using thinner wrapping.
Prototype test beams
Conclusions
  Crystals with the largest exit face gave the largest light output. 
  Important differences between light­collection non­uniformity and energy resolution for each crystal, even 
for two samples from the same provider.
  The individual readout system for each of the two channels improved energy resolution, at the expense of 
greater complexity in both the electronics and the data analysis.
   The results obtained with some of the APD­crystal assemblies were close to 5% (FWHM) energy 
resolution for 1 MeV photons, indicating that they are a suitable solution for the CALIFA Barrel. 
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   41/34
                           Motivation        Characterization                  In­beam tests                
Why CsI(Tl) + APD
Characterization
Estimated CsI(Tl) emission spectrum
CsI(Tl) 
 used in several 
experiments (Babar, 
Belle)
  cheap to make, easy 
to handle,
  slightly hygroscopic
  High light yield 
(~60000 ph/MeV) 
  Good energy 
resolution  
  Spectral response extends into 
long wavelengths. Ideal for CsI(Tl) 
crystals
  Higher quantum efficiency than 
PMTs
 Higher gain than PIN Diodes
  Insensitive to magnetic fields 
APDs 
NaI(Tl) CsI(Tl) CsI(Na) BGO LYSO PWO CsI (pure)
5.29 3.86 3.67 4.51 4.51 7.13 7.1 8.29 4.51
63000 49000 39000 60000 45000 9000 32000 100 16800
< 3% 3.5% 7% 6% 7.5% 10% 7.1% >10% 7.5%
N/A N/A 3.8% 4.9% N/A 8.3% N/A N/A 4.3%
380
350 310 fast
550 420 480 420 420 315
430 415
25 25/213 620 fast 1000 630 300 41 6 35/6
yes yes yes slightly yes no no no slightly
Cost (per cm3) $30 $30 $2 $5 $5 $9 N/A $2 $5
LaBr3
LaBr3
Density (g/cm3
)
Light Output (ph/MeV)
E/E 662 keV (PMT)
E/E 662 keV (APD)
Peak(nm)
Fast Decay (ns)
Higroscopic
APD Quantum efficiency (%) 
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   42/34
                           Motivation        Characterization                  In­beam tests                
Test with prototype samples: crystal wrapping
Averaged Light­pulse resolutions and 
energy resolution (FWHM) obtained 
using a LED with different 10x10 mm2
 
exit face crystals and different 
wrapping configurations, coupled to 
an XP5A08 PMT without optical 
grease. 1x,2x,3x,6x is the number of 
layers, and TF is Teflon tape
 For small samples:  four 75 m­thick layers of Teflon tape covered by a 5 m­thick layer of aluminized Mylar  
 Best results for prototype crystals are generally achieved with 2 layers of ESR
E.R. depends on 
 Crystal quality
 Optical coupling
 Crystal wrapping
 Light output 
 Temperature drifts
 Amplifier gain
 Shaping time
 Bias voltage
 Non­Uniformity
Characterization
Best wrappings for small and prototype crystals
Setup for determining the optimal 
wrapping configuration for 
prototype crystals.
 Wrapping configuration for prototype crystalsWrapping configuration for small crystals
Wrapping L.P.R (%) E.R. (%)
2x ESR 5.90 15.44
1x ESR 5.97 15.80
1x ESR + 1x TF 6.01 16.28
1x ESR + 2x TF 6.03 15.72
1x ESR + 3x TF 6.02 15.58
1x ESR + 6x TF 6.11 16.60
Crystal wrapping E.R. (%)
Teflon + Aluminumfoil 10.00 ± 0.09
8.68 ± 0.09
Teflon + Copper tape 8.41 ± 0.08
7.48 ± 0.08
Teflon tape (300 m) 25.95 ± 0.34
Teflon + Metalic adhesive tape
Teflon + Aluminized Mylar
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   43/34
                           Motivation        Characterization                  In­beam tests                
Test with prototype samples: Amplifier gain and shaping time
  The best results were generally achieved when the amplifier gain 
was set to cover the full dynamic range of the MCA
  Shaping times between 4 and 8 s seemed to be a good 
compromise: they provided good energy resolution without 
incurring pile­up effects.
E.R. depends on 
 Crystal quality
 Optical coupling
 Crystal wrapping
 Light output 
 Temperature drifts
 Amplifier gain
 Shaping time
 Bias voltage
 Non­Uniformity
Left: Energy resolution vs. amplifier gain for 4 s shaping time.  Right: Energy resolution vs. shaping time for 1, 5 
and 10 cm long crystals coupled to a S8664­1010 APD (4 s shaping time and 380 V bias voltage).
Conclusions 
Conclusions 
Characterization
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   44/34
                           Motivation        Characterization                  In­beam tests                
APDs: Bias voltage and gain curves
Left: Energy resolution vs. bias voltage, 
keeping the photopeak at a constant 
channel, for a 5 cm (top) and 13 cm long 
crystals (bottom) coupled to LAAPDs. 
Right: Typical gain curves of the 
S8664­1010 APD (top) and S8664­1010  2 
channel APD (bottom) using CsI(Tl) 
crystals. 
Conclusions 
  bias voltage variation below 
0.35V can guarantee a gain 
variation smaller than 1%
Relative gain 
variation due to bias 
voltage variation for 
all crystals.
Characterization
Martín Gascón                                                           Santiago de Compostela, December 10 th
, 2010   45/34
                           Motivation        Characterization                  In­beam tests                
APD characterization
Procedure to compare different APD series and to disentangle the APD contribution to the energy resolution
APD #   A.A.  Cap. LPR 
1 10x10 std 406 5.2% 20
2 10x10 std 404 5.4% 22
3 10x10 std 410 5.3% 8
4 10x10 std 411 5.5% 7
5 7x14 std 332 7.2% 23
6 7x14 std 322 8.1% 23
7 7x14 std 332 8.7% 32
8 7x14 std 333 9.2% 39
9 7x14 low 491 7.5% 24
10 7x14 low 484 8.0% 30
11 7x14 low 493 8.2% 31
12 7x14 low 492 9.8% 32
Cap=Capacitance 
O.Vb ID
(nA)
A.A.=active area (mm2
)   
O.Vb = Optimal bias voltage (Volts)
LPR = Light pulse resolution @ 5.105
 e­h 
Characterization
Experimental setup 
for comparing 
different APD series
  The APD contribution to the 
energy resolution was found to be 
0.12% for the 10x10 APD.
  The APD dark current can be 
obtained using a NHQ 225 ISEG 
power supply
   The 10x10 Hamamatsu APD 
showed the best performances.
APD characterization 

More Related Content

Similar to Prototype Calorimeter for Relativistic Radioactive Beam Studies

Atomic Absorption spectroscopy
Atomic Absorption spectroscopyAtomic Absorption spectroscopy
Atomic Absorption spectroscopyVishak Perumal
 
On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...
On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...
On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...Martin Gascon
 
638828main thibeault presentation
638828main thibeault presentation638828main thibeault presentation
638828main thibeault presentationClifford Stone
 
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single CrystalsThermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single CrystalsAI Publications
 
Tritium2016 Presentation v.1-G. Zheng
Tritium2016 Presentation v.1-G. ZhengTritium2016 Presentation v.1-G. Zheng
Tritium2016 Presentation v.1-G. ZhengGuiqiu (Tony) Zheng
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Jorge Quintanilla
 
application of carbon nano tube in chromatography
application of carbon nano tube in chromatographyapplication of carbon nano tube in chromatography
application of carbon nano tube in chromatographyAbdolah Karimgolan
 
Presentació esmolna10
Presentació esmolna10Presentació esmolna10
Presentació esmolna10bisquertGroup
 
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...Raj Kumar, PhD
 
Seminar report on CNTs 2017
Seminar  report  on CNTs 2017Seminar  report  on CNTs 2017
Seminar report on CNTs 2017Saurabh Bansod
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentationShinichiro Yano
 
Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02Cleophas Rwemera
 
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Mississippi State University
 

Similar to Prototype Calorimeter for Relativistic Radioactive Beam Studies (20)

Advanced Characterization of Materials: Relevance and Challenges.
Advanced Characterization of Materials: Relevance and Challenges.Advanced Characterization of Materials: Relevance and Challenges.
Advanced Characterization of Materials: Relevance and Challenges.
 
Atomic Absorption spectroscopy
Atomic Absorption spectroscopyAtomic Absorption spectroscopy
Atomic Absorption spectroscopy
 
On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...
On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...
On the Energy resolution optimization of CsI(Tl) crystals for the R3B Calorim...
 
638828main thibeault presentation
638828main thibeault presentation638828main thibeault presentation
638828main thibeault presentation
 
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single CrystalsThermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
 
Carbon Nanotubes
Carbon NanotubesCarbon Nanotubes
Carbon Nanotubes
 
G080468-00
G080468-00G080468-00
G080468-00
 
Tritium2016 Presentation v.1-G. Zheng
Tritium2016 Presentation v.1-G. ZhengTritium2016 Presentation v.1-G. Zheng
Tritium2016 Presentation v.1-G. Zheng
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
G080468 00
G080468 00G080468 00
G080468 00
 
application of carbon nano tube in chromatography
application of carbon nano tube in chromatographyapplication of carbon nano tube in chromatography
application of carbon nano tube in chromatography
 
M Morales Sealed Rpcs
M Morales Sealed RpcsM Morales Sealed Rpcs
M Morales Sealed Rpcs
 
M Morales Sealed Rpcs
M Morales Sealed RpcsM Morales Sealed Rpcs
M Morales Sealed Rpcs
 
Presentació esmolna10
Presentació esmolna10Presentació esmolna10
Presentació esmolna10
 
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
 
Seminar report on CNTs 2017
Seminar  report  on CNTs 2017Seminar  report  on CNTs 2017
Seminar report on CNTs 2017
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
 
Atomic spectroscopy ch 20
Atomic spectroscopy ch 20Atomic spectroscopy ch 20
Atomic spectroscopy ch 20
 
Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02
 
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
 

More from Martin Gascon

Ingrid - Power Plants Database
Ingrid - Power Plants DatabaseIngrid - Power Plants Database
Ingrid - Power Plants DatabaseMartin Gascon
 
Wind turbine vibration analysis
Wind turbine vibration analysisWind turbine vibration analysis
Wind turbine vibration analysisMartin Gascon
 
Travel Safe - Martin Gascon - Web app
Travel Safe - Martin Gascon - Web appTravel Safe - Martin Gascon - Web app
Travel Safe - Martin Gascon - Web appMartin Gascon
 
Barium-based bright scintillators as transparent ceramic
Barium-based bright scintillators as transparent ceramicBarium-based bright scintillators as transparent ceramic
Barium-based bright scintillators as transparent ceramicMartin Gascon
 
Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...
Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...
Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...Martin Gascon
 
Non-proportionality studies through the application of high isostatic pressure
Non-proportionality studies through the application of high isostatic pressureNon-proportionality studies through the application of high isostatic pressure
Non-proportionality studies through the application of high isostatic pressureMartin Gascon
 
R&D on CsI(Tl) crystals + LAAPD
R&D on CsI(Tl) crystals + LAAPD  R&D on CsI(Tl) crystals + LAAPD
R&D on CsI(Tl) crystals + LAAPD Martin Gascon
 
Energy resolution of several scintillating crystals using different readout ...
 Energy resolution of several scintillating crystals using different readout ... Energy resolution of several scintillating crystals using different readout ...
Energy resolution of several scintillating crystals using different readout ...Martin Gascon
 

More from Martin Gascon (8)

Ingrid - Power Plants Database
Ingrid - Power Plants DatabaseIngrid - Power Plants Database
Ingrid - Power Plants Database
 
Wind turbine vibration analysis
Wind turbine vibration analysisWind turbine vibration analysis
Wind turbine vibration analysis
 
Travel Safe - Martin Gascon - Web app
Travel Safe - Martin Gascon - Web appTravel Safe - Martin Gascon - Web app
Travel Safe - Martin Gascon - Web app
 
Barium-based bright scintillators as transparent ceramic
Barium-based bright scintillators as transparent ceramicBarium-based bright scintillators as transparent ceramic
Barium-based bright scintillators as transparent ceramic
 
Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...
Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...
Nonproportionality Studies in Single Crystal Scintillators: Towards Improved ...
 
Non-proportionality studies through the application of high isostatic pressure
Non-proportionality studies through the application of high isostatic pressureNon-proportionality studies through the application of high isostatic pressure
Non-proportionality studies through the application of high isostatic pressure
 
R&D on CsI(Tl) crystals + LAAPD
R&D on CsI(Tl) crystals + LAAPD  R&D on CsI(Tl) crystals + LAAPD
R&D on CsI(Tl) crystals + LAAPD
 
Energy resolution of several scintillating crystals using different readout ...
 Energy resolution of several scintillating crystals using different readout ... Energy resolution of several scintillating crystals using different readout ...
Energy resolution of several scintillating crystals using different readout ...
 

Recently uploaded

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 

Recently uploaded (20)

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 

Prototype Calorimeter for Relativistic Radioactive Beam Studies