SlideShare a Scribd company logo
1 of 23
PNGE 434 Fall 2014
Project 1:
Final Report – Dec. 15th
, 2014
By: Herbert Hand, Michael Palma,
Ibrahim Alotaibi & Carl Chidester
Petroleum and Natural Gas Engineering: 434
West Virginia University
PNGE 434 Fall 2014
Tableof Contents
Introduction.................................................................................................................................... 3
Problem Statement........................................................................................................................ 3
Methodology.................................................................................................................................. 3
Tarner Method...............................................................................................................................3
Calculations and Results ..............................................................................................................4
Primary Production........................................................................................................................5
Calculations and Results ..............................................................................................................6
Water-flood...................................................................................................................................8
Calculations and Results ..............................................................................................................9
Reservoir Map & Well Placing.......................................................................................................12
Economic Analysis........................................................................................................................13
Calculations and Results ............................................................................................................14
Conclusion..................................................................................................................................... 15
References.................................................................................................................................... 15
Appendix....................................................................................................................................... 16
PNGE 434 Fall 2014
p B o R s B g μ o μ g
psia rb/stb scf/stb rb/scf cp cp
2500 1.498 721 0.00105 0.98 0.017
2300 1.463 669 0.00116 1.08 0.0166
2100 1.429 617 0.00128 1.19 0.0162
1900 1.395 565 0.00144 1.32 0.0158
1700 1.361 513 0.00163 1.45 0.0154
1500 1.327 461 0.00188 1.60 0.015
1300 1.292 409 0.00221 1.77 0.0146
1100 1.258 357 0.00265 1.96 0.0142
900 1.224 305 0.0033 2.12 0.0138
700 1.19 253 0.00432 2.40 0.0134
500 1.156 201 0.00616 2.65 0.013
300 1.121 149 0.01047 2.93 0.0126
100 1.087 97 0.03203 3.23 0.0122
Introduction
Whendeterminingthe mostefficient(profitable) application of aprojecta petroleumengineer
mustbe able tomake his or herdecisionusingbothtechnical andeconomical observations. Specifically,
whengivenareservoirincludingmanyof itscharacteristics,suchaspressure,area,height,porosity,
watersaturation,formationfactors,andviscosities,the engineershouldbe able todetermine the initial
oil and gas inplace. Withoil and gas inplace,alongwithallowableflow ratesandproductivity,the
productionlimitscanbe attained,whichalongwitheconomicparameterssuchasdrillingand
completioncostandcurrentoil and gas pricescan be usedto determine the mostprofitableproduction
plan.
Problem Statement
Developareservoirforprimaryphase aswell assubsequentwaterfloodingphase, andrecommend
a planthat meetsregulatoryrequirementsandmaximizesprofit.
Methodology
Several stepswere takentocomplete the application
Tarner Method
The reservoirprovidedisasolution-gasdrive oil reservoir,sowe usedthe stepsfromthe Tarner
Methodto determine Np/N,Gp/N,andRp. The available informationshowninfigure 1wasgiven.
PNGE 434 Fall 2014
P B o B g R s μ o μ g μ o /μ g
Estimated
R
N p /N S L k g /k o
Calculated
R
G p /N R p
Psia RB/STB RB/STB SCF/STB cp cp SCF/STB SCF/STB SCF/STB SCF/STB
2500 1.498 0.001048 721 0.98 0.017 57.4118 721 0 1 0 721 0
2300 1.463 0.001155 669 1.08 0.0166 64.9 851 0.01568 0.96906 0.00222 851 12.325 786.0
2100 1.429 0.00128 617 1.19 0.0162 73.5 932 0.03720 0.934758 0.00384 932 31.514 847.0
1900 1.395 0.00144 565 1.32 0.0158 83.3 1126 0.06368 0.897550 0.00696 1126 58.760 922.7
1700 1.361 0.001634 513 1.45 0.0154 94.3 1501 0.09125 0.860514 0.01258 1501 94.965 1040.7
1500 1.327 0.001884 461 1.60 0.015 106.9 2107 0.11668 0.825991 0.02186 2107 140.842 1207.1
1300 1.292 0.002206 409 1.77 0.0146 121.5 2965 0.13775 0.794941 0.03592 2965 194.281 1410.4
1100 1.258 0.002654 357 1.96 0.0142 138.2 4006 0.15529 0.767504 0.05572 4006 255.402 1644.7
900 1.224 0.0033 305 2.12 0.0138 153.3 5028 0.16998 0.742562 0.08305 5028 321.767 1893.0
700 1.19 0.004315 253 2.40 0.0134 179.0 6183 0.18259 0.719476 0.12016 6183 392.461 2149.4
500 1.156 0.006163 201 2.65 0.013 203.7 6727 0.19415 0.697494 0.17080 6727 467.115 2405.9
300 1.121 0.010469 149 2.93 0.0126 232.381 6215 0.20613 0.675260 0.24378 6215 544.630 2642.1
100 1.087 0.032032 97 3.23 0.0122 265.1 3328 0.22303 0.651039 0.35917 3328 625.234 2803.4
1. First,estimate R.
2. Then,calculate
𝑁 𝑝
𝑁
𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
a.
𝑁 𝑝
𝑁 2300
=
([( 𝐵𝑜−𝐵𝑜𝑖)+( 𝑅 𝑠𝑖−𝑅 𝑠) 𝐵 𝑔]−𝐵 𝑔[
𝐺 𝑝
𝑁 2500
−(
𝑅2500+𝑅2300
2
)(
𝑁 𝑝
𝑁 2500
)])
[( 𝐵𝑜−𝐵 𝑔 𝑅 𝑠)+𝐵 𝑔(
𝑅2500+𝑅2300
2
)]
3. Next,Calculate 𝑆 𝐿
a. 𝑆 𝐿𝑛 = (1 −
𝑁 𝑝
𝑁
)(
𝐵𝑜
𝐵𝑜𝑖
)(1 − 𝑆 𝑤𝑐)+ 𝑆 𝑤𝑐,𝑤ℎ𝑒𝑟𝑒 𝑆 𝑤𝑐 = 0.2
4. Next,calculate
𝐾 𝑔
𝐾 𝑜
a.
𝐾 𝑔
𝐾 𝑜
= (
𝑘 𝑔
𝑘 𝑜
)
𝑛
+ (
(
𝑘 𝑔
𝑘 𝑜
)
𝑛+1
−(
𝑘 𝑔
𝑘 𝑜
)
𝑛
𝑆 𝐿𝑛−𝑆 𝐿 𝑛+1
) ( 𝑆𝐿 𝑛
− 𝑆 𝐿 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
)
5. Afterfinding
𝑘 𝑔
𝑘 𝑜
,calculate R
a. 𝑅 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑅 𝑠 + (
𝐾 𝑔
𝑘 𝑜
)
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
(
𝐵𝑜 𝜇 𝑜
𝐵 𝑔 𝜇 𝑔
)
6. Then,adjust 𝑅 𝑔𝑢𝑒𝑠𝑠 until the valuesfor 𝑅 𝑔𝑢𝑒𝑠𝑠 𝑎𝑛𝑑 𝑅 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒.
7. Keepdoingthe same process(steps2through6) for each pressure.
8. Once, 𝑅 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 is foundforeach pressure,determine Gp/N
a.
𝐺 𝑝
𝑁 2300
= (
𝐺 𝑝
𝑁
)
2500
+ (
𝑅2300+𝑅2500
2
)[(
𝑁 𝑝
𝑁
)
2300
− (
𝑁 𝑝
𝑁
)
2500
]
9. Finally,calculate 𝑅 𝑝
a. 𝑅 𝑝 =
𝐺 𝑝
𝑁
𝑁 𝑝
𝑁
Calculations and Results
Afterenteringall of the equationsfromthe solutionmethodintoanexcel spreadsheet,ourresultsfor
the Tarner Methodare shownbelowinfigure 2.
PNGE 434 Fall 2014
PrimaryProduction
1. First,usingthe data givenfor5 wells,findthe flow units.
a. FindΣ𝜙ℎ 𝑎𝑛𝑑 Σ𝑘ℎ for eachwell’ssample data. Then,plotΣ𝜙ℎ 𝑣𝑠. Σ𝑘ℎ foreachinflection
pointforeach well.
b. The flowunitsare separatedbythe inflectionpointonthe plot.There’s4 flow unitsforeach
well.
2. Findthe Areaof the reservoir
a. Areafor an ellipseis 𝐴 = 𝑟𝑠ℎ𝑜𝑟𝑡 ∗ 𝑟𝑙𝑜𝑛𝑔 ∗ 𝜋
3. Next,foreach flowunit,calculate the average porosity,averageheight,andthe cumulativeoil
production.
a. 𝑁 =
7758𝐴ℎ̅ 𝜙̅∗(1−𝑆 𝑤𝑖̅̅̅̅̅)
𝐵𝑜𝑖
b. 𝑤ℎ𝑒𝑟𝑒 𝑠 𝑤𝑖 = 0.2
c. Thenadd up eachN to findthe total hydrocarbonsinplace inthe reservoir.
4. Next,find 𝑁 𝑝 𝑛
,𝑆 𝐿 𝑛
,
𝑘 𝑟𝑔
𝑘 𝑟𝑜
, 𝑅 𝑛 , 𝑎𝑛𝑑 𝐽
a. Where all necessarydataisfrom the tarner methodsolutions.
b. 𝐽 = (
𝑘 𝑟𝑜
𝐵𝑜 𝜇 𝑜
)
7.07∗10−3 𝑘ℎ
[ln(
𝑟 𝑒
𝑟 𝑤
)−0.75+𝑠]
c. 𝑁 𝑝 =
𝑁[ 𝐵𝑜−𝐵𝑜𝑖+( 𝑅 𝑠𝑖−𝑅 𝑠) 𝐵 𝑔]−[ 𝐺 𝑛−1−(
𝑅 𝑛+𝑅 𝑛−1
2
) 𝑁 𝑝−1] 𝐵 𝑔
( 𝐵 𝑔𝑖−𝐵 𝑔 𝑅 𝑠)+(
𝑅 𝑛+𝑅 𝑛−1
2
) 𝐵 𝑔
d. 𝑆 𝐿 𝑛
=
(𝑁+𝑁 𝑝 𝑛)
𝑁
𝐵𝑜
𝐵𝑜𝑖
(1 − 𝑆 𝑤𝑐) + 𝑆 𝑤𝑐
e.
𝑘 𝑟𝑔
𝑘 𝑟𝑜
= 12,000𝐸𝑥𝑝(−16 ∗ 𝑆 𝐿)
f. 𝑅 𝑛 = 𝑅 𝑠 + (
𝑘 𝑔
𝑘 𝑜
)(
𝐵𝑜 𝜇 𝑜
𝐵 𝑔 𝜇 𝑔
)
5. Next,find 𝑞max
a. 𝑞max = 𝑞 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 ∗ 𝐽
b. Where 𝑞 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙 𝑒 =
300𝑆𝑇𝐵
𝐷
6. Find Δ𝑡
a. Δ𝑡 = 1000 ∗ (𝑁 𝑝 𝑖
− 𝑁 𝑝 𝑖−1
)/[( 𝑞𝑖 + 𝑞𝑖−1) ∗
𝑛
2
]
b. tn = ∑ Δt𝑛
𝑖=0
7. Plot 𝑁 𝑝 𝑣𝑠. 𝑡
PNGE 434 Fall 2014
Area 113097336 = 2596.3576 acres
Avg. Φ (frac.) Avg. h (ft) N(STB)
0.078461538 5.2 4388869
0.054 2.6 1510287
0.06565625 6.4 4520105
0.074740741 5.4 4341538
STB
Flow Unit
Total Hydrocarbon 14760798.99
4
3
2
1
P B o μ o N p /N G p /N N p G p S L kr o kro /Bo μo J Wells q max q Δt t
Psia RB/STB cp SCF/STB MSTB BCF STB/D STB/D Days Days
2500 1.498 0.98 0 0 1 1 0.684 1.100 5 330 330
2300 1.463 1.08 0.01568 12.325 231.5 0.182 0.96906 0.93811 0.595 0.957 5 287.0 287 150 150
2100 1.429 1.19 0.03720 31.514 549.2 0.465 0.93476 0.86952 0.511 0.822 5 246.7 246 238 388
1900 1.395 1.32 0.06368 58.760 940.0 0.867 0.89755 0.7951 0.433 0.697 5 209.0 209 344 732
1700 1.361 1.45 0.09125 94.965 1346.9 1.402 0.86051 0.72103 0.365 0.587 5 176.0 176 423 1155
1500 1.327 1.60 0.11668 140.842 1722.3 2.079 0.82599 0.65198 0.306 0.493 5 147.8 148 464 1619
1300 1.292 1.77 0.13775 194.281 2033.3 2.868 0.79494 0.58988 0.257 0.414 5 124.2 124 457 2076
1100 1.258 1.96 0.15529 255.402 2292.1 3.770 0.76750 0.53501 0.217 0.349 5 104.6 105 453 2529
900 1.224 2.12 0.16998 321.767 2509.0 4.750 0.74256 0.48512 0.187 0.301 5 90.4 90 445 2974
700 1.19 2.40 0.18259 392.461 2695.2 5.793 0.71948 0.43895 0.154 0.247 5 74.2 74 452 3426
500 1.156 2.65 0.19415 467.115 2865.9 6.895 0.69749 0.39499 0.129 0.208 5 62.3 62 500 3926
300 1.121 2.93 0.20613 544.630 3042.7 8.039 0.67526 0.35052 0.107 0.172 5 51.5 52 622 4548
100 1.087 3.23 0.22303 625.234 3292.0 9.229 0.65104 0.30208 0.086 0.138 5 41.5 41 1073 5621
whenadding10 wellsperyear:
8. Use the tarner methodandadjustitto calculate 𝑁 𝑝 𝑎𝑛𝑑 𝐺𝑝 for every365 days. Theneach 365 days,
add 10 wellstothe previousyear.
9. Our resultsare shownbelow
10. Findq
a. q = J ∗ n ∗ ΔP
11. Next,find 𝑞 𝑎𝑣𝑒
a. qave =
𝑞 𝑖+𝑞 𝑖−1
2
12. Then,setΔ𝑡 = 365
13. FindΔ𝑁 𝑝
a. Δ𝑁 𝑝 = 𝑞 𝑎𝑣𝑒 ∗ Δ𝑡
14. Then,find 𝑁 𝑝
a. 𝑁 𝑝 = Δ𝑁 𝑝 ∗ 𝑁 𝑝 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
Calculations and Results
Data for 5 wellsisattachedinthe appendix
PNGE 434 Fall 2014
Afteradding10 wellsperyear:
PNGE 434 Fall 2014
Water-flood
Core Analysis will be used for the main part to predict flood performance
 Determine the average property values for the zones
 Find Reciprocal Mobility Ratio,
1
M
=
krw
μw
kro
μo
 DVI,ED andfw correlations
 Calculate the following:
o 𝑆𝑔𝑖 = 1 – 𝑆 𝑜𝑖 – 𝑆 𝑤𝑐
o
𝑊𝑖
𝑉𝑝
= 𝑆𝑔𝑖 − 𝑆𝑔𝑒 (𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝)
o
𝑊𝑖
𝑉𝑝
= 𝐷𝑉𝐼 ∗ (𝑆 𝑜𝑠 – 𝑆 𝑜𝑟 + 𝑆𝑔𝑖– 𝑆𝑔𝑒) ( 𝐵𝑟𝑒𝑎𝑘 𝑇ℎ𝑟𝑜𝑢𝑔ℎ)
o
𝐵𝑜 𝑁 𝑝𝑓
𝑉𝑝
= 0, (𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝)
o
𝐵𝑜 𝑁 𝑝𝑓
𝑉𝑝
= 𝐸 𝐷 ∗ (𝑆 𝑜𝑠 – 𝑆 𝑜𝑟 + 𝑆𝑔𝑖 – 𝑆𝑔𝑒 ) – (𝑆𝑔𝑖 – 𝑆𝑔𝑒 ), ( 𝐴𝑓𝑡𝑒𝑟 𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝)
o 𝑖 𝑟 =
𝑖 𝑠
𝑖
= 1, ( 𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝)
o 𝑖 𝑟 =
𝑖𝑠
𝑖
= (1 + 𝑀)– ( 𝑀 − 1)∗ ( 𝑓𝑤),(𝐴𝑓𝑡𝑒𝑟 𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝)
 Plot the recovery curves (
𝐵𝑜 𝑁 𝑝𝑓
𝑉𝑝
𝑣𝑠.
𝑊𝑖
𝑉𝑝
)
 Plot the injectivity curve (𝑓𝑤 𝑣𝑠. 𝑖 𝑟)
 Area under the injectivity
 The reduced time tr for each zone
  















 
 aver
p
i
i
V
W
A
  















 





 
 aver
p
i
r i
V
W
k
t
PNGE 434 Fall 2014
Calculations and Results
Mobility Ratio
M 2.198130841
1/M 0.454931973
Flow Unit Avg. Φ Avg. h N Vp
1 0.078461538 5.2 214.7071681 126610.56
2 0.054 2.6 73.88452549 43568.928
3 0.06565625 6.4 221.1273334 130396.464
4 0.074740741 5.4 212.3916986 125245.152
Wi/Vp Zone 1 Zone 2 Zone 3 Zone 4
0 0 0 0 0
0.200 0.5 0.1 0.4 0.8
0.348 2.1 0.4 1.5 3.2
0.450 3.1 0.6 2.2 4.7
0.540 3.8 0.7 2.7 5.7
0.600 4.2 0.8 3.0 6.3
0.660 4.6 0.9 3.2 6.9
0.720 5.0 1.0 3.5 7.5
0.780 5.3 1.0 3.7 8.0
0.840 5.7 1.1 4.0 8.5
0.900 6.0 1.2 4.2 9.1
1.050 6.9 1.3 4.8 10.3
1.200 7.7 1.5 5.4 11.6
1.350 8.5 1.7 6.0 12.8
1.500 9.3 1.8 6.6 14.0
Zone k, d Φ, frac Φ/k
1 0.031 0.078461538 2.53101737
2 0.11 0.054 0.490909091
3 0.0368 0.06565625 1.784137228
4 0.0196 0.074740741 3.813303099
PNGE 434 Fall 2014
y = 0.3951x - 3E-17
R² = 1
y = 0.0912x + 0.1538
R² = 1
y = 0.1647x - 0.0719
R² = 0.9934
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 2 4 6 8 10
Wi
Axis Title
Zone 1
Gas Fill up
Before BT
After BT
Linear (Gas Fill
up)
Linear (Before
BT)
Linear (After BT)
y = 2.037x
R² = 1
y = 0.4704x + 0.1538
R² = 1
y = 0.8491x - 0.0719
R² = 0.9934
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 0.5 1 1.5 2
Wi/Vp
tr
Zone 2
Gas Fill-up
Before BT
After BT
Linear (Gas Fill-up)
Linear (Before BT)
Linear (After BT)
y = 0.5605x + 3E-17
R² = 1
y = 0.1294x + 0.1538
R² = 1
y = 0.2336x - 0.0719
R² = 0.9934
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 1 2 3 4 5 6 7
Wi/Vp
tr
Zone 3
Gas Fill-up
Before BT
After BT
Linear (Gas Fill-up)
Linear (Gas Fill-up)
Linear (Before BT)
Linear (Before BT)
Linear (After BT)
Linear (After BT)
PNGE 434 Fall 2014
y = 0.2622x
R² = 1
y = 0.0606x + 0.1538
R² = 1
y = 0.1093x - 0.0719
R² = 0.9934
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 5 10 15
Wi/Vp
tr
Zone 4
Gas Fill-up
Before BT
After BT
Linear (Gas Fill-up)
Linear (Gas Fill-up)
Linear (Before BT)
Linear (Before BT)
Linear (After BT)
Linear (After BT)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Injectivity Curve
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
Wi/Vp
tr
Reuced Time Curves
Zone 1
Zone 2
Zone 3
Zone 4
PNGE 434 Fall 2014
Reservoir Map & WellPlacing
All wells are placed into the middle zone of the reservoir, therefore, the water-flooding
calculations only need to be done in this zone.
Producer - 18
Injector - 27
The colors represent the properties of the reservoir. Same color means same properties
45 Wells at 500 psia
Used 44 Acre Spacing
Below is a general layout of the well placement
18 5- spot floods
Producer - 13
35 wells at 700 psia
Used 44 Acre Spacing
Injectors - 22
The colors represent the properties of the reservoir. Same color means same properties
Below is a general layout of the well placement
13 5-spot floods
PNGE 434 Fall 2014
Economic Analysis
Ultimately, having calculated production, we can estimate the Net Present Value of both 700
psi and 500 psi using the following procedure:
 For each time interval, total water, oil and gas production were calculated. Drilling and
completions and rework costs were accounted for.
 The Operating costs, Injection costs and Revenues were calculated, considering breaks
in the year ends, By interpolating Np/Gp to obtain the years' productions..
 When a zone hits the breakthrough point, the well starts to produce water along with oil
and gas production. During the first few time intervals, no water production is observed
until that zone hits the break through point.
 At this point, tax and royalties are applied on Net Income to calculate the Net Income
after tax for each time period. Ultimately, the Net Income after tax for each period is
calculated by subtracting the tax-imposed amounts from the Net Income.
 The NPV is calculated using the excel command format “NPV” of the sum of each period
is calculated from the Net Income after tax.
PNGE 434 Fall 2014
Calculations and Results
PNGE 434 Fall 2014
Conclusion
In conclusion, data analysis and performance prediction was accomplished using available
information from core analysis. Core analysis could be performed over different reservoir sites.
Despite some rational expense costs, that would provide a much better water flood prediction
performance and more accurate and consistent results. Results are based on assumptions
reservoir properties is constant throughout the reservoir. While this is never the case, the best
possible scenario is that the assumptions are accurate and all proposed wells should be drilled
as quickly as possible to make a maximum profit at a minimal amount of time. However, risk
management is of big concern in this case. Limiting risks requires gradually drilling more wells
to obtain a more accurate reservoir model. This will decrease the risk because the more data
collected, the more we know about the potential oil recovery of the reservoir.
References
Aminian,Kashy."Lecture 6- PrimaryPerformance."Lecture.PNGE434 - Fall 2014
Aminian,Kashy.“SGD– Performance PredictionsExample.”Spreadsheet.PNGE333. Spring2014
Aminian,Kashy."Project Reveiw."Project.PNGE434 - Fall 2014
PNGE 434 Fall 2014
Depth
Mid-
point φ k h φ k h
# ft. % md ft log k ∑ φh ∑ kh % md ft log k ∑ φh ∑ kh
1 4200.5 1.0 0.1 1 -1 1.0 0.1 1.0 0.10 1 -1 1 0.10
2 4201.5 1.1 0.1 1 -1 2.1 0.2 1.0 0.10 1 -1 2.0 0.20
3 4202.5 7.2 25.0 1 1.39794 9.3 25.2 1.0 0.10 1 -1 3.0 0.30
4 4203.5 7.4 26.0 1 1.414973 16.7 51.2 1.0 0.10 1 -1 4.0 0.40
5 4204.5 7.6 28.0 1 1.447158 24.3 79.2 1.0 0.10 1 -1 5.0 0.50
6 4205.5 7.7 29.0 1 1.462398 32.0 108.2 1.0 0.10 1 -1 6.0 0.60
7 4206.5 7.8 29.0 1 1.462398 39.8 137.2 1.0 0.10 1 -1 7.0 0.70
8 4207.5 7.8 30.0 1 1.477121 47.6 167.2 2.0 0.10 1 -1 9.0 0.80
9 4208.5 7.8 32.0 1 1.50515 55.4 199.2 2.0 0.10 1 -1 11.0 0.90
10 4209.5 7.9 33.0 1 1.518514 63.3 232.2 2.0 0.10 1 -1 13.0 1.00
11 4210.5 8.1 34.0 1 1.531479 71.4 266.2 2.0 0.10 1 -1 15.0 1.10
12 4211.5 8.2 34.0 1 1.531479 79.6 300.2 2.0 0.10 1 -1 17.0 1.20
13 4212.5 1.2 0.1 1 -1 80.8 300.3 2.0 0.10 1 -1 19.0 1.30
14 4213.5 5.2 100.0 1 2 86.0 400.3 4.0 0.10 1 -1 23.0 1.40
15 4214.5 5.5 110.0 1 2.041393 91.5 510.3 4.0 0.10 1 -1 27.0 1.50
16 4215.5 5.6 120.0 1 2.079181 97.1 630.3 4.0 0.10 1 -1 31.0 1.60
17 4216.5 5.3 105.0 1 2.021189 102.4 735.3 4.0 0.10 1 -1 35.0 1.70
18 4217.5 5.2 100.0 1 2 107.6 835.3 4.0 0.10 1 -1 39.0 1.80
19 4218.5 2.0 0.2 1 -0.69897 109.6 835.5 5.0 0.10 1 -1 44.0 1.90
20 4219.5 6.0 30.0 1 1.477121 115.6 865.5 6.0 0.10 1 -1 50.0 2.00
21 4220.5 6.3 35.0 1 1.544068 121.9 900.5 7.0 0.10 1 -1 57.0 2.10
22 4221.5 6.5 38.0 1 1.579784 128.4 938.5 7.8 31.0 1 1.491362 64.8 33.10
23 4222.5 6.7 39.0 1 1.591065 135.1 977.5 7.9 32.0 1 1.50515 72.7 65.10
24 4223.5 6.8 40.0 1 1.60206 141.9 1017.5 8.0 33.0 1 1.518514 80.7 98.10
25 4224.5 6.7 40.0 1 1.60206 148.6 1057.5 8.1 33.0 1 1.518514 88.8 131.10
26 4225.5 6.8 40.0 1 1.60206 155.4 1097.5 7.0 0.10 1 -1 95.8 131.20
27 4226.5 6.8 40.0 1 1.60206 162.2 1137.5 5.6 120.0 1 2.079181 101.4 251.20
28 4227.5 6.7 38.0 1 1.579784 168.9 1175.5 5.3 105.0 1 2.021189 106.7 356.20
29 4228.5 6.6 36.0 1 1.556303 175.5 1211.5 10.0 0.10 1 -1 116.7 356.30
30 4229.5 6.5 35.0 1 1.544068 182.0 1246.5 6.5 38.0 1 1.579784 123.2 394.30
31 4230.5 6.4 33.0 1 1.518514 188.4 1279.5 6.7 39.0 1 1.591065 129.9 433.30
32 4231.5 6.3 32.0 1 1.50515 194.7 1311.5 6.8 40.0 1 1.60206 136.7 473.30
33 4232.5 6.2 31.0 1 1.491362 200.9 1342.5 6.6 36.0 1 1.556303 143.3 509.30
34 4233.5 6.2 30.0 1 1.477121 207.1 1372.5 7.0 0.10 1 -1 150.3 509.40
35 4234.5 6.2 30.0 1 1.477121 213.3 1402.5 7.4 19.0 1 1.278754 157.7 528.40
36 4235.5 1.0 0.1 1 -1 214.3 1402.6 7.7 22.0 1 1.342423 165.4 550.40
37 4236.5 7.2 16.0 1 1.20412 221.5 1418.6 7.6 21.0 1 1.322219 173.0 571.40
38 4237.5 7.4 18.0 1 1.255273 228.9 1436.6 7.5 20.0 1 1.30103 180.5 591.40
39 4238.5 7.6 20.0 1 1.30103 236.5 1456.6 4.0 0.10 1 -1 184.5 591.50
40 4239.5 7.7 22.0 1 1.342423 244.2 1478.6 4.0 0.10 1 -1 188.5 591.60
41 4240.5 7.6 21.0 1 1.322219 251.8 1499.6 4.0 0.10 1 -1 192.5 591.70
42 4241.5 7.5 20.0 1 1.30103 259.3 1519.6 4.0 0.10 1 -1 196.5 591.80
43 4242.5 7.4 19.0 1 1.278754 266.7 1538.6 4.0 0.10 1 -1 200.5 591.90
44 4243.5 7.3 18.0 1 1.255273 274.0 1556.6 4.0 0.10 1 -1 204.5 592.00
45 4244.5 7.2 17.0 1 1.230449 281.2 1573.6 2.0 0.10 1 -1 206.5 592.10
46 4245.5 7.1 16.0 1 1.20412 288.3 1589.6 2.0 0.10 1 -1 208.5 592.20
47 4246.5 7.0 15.0 1 1.176091 295.3 1604.6 2.0 0.10 1 -1 210.5 592.30
48 4247.5 1.0 0.1 1 -1 296.3 1604.7 2.0 0.10 1 -1 212.5 592.40
49 4248.5 0.8 0.1 1 -1 297.1 1604.8 1.0 0.10 1 -1 213.5 592.50
50 4249.5 0.5 0.1 1 -1 297.6 1604.9 1.0 0.10 1 -1 214.5 592.60
Sample Well 1 Well 2
Appendix
PNGE 434 Fall 2014
φ k h φ k h φ k h
% md ft log k ∑ φh ∑ kh % md ft log k ∑ φh ∑ kh % md ft log k ∑ φh ∑ kh
1.0 0.10 1 -1 1 0.10 1.0 0.10 1 -1 1 0.1 1.0 0.10 1 -1 1 0.1
1.0 0.10 1 -1 2.0 0.20 1.0 0.10 1 -1 2.0 0.20 1.0 0.10 1 -1 2.0 0.20
1.0 0.10 1 -1 3.0 0.30 1.0 0.10 1 -1 3.0 0.30 1.0 0.10 1 -1 3.0 0.30
1.0 0.10 1 -1 4.0 0.40 1.0 0.10 1 -1 4.0 0.40 1.0 0.10 1 -1 4.0 0.40
1.0 0.10 1 -1 5.0 0.50 1.0 0.10 1 -1 5.0 0.50 1.0 0.10 1 -1 5.0 0.50
1.0 0.10 1 -1 6.0 0.60 1.0 0.10 1 -1 6.0 0.60 1.0 0.10 1 -1 6.0 0.60
1.0 0.10 1 -1 7.0 0.70 1.0 0.10 1 -1 7.0 0.70 1.0 0.10 1 -1 7.0 0.70
2.0 0.10 1 -1 9.0 0.80 2.0 0.10 1 -1 9.0 0.80 2.0 0.10 1 -1 9.0 0.80
2.0 0.10 1 -1 11.0 0.90 2.0 0.10 1 -1 11.0 0.90 2.0 0.10 1 -1 11.0 0.90
2.0 0.10 1 -1 13.0 1.00 3.0 0.10 1 -1 14.0 1.00 3.0 0.10 1 -1 14.0 1.00
2.0 0.10 1 -1 15.0 1.10 7.8 30.0 1 1.477121 21.8 31.00 7.7 30.0 1 1.477121 21.7 31.00
2.0 0.10 1 -1 17.0 1.20 7.9 32.0 1 1.50515 29.7 63.00 7.8 32.0 1 1.50515 29.5 63.00
2.0 0.10 1 -1 19.0 1.30 7.9 33.0 1 1.518514 37.6 96.00 7.9 33.0 1 1.518514 37.4 96.00
4.0 0.10 1 -1 23.0 1.40 8.1 34.0 1 1.531479 45.7 130.00 8.0 34.0 1 1.531479 45.4 130.00
4.0 0.10 1 -1 27.0 1.50 9.0 0.10 1 -1 54.7 130.10 9.0 0.10 1 -1 54.4 130.10
4.0 0.10 1 -1 31.0 1.60 5.6 120.0 1 2.079181 60.3 250.10 5.6 120.0 1 2.079181 60.0 250.10
4.0 0.10 1 -1 35.0 1.70 5.3 105.0 1 2.021189 65.6 355.10 5.3 105.0 1 2.021189 65.3 355.10
4.0 0.10 1 -1 39.0 1.80 10.0 0.20 1 -0.69897 75.6 355.30 10.0 0.20 1 -0.69897 75.3 355.30
5.0 0.10 1 -1 44.0 1.90 6.5 38.0 1 1.579784 82.1 393.30 6.5 38.0 1 1.579784 81.8 393.30
6.0 0.10 1 -1 50.0 2.00 6.7 39.0 1 1.591065 88.8 432.30 6.7 39.0 1 1.591065 88.5 432.30
8.0 0.10 1 -1 58.0 2.10 6.8 40.0 1 1.60206 95.6 472.30 6.8 40.0 1 1.60206 95.3 472.30
7.8 31.0 1 1.491362 65.8 33.10 6.6 36.0 1 1.556303 102.2 508.30 6.6 36.0 1 1.556303 101.9 508.30
7.8 32.0 1 1.50515 73.6 65.10 6.0 0.10 1 -1 108.2 508.40 6.0 0.10 1 -1 107.9 508.40
7.9 33.0 1 1.518514 81.5 98.10 7.4 19.0 1 1.278754 115.6 527.40 7.4 19.0 1 1.278754 115.3 527.40
8.1 34.0 1 1.531479 89.6 132.10 7.7 22.0 1 1.342423 123.3 549.40 7.7 22.0 1 1.342423 123.0 549.40
8.0 0.10 1 -1 97.6 132.20 7.6 21.0 1 1.322219 130.9 570.40 7.6 21.0 1 1.322219 130.6 570.40
5.6 120.0 1 2.079181 103.2 252.20 7.5 20.0 1 1.30103 138.4 590.40 7.5 20.0 1 1.30103 138.1 590.40
5.3 105.0 1 2.021189 108.5 357.20 4.0 0.10 1 -1 142.4 590.50 4.0 0.10 1 -1 142.1 590.50
10.0 0.10 1 -1 118.5 357.30 4.0 0.10 1 -1 146.4 590.60 4.0 0.10 1 -1 146.1 590.60
6.5 38.0 1 1.579784 125.0 395.30 4.0 0.10 1 -1 150.4 590.70 4.0 0.10 1 -1 150.1 590.70
6.7 39.0 1 1.591065 131.7 434.30 4.0 0.10 1 -1 154.4 590.80 4.0 0.10 1 -1 154.1 590.80
6.8 40.0 1 1.60206 138.5 474.30 4.0 0.10 1 -1 158.4 590.90 4.0 0.10 1 -1 158.1 590.90
6.6 36.0 1 1.556303 145.1 510.30 4.0 0.10 1 -1 162.4 591.00 4.0 0.10 1 -1 162.1 591.00
7.0 0.10 1 -1 152.1 510.40 3.0 0.10 1 -1 165.4 591.10 3.0 0.10 1 -1 165.1 591.10
7.4 19.0 1 1.278754 159.5 529.40 3.0 0.10 1 -1 168.4 591.20 3.0 0.10 1 -1 168.1 591.20
7.7 22.0 1 1.342423 167.2 551.40 3.0 0.10 1 -1 171.4 591.30 3.0 0.10 1 -1 171.1 591.30
7.6 21.0 1 1.322219 174.8 572.40 3.0 0.10 1 -1 174.4 591.40 3.0 0.10 1 -1 174.1 591.40
7.5 20.0 1 1.30103 182.3 592.40 3.0 0.10 1 -1 177.4 591.50 3.0 0.10 1 -1 177.1 591.50
4.0 0.10 1 -1 186.3 592.50 3.0 0.10 1 -1 180.4 591.60 3.0 0.10 1 -1 180.1 591.60
4.0 0.10 1 -1 190.3 592.60 3.0 0.10 1 -1 183.4 591.70 3.0 0.10 1 -1 183.1 591.70
4.0 0.10 1 -1 194.3 592.70 3.0 0.10 1 -1 186.4 591.80 3.0 0.10 1 -1 186.1 591.80
4.0 0.10 1 -1 198.3 592.80 3.0 0.10 1 -1 189.4 591.90 3.0 0.10 1 -1 189.1 591.90
4.0 0.10 1 -1 202.3 592.90 3.0 0.10 1 -1 192.4 592.00 3.0 0.10 1 -1 192.1 592.00
4.0 0.10 1 -1 206.3 593.00 2.0 0.10 1 -1 194.4 592.10 2.0 0.10 1 -1 194.1 592.10
2.0 0.10 1 -1 208.3 593.10 2.0 0.10 1 -1 196.4 592.20 2.0 0.10 1 -1 196.1 592.20
2.0 0.10 1 -1 210.3 593.20 2.0 0.10 1 -1 198.4 592.30 2.0 0.10 1 -1 198.1 592.30
2.0 0.10 1 -1 212.3 593.30 2.0 0.10 1 -1 200.4 592.40 2.0 0.10 1 -1 200.1 592.40
2.0 0.10 1 -1 214.3 593.40 1.0 0.10 1 -1 201.4 592.50 1.0 0.10 1 -1 201.1 592.50
1.0 0.10 1 -1 215.3 593.50 0.5 0.10 1 -1 201.9 592.60 0.5 0.10 1 -1 201.6 592.60
1.0 0.10 1 -1 216.3 593.60 0.5 0.10 1 -1 202.4 592.70 0.5 0.10 1 -1 202.1 592.70
Well 3 Well 4 Well 5
PNGE 434 Fall 2014
tr1 tr2 tr3 tr4
DVI EH fw Wi/Vp BoNpf/Vp ir (ir)av Δ (ir)av ×Δ A=Σ 2.5Σ 0.49Σ 1.78Σ 3.81Σ
0 0 0 0 0 1 1 0 0 0 0 0 0 0
Fill-up 0 0 0.230 0 1 1 0.230 0.23 0.23 0.6 0.1 0.4 0.9
0.58 0.58 0 0.348 0.118 4.33 4.33 0.118 0.511 0.741 1.9 0.4 1.3 2.8
0.75 0.7 0.51 0.450 0.19 3.14 3.74 0.102 0.381 1.122 2.8 0.6 2.0 4.3
0.90 0.77 0.65 0.540 0.232 2.82 2.98 0.090 0.268 1.390 3.5 0.7 2.5 5.3
1.00 0.8 0.71 0.600 0.25 2.68 2.75 0.060 0.165 1.555 3.9 0.8 2.8 5.9
1.10 0.83 0.78 0.660 0.268 2.51 2.59 0.060 0.156 1.710 4.3 0.8 3.1 6.5
1.20 0.85 0.84 0.720 0.28 2.37 2.44 0.060 0.147 1.857 4.7 0.9 3.3 7.1
1.30 0.87 0.86 0.780 0.292 2.33 2.35 0.060 0.141 1.998 5.1 1.0 3.6 7.6
1.40 0.88 0.87 0.840 0.298 2.30 2.31 0.060 0.139 2.137 5.4 1.0 3.8 8.1
1.50 0.9 0.88 0.900 0.31 2.28 2.29 0.060 0.137 2.274 5.8 1.1 4.1 8.7
1.75 0.93 0.90 1.050 0.328 2.23 2.26 0.150 0.338 2.613 6.6 1.3 4.7 10.0
2.00 0.94 0.93 1.200 0.334 2.17 2.20 0.150 0.331 2.943 7.4 1.4 5.3 11.2
2.25 0.95 0.95 1.350 0.34 2.12 2.15 0.150 0.322 3.265 8.3 1.6 5.8 12.5
2.50 0.97 0.97 1.500 0.352 2.07 2.09 0.150 0.314 3.579 9.1 1.8 6.4 13.6
2.75 0.94 0.96 1.650 0.334 2.09 2.08 0.150 0.312 3.891 38.9 77.8 291.9
3.00 0.96 0.97 1.800 0.346 2.07 2.08 0.150 0.312 4.204 42.0 84.1 315.3
3.25 0.98 0.98 1.950 0.358 2.05 2.06 0.150 0.309 4.512 45.1 90.2 338.4
3.50 0.99 0.99 2.100 0.364 2.02 2.03 0.150 0.305 4.818 48.2 96.4 361.3
PNGE 434 Fall 2014
0.00 $0 5
1.00 $0 5 231528 181981230 0
2.00 ($6,000,000) 20 1231872 1430018770 0
3.00 ($2,000,000) 25 675930 1806281230 0
4.00 ($4,000,000) 35 556670 2376718770 0
5.00 ($1,100,000) 35 91700 151227930 2847
6.00 35 154319 475889154 87971
7.00 35 284119 272254448 165401
8.00 35 401222 374743695 238852
9.00 35 581520 280059595 421527
10.00 35 572713 268651872 463236
11.00 35 529981 213894803 661625
12.00 35 529981 213894803 661625
12.50 35 262870 106091822 328166
14.00
15.00
16.00
17.00
18.00
19.00
20.00
Total
($13,100,000)
WpYear
Drilling
and Completions
Number
of Wells
Np Gp
($36,500) $0 $0 $545,944 $23,152,828 $23,662,272 ($9,464,909) $14,197,363
($146,000) $0 $0 $4,290,056 $123,187,172 $121,331,228 ($48,532,491) $72,798,737
($182,500) $0 $0 $5,418,844 $67,593,000 $70,829,344 ($28,331,737) $42,497,606
($255,500) $0 $0 $7,130,156 $55,667,000 $58,541,656 ($23,416,663) $35,124,994
2188630 ($255,500) ($8,754,519) ($8,541) $453,684 $9,169,980 ($494,896) $0 ($494,896)
2188843 ($255,500) ($8,755,370) ($263,912) $1,427,667 $15,431,923 $7,584,808 ($3,033,923) $4,550,885
2191751 ($255,500) ($8,767,003) ($496,203) $816,763 $28,411,874 $19,709,932 ($7,883,973) $11,825,959
2193666 ($255,500) ($8,774,663) ($716,556) $1,124,231 $40,122,224 $31,499,736 ($12,599,894) $18,899,842
2191258 ($255,500) ($8,765,033) ($1,264,581) $840,179 $58,152,002 $48,707,067 ($19,482,827) $29,224,240
2191749 ($255,500) ($8,766,995) ($1,389,707) $805,956 $57,271,288 $47,665,042 ($19,066,017) $28,599,025
2191342 ($255,500) ($8,765,367) ($1,984,876) $641,684 $52,998,075 $42,634,017 ($17,053,607) $25,580,410
2191342 ($255,500) ($8,765,367) ($1,984,876) $641,684 $52,998,075 $42,634,017 ($17,053,607) $25,580,410
1086906 ($126,700) ($4,347,622) ($984,498) $318,275 $26,287,045 $21,146,500 ($8,458,600) $12,687,900
$0 $0 $0 $0 $0 $0 $0 $0
$0 $0 $0 $0 $0 $0 $0 $0
$0 $0 $0 $0 $0 $0 $0 $0
$0 $0 $0 $0 $0 $0 $0 $0
$0 $0 $0 $0 $0 $0 $0 $0
$0 $0 $0 $0 $0 $0 $0 $0
$0 $0 $0 $0 $0 $0 $0 $0
$0 $0 $0 $0 $0 ($13,100,000) $5,240,000 $241,689,825
NPV @ 5%
Net Income Before
Taxes
Taxes
Net Income After
Taxes
Water
Injected
Operating
Costs
Water Injection
Costs
Water Disposal
Costs
Gas Revenue Liquid Revenue
PNGE 434 Fall 2014
0.00 $0 5
1.00 $0 5 231528 181981230 0 0 ($36,500)
2.00 ($6,000,000) 20 1231872 1430018770 0 0 ($146,000)
3.00 ($2,000,000) 25 675930 1806281230 0 0 ($182,500)
4.00 ($4,000,000) 35 556670 2376718770 0 0 ($255,500)
5.00 ($5,350,000) 45 78681 200117482 2373 2190114 ($328,500)
6.00 45 143093 331643092 30797 2191178 ($328,500)
7.00 45 168734 334758022 122876 2191566 ($328,500)
8.00 45 313360 294132897 172629 2193435 ($328,500)
9.00 45 362626 279793270 189492 2191203 ($328,500)
10.00 45 543731 215650939 367517 2191769 ($328,500)
11.00 45 597592 195744699 420801 2187482 ($328,500)
12.00 45 597592 195744699 420801 2187482 ($328,500)
13.00 45 547765 152061560 647974 2188731 ($328,500)
14.00 45 545907 149849755 662032 2192690 ($328,500)
15.00 45 545907 149849755 662032 2192690 ($328,500)
15.75 45 408926 112249079 495914 1642495 ($246,600)
Total ($17,350,000) 6049173 7994646658 2375258 19712961
WpYear
Drilling
and Completions
Number
of Wells
Np Gp
Water
Injected
Operating
Costs
$0 $0 $545,944 $23,152,828 $23,662,272 ($9,464,909) $14,197,363
$0 $0 $4,290,056 $123,187,172 $121,331,228 ($48,532,491) $72,798,737
$0 $0 $5,418,844 $67,593,000 $70,829,344 ($28,331,737) $42,497,606
$0 $0 $7,130,156 $55,667,000 $58,541,656 ($23,416,663) $35,124,994
($8,760,458) ($7,118) $600,352 $7,868,095 ($5,977,629) $0 ($5,977,629)
($8,764,710) ($92,391) $994,929 $14,309,316 $6,118,644 ($2,447,458) $3,671,186
($8,766,265) ($368,628) $1,004,274 $16,873,366 $8,414,246 ($3,365,698) $5,048,548
($8,773,741) ($517,887) $882,399 $31,335,964 $22,598,235 ($9,039,294) $13,558,941
($8,764,811) ($568,476) $839,380 $36,262,591 $27,440,185 ($10,976,074) $16,464,111
($8,767,077) ($1,102,550) $646,953 $54,373,140 $44,821,966 ($17,928,786) $26,893,180
($8,749,928) ($1,262,402) $587,234 $59,759,165 $50,005,569 ($20,002,228) $30,003,341
($8,749,928) ($1,262,402) $587,234 $59,759,165 $50,005,569 ($20,002,228) $30,003,341
($8,754,924) ($1,943,922) $456,185 $54,776,462 $44,205,302 ($17,682,121) $26,523,181
($8,770,761) ($1,986,097) $449,549 $54,590,674 $43,954,865 ($17,581,946) $26,372,919
($8,770,761) ($1,986,097) $449,549 $54,590,674 $43,954,865 ($17,581,946) $26,372,919
($6,569,980) ($1,487,741) $336,747 $40,892,645 $32,925,072 ($13,170,029) $19,755,043
NPV @ 5% $266,475,419
Net Income Before
Taxes
Taxes
Net Income After
Taxes
Water Injection
Costs
Water Disposal
Costs
Gas Revenue Liquid Revenue
PNGE 434 Fall 2014
tr Zone Wi/Vp BoNpf/Vp Vp Wi GpBg BoNpf Gp Np Wp
1 0.040 0.0 240498 9502.07598 9502.07598 0.0 2202103.4 0.0 0
2 0.204 0.0 83165.76 16940.8653 16940.8653 0.0 3926040.6 0.0 0
3 0.056 0.0 321801.84 18036.9931 18037.0 0.0 4180067.9 0.0 0
4 0.026 0.0 251359.2 6590.63822 6590.6 0.0 1527378.5 0.0 0
TOTAL 51071 51071 0.0 11835590.4 0.0 0.0
1 0.158 0.0 240498 38008.3039 38008.3039 0 8808413 0 0
2 0.342 0.1 83165.76 28439.3633 16940.8653 11806.2 3926040.6 9921 308
3 0.224 0.0 321801.84 72147.9725 72148.0 0.0 16720272 0 0
4 0.105 0.0 251359.2 26362.5529 26362.6 0.0 6109514 0 0
TOTAL 164958 153460 11806 35564240 9921 307.7
1 0.198 0.000 240498 47510.3799 47510.3799 0 11010517 0 0
2 0.353 0.121 83165.76 29328.4053 16940.8653 10077 3926040.6 8468 2311
3 0.219 0.019 321801.84 70313.702 72148.0 5953.3 16720272 5003 7788
4 0.131 0.0 251359.2 32953.1911 32953.2 0.0 7636892 0 0
TOTAL 180106 169552 16030 39293722 13471 10098.3
1 0.23 0.027 240498 54535.3265 47510.3799 6436 11010517 5408 589
2 0.607 0.254 83165.76 50513.2193 16940.8653 21144 3926040.6 17768 12428
3 0.257 0.1 321801.84 82806.0495 72148.0 18445.7 16720272 15501 7788
4 0.210 0.0 251359.2 52725.1058 52725.1 0.0 12219028 0 0
TOTAL 240580 189324 46025 43875857 38677 20805
1 0.29 0.091 240498 69888.7188 47510.3799 21789 11010517 18310 589
2 1.202 0.334 83165.76 99944.4521 16940.8653 27795 3926040.6 23357 55209
3 0.348 0.1 321801.84 111954.86 72148.0 47594 16720272 39995 7788
4 0.245 0.045 251359.2 61507.5962 52725.1 11236 12219028 9442 2453
TOTAL 343296 189324 108414.4 43875857.1 91104.5 66039
1 0.35 0.145 240498 83049 47510.3799 34949 11010517 29369 589
2 1.937 0.239 83165.76 161085 16940.8653 19909 3926041 16730 124235
3 0.4187 0.1682 321801.84 134726 72148 54136 16720272 45493 8441
4 0.2811 0.0811 251359.2 70647 52725 20375 12219028 17122 2453
TOTAL 449506 189324 129370 43875857 108714 135718
The following is at 700 psia Middle Zone of Reservoir
2.1
0.1
0.4
0.5
0.8
1.5
Zone 1:
Gas Fillup (t_r≤0.5): (W_i/V_p ) = 0.3951t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g
Before Breakthrough (0.5≤t_r≤2.1): (W_i/V_p ) = 0.0912t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2
After Breakthrough (t_r≥2.1): (W_i/V_p ) = 0.1647t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+
1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812
Zone 2:
Gas Fillup (t_r≤0.1): (W_i/V_p ) = 2.037t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g
Before Breakthrough (0.1≤t_r≤0.4): (W_i/V_p ) = 0.4704t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2
After Breakthrough (t_r≥0.4): (W_i/V_p ) = 0.8491t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+
1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812
Zone 3:
Gas Fillup (t_r≤0.4): (W_i/V_p ) = 0.5605t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g
Before Breakthrough (0.4≤t_r≤1.5): (W_i/V_p ) = 0.1294t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2
After Breakthrough (t_r≥1.5): (W_i/V_p ) = 0.2336t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+
1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812
Zone 4:
Gas Fillup (t_r≤0.8): (W_i/V_p ) = 0.2622t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g
Before Breakthrough (0.8≤t_r≤3.2): (W_i/V_p ) = 0.0606t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2
After Breakthrough (t_r≥3.2): (W_i/V_p ) = 0.1093t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+
1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812
PNGE 434 Fall 2014
tr Zone Wi/Vp BoNpf/Vp Vp Wi GpBg BoNpf Gp Np Wp
1 0.040 0.0 240498 9502.076 9502.07598 0.0 1541793.9 0.0 0
2 0.204 0.0 83165.76 16940.87 16940.86531 0.0 2748801.8 0.0 0
3 0.056 0.0 321801.8 18036.99 18037.0 0.0 2926658.0 0.0 0
4 0.026 0.0 251359.2 6590.638 6590.6 0.0 1069388.0 0.0 0
TOTAL 51071 51071 0.0 8286641.7 0.0 0.0
1 0.158 0.0 240498 38008.3 38008.30392 0 6167176 0 0
2 0.342 0.1 83165.76 28439.36 16940.86531 11806.2 2748802 10213 308
3 0.224 0.0 321801.8 72147.97 72148.0 0.0 11706632 0 0
4 0.105 0.0 251359.2 26362.55 26362.6 0.0 4277552 0 0
TOTAL 164958 153460 11806 24900161 10213 307.7
1 0.198 0.000 240498 47510.38 47510.3799 0 7708970 0 0
2 0.353 0.121 83165.76 29328.41 16940.86531 10077 2748802 8717 2311
3 0.219 0.019 321801.8 70313.7 72148.0 5953.3 11706632 5150 7788
4 0.131 0.0 251359.2 32953.19 32953.2 0.0 5346940 0 0
TOTAL 180106 169552 16030 27511343 13867 10098.3
1 0.23 0.027 240498 54535.33 47510.3799 6436 7708970 5567 589
2 0.607 0.254 83165.76 50513.22 16940.86531 21144 2748801.8 18291 12428
3 0.257 0.1 321801.8 82806.05 72148.0 18445.7 11706632 15956 7788
4 0.210 0.0 251359.2 52725.11 52725.1 0.0 8555104 0 0
TOTAL 240580 189324 46025 30719507 39814 20805
1 0.29 0.091 240498 69888.72 47510.3799 21789 7708970 18849 589
2 1.202 0.334 83165.76 99944.45 16940.86531 27795 2748801.8 24044 55209
3 0.348 0.1 321801.8 111954.9 72148.0 47594 11706632 41172 7788
4 0.245 0.045 251359.2 61507.6 52725.1 11236 8555104 9720 2453
TOTAL 343296 189324 108414.4 30719507.3 93784.1 66039
1 0.35 0.145 240498 83049 47510.3799 34949 7708970 30233 589
2 1.937 0.239 83165.76 161085 16940.86531 19909 2748802 17222 124235
3 0.4187 0.1682 321801.8 134726 72148 54136 11706632 46831 8441
4 0.2811 0.0811 251359.2 70647 52725 20375 8555104 17626 2453
TOTAL 449506 189324 129370 30719507 111912 135718
1.5
2.1
0.8
The following is at 500 psia Middle Zone of Reservoir
0.1
0.4
0.5
PNGE 434 Fall 2014
Formation Depth 4200-4250 ft.
Initial Reservoir Pressure (Pi) 2,500 psia
Saturation Pressure (Ps) 2,500 psia
Maximum Safe Drawdown 400 psi
Minimum Well Spacing 40 acres
Minimum Flowing Pressure 100 psig
Max. Water Injection Rate 300 STB/D
Available Water 6000 STB/D
Number of wells that can be drilled 15 year

More Related Content

What's hot

vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structuresAniruddhsinh Barad
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricasJhayson Carvalho
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticasJhayson Carvalho
 
Optimization of Thermal Systems
Optimization of Thermal SystemsOptimization of Thermal Systems
Optimization of Thermal Systemspmghadge
 
Giancarlo_Lombardi-TFAWS2015_DetailedvReduced
Giancarlo_Lombardi-TFAWS2015_DetailedvReducedGiancarlo_Lombardi-TFAWS2015_DetailedvReduced
Giancarlo_Lombardi-TFAWS2015_DetailedvReducedGiancarlo Lombardi
 
Experimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structureExperimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structureLahiru Dilshan
 
Wavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression modelsWavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression modelsVinit Sehgal
 
Smart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementSmart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementPantelis Sopasakis
 
thermodynamic and heat transfer examples
thermodynamic and heat transfer examplesthermodynamic and heat transfer examples
thermodynamic and heat transfer examplesfahrenheit
 
Apache Commons Math @ FOSDEM 2013
Apache Commons Math @ FOSDEM 2013Apache Commons Math @ FOSDEM 2013
Apache Commons Math @ FOSDEM 2013netomi
 

What's hot (14)

vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structures
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
Pavement design method
Pavement design methodPavement design method
Pavement design method
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Optimization of Thermal Systems
Optimization of Thermal SystemsOptimization of Thermal Systems
Optimization of Thermal Systems
 
Giancarlo_Lombardi-TFAWS2015_DetailedvReduced
Giancarlo_Lombardi-TFAWS2015_DetailedvReducedGiancarlo_Lombardi-TFAWS2015_DetailedvReduced
Giancarlo_Lombardi-TFAWS2015_DetailedvReduced
 
2018 IMSM: Computational Techniques to Enhance Laser-based Characterization o...
2018 IMSM: Computational Techniques to Enhance Laser-based Characterization o...2018 IMSM: Computational Techniques to Enhance Laser-based Characterization o...
2018 IMSM: Computational Techniques to Enhance Laser-based Characterization o...
 
Experimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structureExperimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structure
 
Wavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression modelsWavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression models
 
Smart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementSmart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand Management
 
thermodynamic and heat transfer examples
thermodynamic and heat transfer examplesthermodynamic and heat transfer examples
thermodynamic and heat transfer examples
 
Apache Commons Math @ FOSDEM 2013
Apache Commons Math @ FOSDEM 2013Apache Commons Math @ FOSDEM 2013
Apache Commons Math @ FOSDEM 2013
 
Appendix E
Appendix EAppendix E
Appendix E
 

Viewers also liked

15l Centrica reports
15l Centrica reports15l Centrica reports
15l Centrica reportsBruce Stevens
 
Modeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirsModeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirsKonstantinos D Pandis
 
Semester Project in Reservoir Simulation
Semester Project in Reservoir SimulationSemester Project in Reservoir Simulation
Semester Project in Reservoir SimulationKonstantinos D Pandis
 
Petrel introduction course guide
Petrel introduction course guidePetrel introduction course guide
Petrel introduction course guideMarc Diviu Franco
 
Modeling- Object, Dynamic and Functional
Modeling- Object, Dynamic and FunctionalModeling- Object, Dynamic and Functional
Modeling- Object, Dynamic and FunctionalRajani Bhandari
 
Eclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation courseEclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation courseMohammad Massah
 
Dynamic and Static Modeling
Dynamic and Static ModelingDynamic and Static Modeling
Dynamic and Static ModelingSaurabh Kumar
 
Reservoir Modeling with Petrel
Reservoir Modeling with PetrelReservoir Modeling with Petrel
Reservoir Modeling with Petreladeeba setu
 
Petrel course Module_1: Import data and management, make simple surfaces
Petrel course Module_1: Import data and management, make simple surfacesPetrel course Module_1: Import data and management, make simple surfaces
Petrel course Module_1: Import data and management, make simple surfacesMarc Diviu Franco
 

Viewers also liked (16)

15l Mobil reports
15l Mobil reports15l Mobil reports
15l Mobil reports
 
15l TOTAL reports
15l TOTAL reports15l TOTAL reports
15l TOTAL reports
 
15l Centrica reports
15l Centrica reports15l Centrica reports
15l Centrica reports
 
Modeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirsModeling Single & Multi-phase flows in petroleum reservoirs
Modeling Single & Multi-phase flows in petroleum reservoirs
 
Semester Project in Reservoir Simulation
Semester Project in Reservoir SimulationSemester Project in Reservoir Simulation
Semester Project in Reservoir Simulation
 
Petrel introduction course guide
Petrel introduction course guidePetrel introduction course guide
Petrel introduction course guide
 
UML tutorial
UML tutorialUML tutorial
UML tutorial
 
Modeling- Object, Dynamic and Functional
Modeling- Object, Dynamic and FunctionalModeling- Object, Dynamic and Functional
Modeling- Object, Dynamic and Functional
 
Eclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation courseEclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation course
 
3D Facies Modeling
3D Facies Modeling3D Facies Modeling
3D Facies Modeling
 
Dynamic modeling
Dynamic modelingDynamic modeling
Dynamic modeling
 
Petrel course
Petrel coursePetrel course
Petrel course
 
Dynamic and Static Modeling
Dynamic and Static ModelingDynamic and Static Modeling
Dynamic and Static Modeling
 
Reservoir Modeling with Petrel
Reservoir Modeling with PetrelReservoir Modeling with Petrel
Reservoir Modeling with Petrel
 
Reservoir simulation study
Reservoir simulation study Reservoir simulation study
Reservoir simulation study
 
Petrel course Module_1: Import data and management, make simple surfaces
Petrel course Module_1: Import data and management, make simple surfacesPetrel course Module_1: Import data and management, make simple surfaces
Petrel course Module_1: Import data and management, make simple surfaces
 

Similar to Project 1

EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docxEENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docxjack60216
 
1er parcial hidro 2021 1 (1)
1er parcial hidro 2021 1 (1)1er parcial hidro 2021 1 (1)
1er parcial hidro 2021 1 (1)EDISONORTIZHUAMAN
 
New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...
New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...
New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...Peter Laurinec
 
capwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.ppt
capwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.pptcapwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.ppt
capwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.pptakhoanguyeneng
 
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandroTarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandroAlejandro Cabrera
 
Impact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyImpact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyJameel Academy
 
Web trafic time series forecasting
Web trafic time series forecastingWeb trafic time series forecasting
Web trafic time series forecastingKorivi Sravan Kumar
 
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdfREPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdfMuhammadMuazzam16
 
Detector efficiency (1)
Detector efficiency (1)Detector efficiency (1)
Detector efficiency (1)Ash Ayesh
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdfSajawalNawaz5
 
Example kitchen ventilation calculation
Example kitchen ventilation calculationExample kitchen ventilation calculation
Example kitchen ventilation calculationwilliammana
 
Distributed HPC monitoring
Distributed HPC monitoringDistributed HPC monitoring
Distributed HPC monitoringSalo Shp
 
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate0197fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01Vinoth Kanna
 
City council 8 6-13 ai 32 vv ground water group presentation
City council 8 6-13 ai 32 vv ground water group presentationCity council 8 6-13 ai 32 vv ground water group presentation
City council 8 6-13 ai 32 vv ground water group presentationCity of San Angelo Texas
 
Trigonometric tables
Trigonometric tablesTrigonometric tables
Trigonometric tablesJayapal Jp
 
Trigonometric tables
Trigonometric tablesTrigonometric tables
Trigonometric tablesJayapal Jp
 
An Introduction to Statistical Methods and Data Analysis.pdf
An Introduction to Statistical Methods and Data Analysis.pdfAn Introduction to Statistical Methods and Data Analysis.pdf
An Introduction to Statistical Methods and Data Analysis.pdfSandra Valenzuela
 
Jardim bot2010 jc
Jardim bot2010 jcJardim bot2010 jc
Jardim bot2010 jcjhcapelo
 
The OPC Data Logger Project
The OPC Data Logger ProjectThe OPC Data Logger Project
The OPC Data Logger ProjectKharel Thompson
 

Similar to Project 1 (20)

EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docxEENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
EENG 3305Linear Circuit Analysis IIFinal ExamDecembe.docx
 
1er parcial hidro 2021 1 (1)
1er parcial hidro 2021 1 (1)1er parcial hidro 2021 1 (1)
1er parcial hidro 2021 1 (1)
 
New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...
New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...
New Clustering-based Forecasting Method for Disaggregated End-consumer Electr...
 
capwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.ppt
capwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.pptcapwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.ppt
capwappresentgsdfgsdfgsdfgsdfgsdfgsdfgsdfg.ppt
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandroTarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
 
Impact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyImpact Of Jet | Jameel Academy
Impact Of Jet | Jameel Academy
 
Web trafic time series forecasting
Web trafic time series forecastingWeb trafic time series forecasting
Web trafic time series forecasting
 
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdfREPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
 
Detector efficiency (1)
Detector efficiency (1)Detector efficiency (1)
Detector efficiency (1)
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdf
 
Example kitchen ventilation calculation
Example kitchen ventilation calculationExample kitchen ventilation calculation
Example kitchen ventilation calculation
 
Distributed HPC monitoring
Distributed HPC monitoringDistributed HPC monitoring
Distributed HPC monitoring
 
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate0197fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
 
City council 8 6-13 ai 32 vv ground water group presentation
City council 8 6-13 ai 32 vv ground water group presentationCity council 8 6-13 ai 32 vv ground water group presentation
City council 8 6-13 ai 32 vv ground water group presentation
 
Trigonometric tables
Trigonometric tablesTrigonometric tables
Trigonometric tables
 
Trigonometric tables
Trigonometric tablesTrigonometric tables
Trigonometric tables
 
An Introduction to Statistical Methods and Data Analysis.pdf
An Introduction to Statistical Methods and Data Analysis.pdfAn Introduction to Statistical Methods and Data Analysis.pdf
An Introduction to Statistical Methods and Data Analysis.pdf
 
Jardim bot2010 jc
Jardim bot2010 jcJardim bot2010 jc
Jardim bot2010 jc
 
The OPC Data Logger Project
The OPC Data Logger ProjectThe OPC Data Logger Project
The OPC Data Logger Project
 

Project 1

  • 1. PNGE 434 Fall 2014 Project 1: Final Report – Dec. 15th , 2014 By: Herbert Hand, Michael Palma, Ibrahim Alotaibi & Carl Chidester Petroleum and Natural Gas Engineering: 434 West Virginia University
  • 2. PNGE 434 Fall 2014 Tableof Contents Introduction.................................................................................................................................... 3 Problem Statement........................................................................................................................ 3 Methodology.................................................................................................................................. 3 Tarner Method...............................................................................................................................3 Calculations and Results ..............................................................................................................4 Primary Production........................................................................................................................5 Calculations and Results ..............................................................................................................6 Water-flood...................................................................................................................................8 Calculations and Results ..............................................................................................................9 Reservoir Map & Well Placing.......................................................................................................12 Economic Analysis........................................................................................................................13 Calculations and Results ............................................................................................................14 Conclusion..................................................................................................................................... 15 References.................................................................................................................................... 15 Appendix....................................................................................................................................... 16
  • 3. PNGE 434 Fall 2014 p B o R s B g μ o μ g psia rb/stb scf/stb rb/scf cp cp 2500 1.498 721 0.00105 0.98 0.017 2300 1.463 669 0.00116 1.08 0.0166 2100 1.429 617 0.00128 1.19 0.0162 1900 1.395 565 0.00144 1.32 0.0158 1700 1.361 513 0.00163 1.45 0.0154 1500 1.327 461 0.00188 1.60 0.015 1300 1.292 409 0.00221 1.77 0.0146 1100 1.258 357 0.00265 1.96 0.0142 900 1.224 305 0.0033 2.12 0.0138 700 1.19 253 0.00432 2.40 0.0134 500 1.156 201 0.00616 2.65 0.013 300 1.121 149 0.01047 2.93 0.0126 100 1.087 97 0.03203 3.23 0.0122 Introduction Whendeterminingthe mostefficient(profitable) application of aprojecta petroleumengineer mustbe able tomake his or herdecisionusingbothtechnical andeconomical observations. Specifically, whengivenareservoirincludingmanyof itscharacteristics,suchaspressure,area,height,porosity, watersaturation,formationfactors,andviscosities,the engineershouldbe able todetermine the initial oil and gas inplace. Withoil and gas inplace,alongwithallowableflow ratesandproductivity,the productionlimitscanbe attained,whichalongwitheconomicparameterssuchasdrillingand completioncostandcurrentoil and gas pricescan be usedto determine the mostprofitableproduction plan. Problem Statement Developareservoirforprimaryphase aswell assubsequentwaterfloodingphase, andrecommend a planthat meetsregulatoryrequirementsandmaximizesprofit. Methodology Several stepswere takentocomplete the application Tarner Method The reservoirprovidedisasolution-gasdrive oil reservoir,sowe usedthe stepsfromthe Tarner Methodto determine Np/N,Gp/N,andRp. The available informationshowninfigure 1wasgiven.
  • 4. PNGE 434 Fall 2014 P B o B g R s μ o μ g μ o /μ g Estimated R N p /N S L k g /k o Calculated R G p /N R p Psia RB/STB RB/STB SCF/STB cp cp SCF/STB SCF/STB SCF/STB SCF/STB 2500 1.498 0.001048 721 0.98 0.017 57.4118 721 0 1 0 721 0 2300 1.463 0.001155 669 1.08 0.0166 64.9 851 0.01568 0.96906 0.00222 851 12.325 786.0 2100 1.429 0.00128 617 1.19 0.0162 73.5 932 0.03720 0.934758 0.00384 932 31.514 847.0 1900 1.395 0.00144 565 1.32 0.0158 83.3 1126 0.06368 0.897550 0.00696 1126 58.760 922.7 1700 1.361 0.001634 513 1.45 0.0154 94.3 1501 0.09125 0.860514 0.01258 1501 94.965 1040.7 1500 1.327 0.001884 461 1.60 0.015 106.9 2107 0.11668 0.825991 0.02186 2107 140.842 1207.1 1300 1.292 0.002206 409 1.77 0.0146 121.5 2965 0.13775 0.794941 0.03592 2965 194.281 1410.4 1100 1.258 0.002654 357 1.96 0.0142 138.2 4006 0.15529 0.767504 0.05572 4006 255.402 1644.7 900 1.224 0.0033 305 2.12 0.0138 153.3 5028 0.16998 0.742562 0.08305 5028 321.767 1893.0 700 1.19 0.004315 253 2.40 0.0134 179.0 6183 0.18259 0.719476 0.12016 6183 392.461 2149.4 500 1.156 0.006163 201 2.65 0.013 203.7 6727 0.19415 0.697494 0.17080 6727 467.115 2405.9 300 1.121 0.010469 149 2.93 0.0126 232.381 6215 0.20613 0.675260 0.24378 6215 544.630 2642.1 100 1.087 0.032032 97 3.23 0.0122 265.1 3328 0.22303 0.651039 0.35917 3328 625.234 2803.4 1. First,estimate R. 2. Then,calculate 𝑁 𝑝 𝑁 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 a. 𝑁 𝑝 𝑁 2300 = ([( 𝐵𝑜−𝐵𝑜𝑖)+( 𝑅 𝑠𝑖−𝑅 𝑠) 𝐵 𝑔]−𝐵 𝑔[ 𝐺 𝑝 𝑁 2500 −( 𝑅2500+𝑅2300 2 )( 𝑁 𝑝 𝑁 2500 )]) [( 𝐵𝑜−𝐵 𝑔 𝑅 𝑠)+𝐵 𝑔( 𝑅2500+𝑅2300 2 )] 3. Next,Calculate 𝑆 𝐿 a. 𝑆 𝐿𝑛 = (1 − 𝑁 𝑝 𝑁 )( 𝐵𝑜 𝐵𝑜𝑖 )(1 − 𝑆 𝑤𝑐)+ 𝑆 𝑤𝑐,𝑤ℎ𝑒𝑟𝑒 𝑆 𝑤𝑐 = 0.2 4. Next,calculate 𝐾 𝑔 𝐾 𝑜 a. 𝐾 𝑔 𝐾 𝑜 = ( 𝑘 𝑔 𝑘 𝑜 ) 𝑛 + ( ( 𝑘 𝑔 𝑘 𝑜 ) 𝑛+1 −( 𝑘 𝑔 𝑘 𝑜 ) 𝑛 𝑆 𝐿𝑛−𝑆 𝐿 𝑛+1 ) ( 𝑆𝐿 𝑛 − 𝑆 𝐿 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 ) 5. Afterfinding 𝑘 𝑔 𝑘 𝑜 ,calculate R a. 𝑅 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑅 𝑠 + ( 𝐾 𝑔 𝑘 𝑜 ) 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 ( 𝐵𝑜 𝜇 𝑜 𝐵 𝑔 𝜇 𝑔 ) 6. Then,adjust 𝑅 𝑔𝑢𝑒𝑠𝑠 until the valuesfor 𝑅 𝑔𝑢𝑒𝑠𝑠 𝑎𝑛𝑑 𝑅 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒. 7. Keepdoingthe same process(steps2through6) for each pressure. 8. Once, 𝑅 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 is foundforeach pressure,determine Gp/N a. 𝐺 𝑝 𝑁 2300 = ( 𝐺 𝑝 𝑁 ) 2500 + ( 𝑅2300+𝑅2500 2 )[( 𝑁 𝑝 𝑁 ) 2300 − ( 𝑁 𝑝 𝑁 ) 2500 ] 9. Finally,calculate 𝑅 𝑝 a. 𝑅 𝑝 = 𝐺 𝑝 𝑁 𝑁 𝑝 𝑁 Calculations and Results Afterenteringall of the equationsfromthe solutionmethodintoanexcel spreadsheet,ourresultsfor the Tarner Methodare shownbelowinfigure 2.
  • 5. PNGE 434 Fall 2014 PrimaryProduction 1. First,usingthe data givenfor5 wells,findthe flow units. a. FindΣ𝜙ℎ 𝑎𝑛𝑑 Σ𝑘ℎ for eachwell’ssample data. Then,plotΣ𝜙ℎ 𝑣𝑠. Σ𝑘ℎ foreachinflection pointforeach well. b. The flowunitsare separatedbythe inflectionpointonthe plot.There’s4 flow unitsforeach well. 2. Findthe Areaof the reservoir a. Areafor an ellipseis 𝐴 = 𝑟𝑠ℎ𝑜𝑟𝑡 ∗ 𝑟𝑙𝑜𝑛𝑔 ∗ 𝜋 3. Next,foreach flowunit,calculate the average porosity,averageheight,andthe cumulativeoil production. a. 𝑁 = 7758𝐴ℎ̅ 𝜙̅∗(1−𝑆 𝑤𝑖̅̅̅̅̅) 𝐵𝑜𝑖 b. 𝑤ℎ𝑒𝑟𝑒 𝑠 𝑤𝑖 = 0.2 c. Thenadd up eachN to findthe total hydrocarbonsinplace inthe reservoir. 4. Next,find 𝑁 𝑝 𝑛 ,𝑆 𝐿 𝑛 , 𝑘 𝑟𝑔 𝑘 𝑟𝑜 , 𝑅 𝑛 , 𝑎𝑛𝑑 𝐽 a. Where all necessarydataisfrom the tarner methodsolutions. b. 𝐽 = ( 𝑘 𝑟𝑜 𝐵𝑜 𝜇 𝑜 ) 7.07∗10−3 𝑘ℎ [ln( 𝑟 𝑒 𝑟 𝑤 )−0.75+𝑠] c. 𝑁 𝑝 = 𝑁[ 𝐵𝑜−𝐵𝑜𝑖+( 𝑅 𝑠𝑖−𝑅 𝑠) 𝐵 𝑔]−[ 𝐺 𝑛−1−( 𝑅 𝑛+𝑅 𝑛−1 2 ) 𝑁 𝑝−1] 𝐵 𝑔 ( 𝐵 𝑔𝑖−𝐵 𝑔 𝑅 𝑠)+( 𝑅 𝑛+𝑅 𝑛−1 2 ) 𝐵 𝑔 d. 𝑆 𝐿 𝑛 = (𝑁+𝑁 𝑝 𝑛) 𝑁 𝐵𝑜 𝐵𝑜𝑖 (1 − 𝑆 𝑤𝑐) + 𝑆 𝑤𝑐 e. 𝑘 𝑟𝑔 𝑘 𝑟𝑜 = 12,000𝐸𝑥𝑝(−16 ∗ 𝑆 𝐿) f. 𝑅 𝑛 = 𝑅 𝑠 + ( 𝑘 𝑔 𝑘 𝑜 )( 𝐵𝑜 𝜇 𝑜 𝐵 𝑔 𝜇 𝑔 ) 5. Next,find 𝑞max a. 𝑞max = 𝑞 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 ∗ 𝐽 b. Where 𝑞 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙 𝑒 = 300𝑆𝑇𝐵 𝐷 6. Find Δ𝑡 a. Δ𝑡 = 1000 ∗ (𝑁 𝑝 𝑖 − 𝑁 𝑝 𝑖−1 )/[( 𝑞𝑖 + 𝑞𝑖−1) ∗ 𝑛 2 ] b. tn = ∑ Δt𝑛 𝑖=0 7. Plot 𝑁 𝑝 𝑣𝑠. 𝑡
  • 6. PNGE 434 Fall 2014 Area 113097336 = 2596.3576 acres Avg. Φ (frac.) Avg. h (ft) N(STB) 0.078461538 5.2 4388869 0.054 2.6 1510287 0.06565625 6.4 4520105 0.074740741 5.4 4341538 STB Flow Unit Total Hydrocarbon 14760798.99 4 3 2 1 P B o μ o N p /N G p /N N p G p S L kr o kro /Bo μo J Wells q max q Δt t Psia RB/STB cp SCF/STB MSTB BCF STB/D STB/D Days Days 2500 1.498 0.98 0 0 1 1 0.684 1.100 5 330 330 2300 1.463 1.08 0.01568 12.325 231.5 0.182 0.96906 0.93811 0.595 0.957 5 287.0 287 150 150 2100 1.429 1.19 0.03720 31.514 549.2 0.465 0.93476 0.86952 0.511 0.822 5 246.7 246 238 388 1900 1.395 1.32 0.06368 58.760 940.0 0.867 0.89755 0.7951 0.433 0.697 5 209.0 209 344 732 1700 1.361 1.45 0.09125 94.965 1346.9 1.402 0.86051 0.72103 0.365 0.587 5 176.0 176 423 1155 1500 1.327 1.60 0.11668 140.842 1722.3 2.079 0.82599 0.65198 0.306 0.493 5 147.8 148 464 1619 1300 1.292 1.77 0.13775 194.281 2033.3 2.868 0.79494 0.58988 0.257 0.414 5 124.2 124 457 2076 1100 1.258 1.96 0.15529 255.402 2292.1 3.770 0.76750 0.53501 0.217 0.349 5 104.6 105 453 2529 900 1.224 2.12 0.16998 321.767 2509.0 4.750 0.74256 0.48512 0.187 0.301 5 90.4 90 445 2974 700 1.19 2.40 0.18259 392.461 2695.2 5.793 0.71948 0.43895 0.154 0.247 5 74.2 74 452 3426 500 1.156 2.65 0.19415 467.115 2865.9 6.895 0.69749 0.39499 0.129 0.208 5 62.3 62 500 3926 300 1.121 2.93 0.20613 544.630 3042.7 8.039 0.67526 0.35052 0.107 0.172 5 51.5 52 622 4548 100 1.087 3.23 0.22303 625.234 3292.0 9.229 0.65104 0.30208 0.086 0.138 5 41.5 41 1073 5621 whenadding10 wellsperyear: 8. Use the tarner methodandadjustitto calculate 𝑁 𝑝 𝑎𝑛𝑑 𝐺𝑝 for every365 days. Theneach 365 days, add 10 wellstothe previousyear. 9. Our resultsare shownbelow 10. Findq a. q = J ∗ n ∗ ΔP 11. Next,find 𝑞 𝑎𝑣𝑒 a. qave = 𝑞 𝑖+𝑞 𝑖−1 2 12. Then,setΔ𝑡 = 365 13. FindΔ𝑁 𝑝 a. Δ𝑁 𝑝 = 𝑞 𝑎𝑣𝑒 ∗ Δ𝑡 14. Then,find 𝑁 𝑝 a. 𝑁 𝑝 = Δ𝑁 𝑝 ∗ 𝑁 𝑝 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 Calculations and Results Data for 5 wellsisattachedinthe appendix
  • 7. PNGE 434 Fall 2014 Afteradding10 wellsperyear:
  • 8. PNGE 434 Fall 2014 Water-flood Core Analysis will be used for the main part to predict flood performance  Determine the average property values for the zones  Find Reciprocal Mobility Ratio, 1 M = krw μw kro μo  DVI,ED andfw correlations  Calculate the following: o 𝑆𝑔𝑖 = 1 – 𝑆 𝑜𝑖 – 𝑆 𝑤𝑐 o 𝑊𝑖 𝑉𝑝 = 𝑆𝑔𝑖 − 𝑆𝑔𝑒 (𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝) o 𝑊𝑖 𝑉𝑝 = 𝐷𝑉𝐼 ∗ (𝑆 𝑜𝑠 – 𝑆 𝑜𝑟 + 𝑆𝑔𝑖– 𝑆𝑔𝑒) ( 𝐵𝑟𝑒𝑎𝑘 𝑇ℎ𝑟𝑜𝑢𝑔ℎ) o 𝐵𝑜 𝑁 𝑝𝑓 𝑉𝑝 = 0, (𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝) o 𝐵𝑜 𝑁 𝑝𝑓 𝑉𝑝 = 𝐸 𝐷 ∗ (𝑆 𝑜𝑠 – 𝑆 𝑜𝑟 + 𝑆𝑔𝑖 – 𝑆𝑔𝑒 ) – (𝑆𝑔𝑖 – 𝑆𝑔𝑒 ), ( 𝐴𝑓𝑡𝑒𝑟 𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝) o 𝑖 𝑟 = 𝑖 𝑠 𝑖 = 1, ( 𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝) o 𝑖 𝑟 = 𝑖𝑠 𝑖 = (1 + 𝑀)– ( 𝑀 − 1)∗ ( 𝑓𝑤),(𝐴𝑓𝑡𝑒𝑟 𝐺𝑎𝑠 𝑓𝑖𝑙𝑙 𝑢𝑝)  Plot the recovery curves ( 𝐵𝑜 𝑁 𝑝𝑓 𝑉𝑝 𝑣𝑠. 𝑊𝑖 𝑉𝑝 )  Plot the injectivity curve (𝑓𝑤 𝑣𝑠. 𝑖 𝑟)  Area under the injectivity  The reduced time tr for each zone                      aver p i i V W A                             aver p i r i V W k t
  • 9. PNGE 434 Fall 2014 Calculations and Results Mobility Ratio M 2.198130841 1/M 0.454931973 Flow Unit Avg. Φ Avg. h N Vp 1 0.078461538 5.2 214.7071681 126610.56 2 0.054 2.6 73.88452549 43568.928 3 0.06565625 6.4 221.1273334 130396.464 4 0.074740741 5.4 212.3916986 125245.152 Wi/Vp Zone 1 Zone 2 Zone 3 Zone 4 0 0 0 0 0 0.200 0.5 0.1 0.4 0.8 0.348 2.1 0.4 1.5 3.2 0.450 3.1 0.6 2.2 4.7 0.540 3.8 0.7 2.7 5.7 0.600 4.2 0.8 3.0 6.3 0.660 4.6 0.9 3.2 6.9 0.720 5.0 1.0 3.5 7.5 0.780 5.3 1.0 3.7 8.0 0.840 5.7 1.1 4.0 8.5 0.900 6.0 1.2 4.2 9.1 1.050 6.9 1.3 4.8 10.3 1.200 7.7 1.5 5.4 11.6 1.350 8.5 1.7 6.0 12.8 1.500 9.3 1.8 6.6 14.0 Zone k, d Φ, frac Φ/k 1 0.031 0.078461538 2.53101737 2 0.11 0.054 0.490909091 3 0.0368 0.06565625 1.784137228 4 0.0196 0.074740741 3.813303099
  • 10. PNGE 434 Fall 2014 y = 0.3951x - 3E-17 R² = 1 y = 0.0912x + 0.1538 R² = 1 y = 0.1647x - 0.0719 R² = 0.9934 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 2 4 6 8 10 Wi Axis Title Zone 1 Gas Fill up Before BT After BT Linear (Gas Fill up) Linear (Before BT) Linear (After BT) y = 2.037x R² = 1 y = 0.4704x + 0.1538 R² = 1 y = 0.8491x - 0.0719 R² = 0.9934 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 Wi/Vp tr Zone 2 Gas Fill-up Before BT After BT Linear (Gas Fill-up) Linear (Before BT) Linear (After BT) y = 0.5605x + 3E-17 R² = 1 y = 0.1294x + 0.1538 R² = 1 y = 0.2336x - 0.0719 R² = 0.9934 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 1 2 3 4 5 6 7 Wi/Vp tr Zone 3 Gas Fill-up Before BT After BT Linear (Gas Fill-up) Linear (Gas Fill-up) Linear (Before BT) Linear (Before BT) Linear (After BT) Linear (After BT)
  • 11. PNGE 434 Fall 2014 y = 0.2622x R² = 1 y = 0.0606x + 0.1538 R² = 1 y = 0.1093x - 0.0719 R² = 0.9934 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 5 10 15 Wi/Vp tr Zone 4 Gas Fill-up Before BT After BT Linear (Gas Fill-up) Linear (Gas Fill-up) Linear (Before BT) Linear (Before BT) Linear (After BT) Linear (After BT) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Injectivity Curve 0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 Wi/Vp tr Reuced Time Curves Zone 1 Zone 2 Zone 3 Zone 4
  • 12. PNGE 434 Fall 2014 Reservoir Map & WellPlacing All wells are placed into the middle zone of the reservoir, therefore, the water-flooding calculations only need to be done in this zone. Producer - 18 Injector - 27 The colors represent the properties of the reservoir. Same color means same properties 45 Wells at 500 psia Used 44 Acre Spacing Below is a general layout of the well placement 18 5- spot floods Producer - 13 35 wells at 700 psia Used 44 Acre Spacing Injectors - 22 The colors represent the properties of the reservoir. Same color means same properties Below is a general layout of the well placement 13 5-spot floods
  • 13. PNGE 434 Fall 2014 Economic Analysis Ultimately, having calculated production, we can estimate the Net Present Value of both 700 psi and 500 psi using the following procedure:  For each time interval, total water, oil and gas production were calculated. Drilling and completions and rework costs were accounted for.  The Operating costs, Injection costs and Revenues were calculated, considering breaks in the year ends, By interpolating Np/Gp to obtain the years' productions..  When a zone hits the breakthrough point, the well starts to produce water along with oil and gas production. During the first few time intervals, no water production is observed until that zone hits the break through point.  At this point, tax and royalties are applied on Net Income to calculate the Net Income after tax for each time period. Ultimately, the Net Income after tax for each period is calculated by subtracting the tax-imposed amounts from the Net Income.  The NPV is calculated using the excel command format “NPV” of the sum of each period is calculated from the Net Income after tax.
  • 14. PNGE 434 Fall 2014 Calculations and Results
  • 15. PNGE 434 Fall 2014 Conclusion In conclusion, data analysis and performance prediction was accomplished using available information from core analysis. Core analysis could be performed over different reservoir sites. Despite some rational expense costs, that would provide a much better water flood prediction performance and more accurate and consistent results. Results are based on assumptions reservoir properties is constant throughout the reservoir. While this is never the case, the best possible scenario is that the assumptions are accurate and all proposed wells should be drilled as quickly as possible to make a maximum profit at a minimal amount of time. However, risk management is of big concern in this case. Limiting risks requires gradually drilling more wells to obtain a more accurate reservoir model. This will decrease the risk because the more data collected, the more we know about the potential oil recovery of the reservoir. References Aminian,Kashy."Lecture 6- PrimaryPerformance."Lecture.PNGE434 - Fall 2014 Aminian,Kashy.“SGD– Performance PredictionsExample.”Spreadsheet.PNGE333. Spring2014 Aminian,Kashy."Project Reveiw."Project.PNGE434 - Fall 2014
  • 16. PNGE 434 Fall 2014 Depth Mid- point φ k h φ k h # ft. % md ft log k ∑ φh ∑ kh % md ft log k ∑ φh ∑ kh 1 4200.5 1.0 0.1 1 -1 1.0 0.1 1.0 0.10 1 -1 1 0.10 2 4201.5 1.1 0.1 1 -1 2.1 0.2 1.0 0.10 1 -1 2.0 0.20 3 4202.5 7.2 25.0 1 1.39794 9.3 25.2 1.0 0.10 1 -1 3.0 0.30 4 4203.5 7.4 26.0 1 1.414973 16.7 51.2 1.0 0.10 1 -1 4.0 0.40 5 4204.5 7.6 28.0 1 1.447158 24.3 79.2 1.0 0.10 1 -1 5.0 0.50 6 4205.5 7.7 29.0 1 1.462398 32.0 108.2 1.0 0.10 1 -1 6.0 0.60 7 4206.5 7.8 29.0 1 1.462398 39.8 137.2 1.0 0.10 1 -1 7.0 0.70 8 4207.5 7.8 30.0 1 1.477121 47.6 167.2 2.0 0.10 1 -1 9.0 0.80 9 4208.5 7.8 32.0 1 1.50515 55.4 199.2 2.0 0.10 1 -1 11.0 0.90 10 4209.5 7.9 33.0 1 1.518514 63.3 232.2 2.0 0.10 1 -1 13.0 1.00 11 4210.5 8.1 34.0 1 1.531479 71.4 266.2 2.0 0.10 1 -1 15.0 1.10 12 4211.5 8.2 34.0 1 1.531479 79.6 300.2 2.0 0.10 1 -1 17.0 1.20 13 4212.5 1.2 0.1 1 -1 80.8 300.3 2.0 0.10 1 -1 19.0 1.30 14 4213.5 5.2 100.0 1 2 86.0 400.3 4.0 0.10 1 -1 23.0 1.40 15 4214.5 5.5 110.0 1 2.041393 91.5 510.3 4.0 0.10 1 -1 27.0 1.50 16 4215.5 5.6 120.0 1 2.079181 97.1 630.3 4.0 0.10 1 -1 31.0 1.60 17 4216.5 5.3 105.0 1 2.021189 102.4 735.3 4.0 0.10 1 -1 35.0 1.70 18 4217.5 5.2 100.0 1 2 107.6 835.3 4.0 0.10 1 -1 39.0 1.80 19 4218.5 2.0 0.2 1 -0.69897 109.6 835.5 5.0 0.10 1 -1 44.0 1.90 20 4219.5 6.0 30.0 1 1.477121 115.6 865.5 6.0 0.10 1 -1 50.0 2.00 21 4220.5 6.3 35.0 1 1.544068 121.9 900.5 7.0 0.10 1 -1 57.0 2.10 22 4221.5 6.5 38.0 1 1.579784 128.4 938.5 7.8 31.0 1 1.491362 64.8 33.10 23 4222.5 6.7 39.0 1 1.591065 135.1 977.5 7.9 32.0 1 1.50515 72.7 65.10 24 4223.5 6.8 40.0 1 1.60206 141.9 1017.5 8.0 33.0 1 1.518514 80.7 98.10 25 4224.5 6.7 40.0 1 1.60206 148.6 1057.5 8.1 33.0 1 1.518514 88.8 131.10 26 4225.5 6.8 40.0 1 1.60206 155.4 1097.5 7.0 0.10 1 -1 95.8 131.20 27 4226.5 6.8 40.0 1 1.60206 162.2 1137.5 5.6 120.0 1 2.079181 101.4 251.20 28 4227.5 6.7 38.0 1 1.579784 168.9 1175.5 5.3 105.0 1 2.021189 106.7 356.20 29 4228.5 6.6 36.0 1 1.556303 175.5 1211.5 10.0 0.10 1 -1 116.7 356.30 30 4229.5 6.5 35.0 1 1.544068 182.0 1246.5 6.5 38.0 1 1.579784 123.2 394.30 31 4230.5 6.4 33.0 1 1.518514 188.4 1279.5 6.7 39.0 1 1.591065 129.9 433.30 32 4231.5 6.3 32.0 1 1.50515 194.7 1311.5 6.8 40.0 1 1.60206 136.7 473.30 33 4232.5 6.2 31.0 1 1.491362 200.9 1342.5 6.6 36.0 1 1.556303 143.3 509.30 34 4233.5 6.2 30.0 1 1.477121 207.1 1372.5 7.0 0.10 1 -1 150.3 509.40 35 4234.5 6.2 30.0 1 1.477121 213.3 1402.5 7.4 19.0 1 1.278754 157.7 528.40 36 4235.5 1.0 0.1 1 -1 214.3 1402.6 7.7 22.0 1 1.342423 165.4 550.40 37 4236.5 7.2 16.0 1 1.20412 221.5 1418.6 7.6 21.0 1 1.322219 173.0 571.40 38 4237.5 7.4 18.0 1 1.255273 228.9 1436.6 7.5 20.0 1 1.30103 180.5 591.40 39 4238.5 7.6 20.0 1 1.30103 236.5 1456.6 4.0 0.10 1 -1 184.5 591.50 40 4239.5 7.7 22.0 1 1.342423 244.2 1478.6 4.0 0.10 1 -1 188.5 591.60 41 4240.5 7.6 21.0 1 1.322219 251.8 1499.6 4.0 0.10 1 -1 192.5 591.70 42 4241.5 7.5 20.0 1 1.30103 259.3 1519.6 4.0 0.10 1 -1 196.5 591.80 43 4242.5 7.4 19.0 1 1.278754 266.7 1538.6 4.0 0.10 1 -1 200.5 591.90 44 4243.5 7.3 18.0 1 1.255273 274.0 1556.6 4.0 0.10 1 -1 204.5 592.00 45 4244.5 7.2 17.0 1 1.230449 281.2 1573.6 2.0 0.10 1 -1 206.5 592.10 46 4245.5 7.1 16.0 1 1.20412 288.3 1589.6 2.0 0.10 1 -1 208.5 592.20 47 4246.5 7.0 15.0 1 1.176091 295.3 1604.6 2.0 0.10 1 -1 210.5 592.30 48 4247.5 1.0 0.1 1 -1 296.3 1604.7 2.0 0.10 1 -1 212.5 592.40 49 4248.5 0.8 0.1 1 -1 297.1 1604.8 1.0 0.10 1 -1 213.5 592.50 50 4249.5 0.5 0.1 1 -1 297.6 1604.9 1.0 0.10 1 -1 214.5 592.60 Sample Well 1 Well 2 Appendix
  • 17. PNGE 434 Fall 2014 φ k h φ k h φ k h % md ft log k ∑ φh ∑ kh % md ft log k ∑ φh ∑ kh % md ft log k ∑ φh ∑ kh 1.0 0.10 1 -1 1 0.10 1.0 0.10 1 -1 1 0.1 1.0 0.10 1 -1 1 0.1 1.0 0.10 1 -1 2.0 0.20 1.0 0.10 1 -1 2.0 0.20 1.0 0.10 1 -1 2.0 0.20 1.0 0.10 1 -1 3.0 0.30 1.0 0.10 1 -1 3.0 0.30 1.0 0.10 1 -1 3.0 0.30 1.0 0.10 1 -1 4.0 0.40 1.0 0.10 1 -1 4.0 0.40 1.0 0.10 1 -1 4.0 0.40 1.0 0.10 1 -1 5.0 0.50 1.0 0.10 1 -1 5.0 0.50 1.0 0.10 1 -1 5.0 0.50 1.0 0.10 1 -1 6.0 0.60 1.0 0.10 1 -1 6.0 0.60 1.0 0.10 1 -1 6.0 0.60 1.0 0.10 1 -1 7.0 0.70 1.0 0.10 1 -1 7.0 0.70 1.0 0.10 1 -1 7.0 0.70 2.0 0.10 1 -1 9.0 0.80 2.0 0.10 1 -1 9.0 0.80 2.0 0.10 1 -1 9.0 0.80 2.0 0.10 1 -1 11.0 0.90 2.0 0.10 1 -1 11.0 0.90 2.0 0.10 1 -1 11.0 0.90 2.0 0.10 1 -1 13.0 1.00 3.0 0.10 1 -1 14.0 1.00 3.0 0.10 1 -1 14.0 1.00 2.0 0.10 1 -1 15.0 1.10 7.8 30.0 1 1.477121 21.8 31.00 7.7 30.0 1 1.477121 21.7 31.00 2.0 0.10 1 -1 17.0 1.20 7.9 32.0 1 1.50515 29.7 63.00 7.8 32.0 1 1.50515 29.5 63.00 2.0 0.10 1 -1 19.0 1.30 7.9 33.0 1 1.518514 37.6 96.00 7.9 33.0 1 1.518514 37.4 96.00 4.0 0.10 1 -1 23.0 1.40 8.1 34.0 1 1.531479 45.7 130.00 8.0 34.0 1 1.531479 45.4 130.00 4.0 0.10 1 -1 27.0 1.50 9.0 0.10 1 -1 54.7 130.10 9.0 0.10 1 -1 54.4 130.10 4.0 0.10 1 -1 31.0 1.60 5.6 120.0 1 2.079181 60.3 250.10 5.6 120.0 1 2.079181 60.0 250.10 4.0 0.10 1 -1 35.0 1.70 5.3 105.0 1 2.021189 65.6 355.10 5.3 105.0 1 2.021189 65.3 355.10 4.0 0.10 1 -1 39.0 1.80 10.0 0.20 1 -0.69897 75.6 355.30 10.0 0.20 1 -0.69897 75.3 355.30 5.0 0.10 1 -1 44.0 1.90 6.5 38.0 1 1.579784 82.1 393.30 6.5 38.0 1 1.579784 81.8 393.30 6.0 0.10 1 -1 50.0 2.00 6.7 39.0 1 1.591065 88.8 432.30 6.7 39.0 1 1.591065 88.5 432.30 8.0 0.10 1 -1 58.0 2.10 6.8 40.0 1 1.60206 95.6 472.30 6.8 40.0 1 1.60206 95.3 472.30 7.8 31.0 1 1.491362 65.8 33.10 6.6 36.0 1 1.556303 102.2 508.30 6.6 36.0 1 1.556303 101.9 508.30 7.8 32.0 1 1.50515 73.6 65.10 6.0 0.10 1 -1 108.2 508.40 6.0 0.10 1 -1 107.9 508.40 7.9 33.0 1 1.518514 81.5 98.10 7.4 19.0 1 1.278754 115.6 527.40 7.4 19.0 1 1.278754 115.3 527.40 8.1 34.0 1 1.531479 89.6 132.10 7.7 22.0 1 1.342423 123.3 549.40 7.7 22.0 1 1.342423 123.0 549.40 8.0 0.10 1 -1 97.6 132.20 7.6 21.0 1 1.322219 130.9 570.40 7.6 21.0 1 1.322219 130.6 570.40 5.6 120.0 1 2.079181 103.2 252.20 7.5 20.0 1 1.30103 138.4 590.40 7.5 20.0 1 1.30103 138.1 590.40 5.3 105.0 1 2.021189 108.5 357.20 4.0 0.10 1 -1 142.4 590.50 4.0 0.10 1 -1 142.1 590.50 10.0 0.10 1 -1 118.5 357.30 4.0 0.10 1 -1 146.4 590.60 4.0 0.10 1 -1 146.1 590.60 6.5 38.0 1 1.579784 125.0 395.30 4.0 0.10 1 -1 150.4 590.70 4.0 0.10 1 -1 150.1 590.70 6.7 39.0 1 1.591065 131.7 434.30 4.0 0.10 1 -1 154.4 590.80 4.0 0.10 1 -1 154.1 590.80 6.8 40.0 1 1.60206 138.5 474.30 4.0 0.10 1 -1 158.4 590.90 4.0 0.10 1 -1 158.1 590.90 6.6 36.0 1 1.556303 145.1 510.30 4.0 0.10 1 -1 162.4 591.00 4.0 0.10 1 -1 162.1 591.00 7.0 0.10 1 -1 152.1 510.40 3.0 0.10 1 -1 165.4 591.10 3.0 0.10 1 -1 165.1 591.10 7.4 19.0 1 1.278754 159.5 529.40 3.0 0.10 1 -1 168.4 591.20 3.0 0.10 1 -1 168.1 591.20 7.7 22.0 1 1.342423 167.2 551.40 3.0 0.10 1 -1 171.4 591.30 3.0 0.10 1 -1 171.1 591.30 7.6 21.0 1 1.322219 174.8 572.40 3.0 0.10 1 -1 174.4 591.40 3.0 0.10 1 -1 174.1 591.40 7.5 20.0 1 1.30103 182.3 592.40 3.0 0.10 1 -1 177.4 591.50 3.0 0.10 1 -1 177.1 591.50 4.0 0.10 1 -1 186.3 592.50 3.0 0.10 1 -1 180.4 591.60 3.0 0.10 1 -1 180.1 591.60 4.0 0.10 1 -1 190.3 592.60 3.0 0.10 1 -1 183.4 591.70 3.0 0.10 1 -1 183.1 591.70 4.0 0.10 1 -1 194.3 592.70 3.0 0.10 1 -1 186.4 591.80 3.0 0.10 1 -1 186.1 591.80 4.0 0.10 1 -1 198.3 592.80 3.0 0.10 1 -1 189.4 591.90 3.0 0.10 1 -1 189.1 591.90 4.0 0.10 1 -1 202.3 592.90 3.0 0.10 1 -1 192.4 592.00 3.0 0.10 1 -1 192.1 592.00 4.0 0.10 1 -1 206.3 593.00 2.0 0.10 1 -1 194.4 592.10 2.0 0.10 1 -1 194.1 592.10 2.0 0.10 1 -1 208.3 593.10 2.0 0.10 1 -1 196.4 592.20 2.0 0.10 1 -1 196.1 592.20 2.0 0.10 1 -1 210.3 593.20 2.0 0.10 1 -1 198.4 592.30 2.0 0.10 1 -1 198.1 592.30 2.0 0.10 1 -1 212.3 593.30 2.0 0.10 1 -1 200.4 592.40 2.0 0.10 1 -1 200.1 592.40 2.0 0.10 1 -1 214.3 593.40 1.0 0.10 1 -1 201.4 592.50 1.0 0.10 1 -1 201.1 592.50 1.0 0.10 1 -1 215.3 593.50 0.5 0.10 1 -1 201.9 592.60 0.5 0.10 1 -1 201.6 592.60 1.0 0.10 1 -1 216.3 593.60 0.5 0.10 1 -1 202.4 592.70 0.5 0.10 1 -1 202.1 592.70 Well 3 Well 4 Well 5
  • 18. PNGE 434 Fall 2014 tr1 tr2 tr3 tr4 DVI EH fw Wi/Vp BoNpf/Vp ir (ir)av Δ (ir)av ×Δ A=Σ 2.5Σ 0.49Σ 1.78Σ 3.81Σ 0 0 0 0 0 1 1 0 0 0 0 0 0 0 Fill-up 0 0 0.230 0 1 1 0.230 0.23 0.23 0.6 0.1 0.4 0.9 0.58 0.58 0 0.348 0.118 4.33 4.33 0.118 0.511 0.741 1.9 0.4 1.3 2.8 0.75 0.7 0.51 0.450 0.19 3.14 3.74 0.102 0.381 1.122 2.8 0.6 2.0 4.3 0.90 0.77 0.65 0.540 0.232 2.82 2.98 0.090 0.268 1.390 3.5 0.7 2.5 5.3 1.00 0.8 0.71 0.600 0.25 2.68 2.75 0.060 0.165 1.555 3.9 0.8 2.8 5.9 1.10 0.83 0.78 0.660 0.268 2.51 2.59 0.060 0.156 1.710 4.3 0.8 3.1 6.5 1.20 0.85 0.84 0.720 0.28 2.37 2.44 0.060 0.147 1.857 4.7 0.9 3.3 7.1 1.30 0.87 0.86 0.780 0.292 2.33 2.35 0.060 0.141 1.998 5.1 1.0 3.6 7.6 1.40 0.88 0.87 0.840 0.298 2.30 2.31 0.060 0.139 2.137 5.4 1.0 3.8 8.1 1.50 0.9 0.88 0.900 0.31 2.28 2.29 0.060 0.137 2.274 5.8 1.1 4.1 8.7 1.75 0.93 0.90 1.050 0.328 2.23 2.26 0.150 0.338 2.613 6.6 1.3 4.7 10.0 2.00 0.94 0.93 1.200 0.334 2.17 2.20 0.150 0.331 2.943 7.4 1.4 5.3 11.2 2.25 0.95 0.95 1.350 0.34 2.12 2.15 0.150 0.322 3.265 8.3 1.6 5.8 12.5 2.50 0.97 0.97 1.500 0.352 2.07 2.09 0.150 0.314 3.579 9.1 1.8 6.4 13.6 2.75 0.94 0.96 1.650 0.334 2.09 2.08 0.150 0.312 3.891 38.9 77.8 291.9 3.00 0.96 0.97 1.800 0.346 2.07 2.08 0.150 0.312 4.204 42.0 84.1 315.3 3.25 0.98 0.98 1.950 0.358 2.05 2.06 0.150 0.309 4.512 45.1 90.2 338.4 3.50 0.99 0.99 2.100 0.364 2.02 2.03 0.150 0.305 4.818 48.2 96.4 361.3
  • 19. PNGE 434 Fall 2014 0.00 $0 5 1.00 $0 5 231528 181981230 0 2.00 ($6,000,000) 20 1231872 1430018770 0 3.00 ($2,000,000) 25 675930 1806281230 0 4.00 ($4,000,000) 35 556670 2376718770 0 5.00 ($1,100,000) 35 91700 151227930 2847 6.00 35 154319 475889154 87971 7.00 35 284119 272254448 165401 8.00 35 401222 374743695 238852 9.00 35 581520 280059595 421527 10.00 35 572713 268651872 463236 11.00 35 529981 213894803 661625 12.00 35 529981 213894803 661625 12.50 35 262870 106091822 328166 14.00 15.00 16.00 17.00 18.00 19.00 20.00 Total ($13,100,000) WpYear Drilling and Completions Number of Wells Np Gp ($36,500) $0 $0 $545,944 $23,152,828 $23,662,272 ($9,464,909) $14,197,363 ($146,000) $0 $0 $4,290,056 $123,187,172 $121,331,228 ($48,532,491) $72,798,737 ($182,500) $0 $0 $5,418,844 $67,593,000 $70,829,344 ($28,331,737) $42,497,606 ($255,500) $0 $0 $7,130,156 $55,667,000 $58,541,656 ($23,416,663) $35,124,994 2188630 ($255,500) ($8,754,519) ($8,541) $453,684 $9,169,980 ($494,896) $0 ($494,896) 2188843 ($255,500) ($8,755,370) ($263,912) $1,427,667 $15,431,923 $7,584,808 ($3,033,923) $4,550,885 2191751 ($255,500) ($8,767,003) ($496,203) $816,763 $28,411,874 $19,709,932 ($7,883,973) $11,825,959 2193666 ($255,500) ($8,774,663) ($716,556) $1,124,231 $40,122,224 $31,499,736 ($12,599,894) $18,899,842 2191258 ($255,500) ($8,765,033) ($1,264,581) $840,179 $58,152,002 $48,707,067 ($19,482,827) $29,224,240 2191749 ($255,500) ($8,766,995) ($1,389,707) $805,956 $57,271,288 $47,665,042 ($19,066,017) $28,599,025 2191342 ($255,500) ($8,765,367) ($1,984,876) $641,684 $52,998,075 $42,634,017 ($17,053,607) $25,580,410 2191342 ($255,500) ($8,765,367) ($1,984,876) $641,684 $52,998,075 $42,634,017 ($17,053,607) $25,580,410 1086906 ($126,700) ($4,347,622) ($984,498) $318,275 $26,287,045 $21,146,500 ($8,458,600) $12,687,900 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 $0 ($13,100,000) $5,240,000 $241,689,825 NPV @ 5% Net Income Before Taxes Taxes Net Income After Taxes Water Injected Operating Costs Water Injection Costs Water Disposal Costs Gas Revenue Liquid Revenue
  • 20. PNGE 434 Fall 2014 0.00 $0 5 1.00 $0 5 231528 181981230 0 0 ($36,500) 2.00 ($6,000,000) 20 1231872 1430018770 0 0 ($146,000) 3.00 ($2,000,000) 25 675930 1806281230 0 0 ($182,500) 4.00 ($4,000,000) 35 556670 2376718770 0 0 ($255,500) 5.00 ($5,350,000) 45 78681 200117482 2373 2190114 ($328,500) 6.00 45 143093 331643092 30797 2191178 ($328,500) 7.00 45 168734 334758022 122876 2191566 ($328,500) 8.00 45 313360 294132897 172629 2193435 ($328,500) 9.00 45 362626 279793270 189492 2191203 ($328,500) 10.00 45 543731 215650939 367517 2191769 ($328,500) 11.00 45 597592 195744699 420801 2187482 ($328,500) 12.00 45 597592 195744699 420801 2187482 ($328,500) 13.00 45 547765 152061560 647974 2188731 ($328,500) 14.00 45 545907 149849755 662032 2192690 ($328,500) 15.00 45 545907 149849755 662032 2192690 ($328,500) 15.75 45 408926 112249079 495914 1642495 ($246,600) Total ($17,350,000) 6049173 7994646658 2375258 19712961 WpYear Drilling and Completions Number of Wells Np Gp Water Injected Operating Costs $0 $0 $545,944 $23,152,828 $23,662,272 ($9,464,909) $14,197,363 $0 $0 $4,290,056 $123,187,172 $121,331,228 ($48,532,491) $72,798,737 $0 $0 $5,418,844 $67,593,000 $70,829,344 ($28,331,737) $42,497,606 $0 $0 $7,130,156 $55,667,000 $58,541,656 ($23,416,663) $35,124,994 ($8,760,458) ($7,118) $600,352 $7,868,095 ($5,977,629) $0 ($5,977,629) ($8,764,710) ($92,391) $994,929 $14,309,316 $6,118,644 ($2,447,458) $3,671,186 ($8,766,265) ($368,628) $1,004,274 $16,873,366 $8,414,246 ($3,365,698) $5,048,548 ($8,773,741) ($517,887) $882,399 $31,335,964 $22,598,235 ($9,039,294) $13,558,941 ($8,764,811) ($568,476) $839,380 $36,262,591 $27,440,185 ($10,976,074) $16,464,111 ($8,767,077) ($1,102,550) $646,953 $54,373,140 $44,821,966 ($17,928,786) $26,893,180 ($8,749,928) ($1,262,402) $587,234 $59,759,165 $50,005,569 ($20,002,228) $30,003,341 ($8,749,928) ($1,262,402) $587,234 $59,759,165 $50,005,569 ($20,002,228) $30,003,341 ($8,754,924) ($1,943,922) $456,185 $54,776,462 $44,205,302 ($17,682,121) $26,523,181 ($8,770,761) ($1,986,097) $449,549 $54,590,674 $43,954,865 ($17,581,946) $26,372,919 ($8,770,761) ($1,986,097) $449,549 $54,590,674 $43,954,865 ($17,581,946) $26,372,919 ($6,569,980) ($1,487,741) $336,747 $40,892,645 $32,925,072 ($13,170,029) $19,755,043 NPV @ 5% $266,475,419 Net Income Before Taxes Taxes Net Income After Taxes Water Injection Costs Water Disposal Costs Gas Revenue Liquid Revenue
  • 21. PNGE 434 Fall 2014 tr Zone Wi/Vp BoNpf/Vp Vp Wi GpBg BoNpf Gp Np Wp 1 0.040 0.0 240498 9502.07598 9502.07598 0.0 2202103.4 0.0 0 2 0.204 0.0 83165.76 16940.8653 16940.8653 0.0 3926040.6 0.0 0 3 0.056 0.0 321801.84 18036.9931 18037.0 0.0 4180067.9 0.0 0 4 0.026 0.0 251359.2 6590.63822 6590.6 0.0 1527378.5 0.0 0 TOTAL 51071 51071 0.0 11835590.4 0.0 0.0 1 0.158 0.0 240498 38008.3039 38008.3039 0 8808413 0 0 2 0.342 0.1 83165.76 28439.3633 16940.8653 11806.2 3926040.6 9921 308 3 0.224 0.0 321801.84 72147.9725 72148.0 0.0 16720272 0 0 4 0.105 0.0 251359.2 26362.5529 26362.6 0.0 6109514 0 0 TOTAL 164958 153460 11806 35564240 9921 307.7 1 0.198 0.000 240498 47510.3799 47510.3799 0 11010517 0 0 2 0.353 0.121 83165.76 29328.4053 16940.8653 10077 3926040.6 8468 2311 3 0.219 0.019 321801.84 70313.702 72148.0 5953.3 16720272 5003 7788 4 0.131 0.0 251359.2 32953.1911 32953.2 0.0 7636892 0 0 TOTAL 180106 169552 16030 39293722 13471 10098.3 1 0.23 0.027 240498 54535.3265 47510.3799 6436 11010517 5408 589 2 0.607 0.254 83165.76 50513.2193 16940.8653 21144 3926040.6 17768 12428 3 0.257 0.1 321801.84 82806.0495 72148.0 18445.7 16720272 15501 7788 4 0.210 0.0 251359.2 52725.1058 52725.1 0.0 12219028 0 0 TOTAL 240580 189324 46025 43875857 38677 20805 1 0.29 0.091 240498 69888.7188 47510.3799 21789 11010517 18310 589 2 1.202 0.334 83165.76 99944.4521 16940.8653 27795 3926040.6 23357 55209 3 0.348 0.1 321801.84 111954.86 72148.0 47594 16720272 39995 7788 4 0.245 0.045 251359.2 61507.5962 52725.1 11236 12219028 9442 2453 TOTAL 343296 189324 108414.4 43875857.1 91104.5 66039 1 0.35 0.145 240498 83049 47510.3799 34949 11010517 29369 589 2 1.937 0.239 83165.76 161085 16940.8653 19909 3926041 16730 124235 3 0.4187 0.1682 321801.84 134726 72148 54136 16720272 45493 8441 4 0.2811 0.0811 251359.2 70647 52725 20375 12219028 17122 2453 TOTAL 449506 189324 129370 43875857 108714 135718 The following is at 700 psia Middle Zone of Reservoir 2.1 0.1 0.4 0.5 0.8 1.5 Zone 1: Gas Fillup (t_r≤0.5): (W_i/V_p ) = 0.3951t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g Before Breakthrough (0.5≤t_r≤2.1): (W_i/V_p ) = 0.0912t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2 After Breakthrough (t_r≥2.1): (W_i/V_p ) = 0.1647t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+ 1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812 Zone 2: Gas Fillup (t_r≤0.1): (W_i/V_p ) = 2.037t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g Before Breakthrough (0.1≤t_r≤0.4): (W_i/V_p ) = 0.4704t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2 After Breakthrough (t_r≥0.4): (W_i/V_p ) = 0.8491t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+ 1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812 Zone 3: Gas Fillup (t_r≤0.4): (W_i/V_p ) = 0.5605t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g Before Breakthrough (0.4≤t_r≤1.5): (W_i/V_p ) = 0.1294t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2 After Breakthrough (t_r≥1.5): (W_i/V_p ) = 0.2336t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+ 1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812 Zone 4: Gas Fillup (t_r≤0.8): (W_i/V_p ) = 0.2622t_r , (B_o N_pf)/V_p =0, G_p=W_i/B_g Before Breakthrough (0.8≤t_r≤3.2): (W_i/V_p ) = 0.0606t_r + 0.1538, (B_o N_pf)/V_p =W_i/V_p -0.2 After Breakthrough (t_r≥3.2): (W_i/V_p ) = 0.1093t_r - 0.0719, (B_o N_pf)/V_p =-0.3576(W_i/V_p )^4+ 1.6289(W_i/V_p )^3- 2.7961(W_i/V_p )^2+ 2.2237(W_i/V_p ) - 0.3812
  • 22. PNGE 434 Fall 2014 tr Zone Wi/Vp BoNpf/Vp Vp Wi GpBg BoNpf Gp Np Wp 1 0.040 0.0 240498 9502.076 9502.07598 0.0 1541793.9 0.0 0 2 0.204 0.0 83165.76 16940.87 16940.86531 0.0 2748801.8 0.0 0 3 0.056 0.0 321801.8 18036.99 18037.0 0.0 2926658.0 0.0 0 4 0.026 0.0 251359.2 6590.638 6590.6 0.0 1069388.0 0.0 0 TOTAL 51071 51071 0.0 8286641.7 0.0 0.0 1 0.158 0.0 240498 38008.3 38008.30392 0 6167176 0 0 2 0.342 0.1 83165.76 28439.36 16940.86531 11806.2 2748802 10213 308 3 0.224 0.0 321801.8 72147.97 72148.0 0.0 11706632 0 0 4 0.105 0.0 251359.2 26362.55 26362.6 0.0 4277552 0 0 TOTAL 164958 153460 11806 24900161 10213 307.7 1 0.198 0.000 240498 47510.38 47510.3799 0 7708970 0 0 2 0.353 0.121 83165.76 29328.41 16940.86531 10077 2748802 8717 2311 3 0.219 0.019 321801.8 70313.7 72148.0 5953.3 11706632 5150 7788 4 0.131 0.0 251359.2 32953.19 32953.2 0.0 5346940 0 0 TOTAL 180106 169552 16030 27511343 13867 10098.3 1 0.23 0.027 240498 54535.33 47510.3799 6436 7708970 5567 589 2 0.607 0.254 83165.76 50513.22 16940.86531 21144 2748801.8 18291 12428 3 0.257 0.1 321801.8 82806.05 72148.0 18445.7 11706632 15956 7788 4 0.210 0.0 251359.2 52725.11 52725.1 0.0 8555104 0 0 TOTAL 240580 189324 46025 30719507 39814 20805 1 0.29 0.091 240498 69888.72 47510.3799 21789 7708970 18849 589 2 1.202 0.334 83165.76 99944.45 16940.86531 27795 2748801.8 24044 55209 3 0.348 0.1 321801.8 111954.9 72148.0 47594 11706632 41172 7788 4 0.245 0.045 251359.2 61507.6 52725.1 11236 8555104 9720 2453 TOTAL 343296 189324 108414.4 30719507.3 93784.1 66039 1 0.35 0.145 240498 83049 47510.3799 34949 7708970 30233 589 2 1.937 0.239 83165.76 161085 16940.86531 19909 2748802 17222 124235 3 0.4187 0.1682 321801.8 134726 72148 54136 11706632 46831 8441 4 0.2811 0.0811 251359.2 70647 52725 20375 8555104 17626 2453 TOTAL 449506 189324 129370 30719507 111912 135718 1.5 2.1 0.8 The following is at 500 psia Middle Zone of Reservoir 0.1 0.4 0.5
  • 23. PNGE 434 Fall 2014 Formation Depth 4200-4250 ft. Initial Reservoir Pressure (Pi) 2,500 psia Saturation Pressure (Ps) 2,500 psia Maximum Safe Drawdown 400 psi Minimum Well Spacing 40 acres Minimum Flowing Pressure 100 psig Max. Water Injection Rate 300 STB/D Available Water 6000 STB/D Number of wells that can be drilled 15 year