Presentation By Vamshi TG
Consider a plane and a Sphere ,we suppose that sphere and
plane have points in common i.e. the interception of sphere and
plane at these set of common points is called Plane section
of a Sphere.
T h e e q u a t i o n o f t h e
s p h e r e w i t h o r i g i n a s
c e n t r e a n d r a d i u s r i s
g i v e n b y
x 2 + y 2 + z 2 =r 2
.....(i )
L e t C (a , b , c ) b e t h e
c e n t r e o f t h e p l a n e
s e c t i o n o f t h e s p h e r e
w h o s e e q u a t i o n w e
h a v e t o f i n d o u t . T h e
l i n e s e g m e n t O C d r a w n
L e t P (x ,y ,z ) b e a n y p o i n t o n t h e
p l a n e s e c t i o n .
T h e d i r e c t i o n r a t i o o f P C a r e x -
a , y - b ,z - c a n d i t i s p e r p e n d i c u l a r
t o O C .
U s i n g t h e c o n d i t i o n o f
p e r p e n d i c u l a r i t y , w e h a v e
( x - a ) a + ( y -b ) b +( z -c ) c =0 ....(i i )
E q u a t i o n (i i ) i s s a t i s f i e d b y t h e
c o -o r d i n a t e s o f a n y p o i n t P o n t h e
Great circle is also known
as orthodrome or Riemannian circle.
•Definition Of Great circle: A great circle of a sphere is
the intersection of the sphere and a plane which passes
through the center point of the sphere.
Small circle of a sphere is defined as the
intersection of a sphere and a plane, If the plane
does not pass through the center of the sphere
Plane section of sphere
Plane section of sphere
Plane section of sphere

Plane section of sphere

  • 1.
  • 2.
    Consider a planeand a Sphere ,we suppose that sphere and plane have points in common i.e. the interception of sphere and plane at these set of common points is called Plane section of a Sphere.
  • 5.
    T h ee q u a t i o n o f t h e s p h e r e w i t h o r i g i n a s c e n t r e a n d r a d i u s r i s g i v e n b y x 2 + y 2 + z 2 =r 2 .....(i ) L e t C (a , b , c ) b e t h e c e n t r e o f t h e p l a n e s e c t i o n o f t h e s p h e r e w h o s e e q u a t i o n w e h a v e t o f i n d o u t . T h e l i n e s e g m e n t O C d r a w n
  • 6.
    L e tP (x ,y ,z ) b e a n y p o i n t o n t h e p l a n e s e c t i o n . T h e d i r e c t i o n r a t i o o f P C a r e x - a , y - b ,z - c a n d i t i s p e r p e n d i c u l a r t o O C . U s i n g t h e c o n d i t i o n o f p e r p e n d i c u l a r i t y , w e h a v e ( x - a ) a + ( y -b ) b +( z -c ) c =0 ....(i i ) E q u a t i o n (i i ) i s s a t i s f i e d b y t h e c o -o r d i n a t e s o f a n y p o i n t P o n t h e
  • 7.
    Great circle isalso known as orthodrome or Riemannian circle. •Definition Of Great circle: A great circle of a sphere is the intersection of the sphere and a plane which passes through the center point of the sphere.
  • 8.
    Small circle ofa sphere is defined as the intersection of a sphere and a plane, If the plane does not pass through the center of the sphere