SlideShare a Scribd company logo
1 of 23
Download to read offline
592 | Nature | Vol 579 | 26 March 2020
Article
Phaseseparationdirectsubiquitinationof
gene-bodynucleosomes
Laura D. Gallego1,3
, Maren Schneider1,3
, Chitvan Mittal2,3
, Anete Romanauska1
,
Ricardo M. Gudino Carrillo1
, Tobias Schubert1
, B. Franklin Pugh2
& Alwin Köhler1 ✉
TheconservedyeastE3ubiquitinligaseBre1anditspartner,theE2ubiquitin-
conjugatingenzymeRad6,monoubiquitinatehistoneH2Bacrossgenebodiesduring
thetranscriptioncycle1
.Althoughprocessiveubiquitinationmight—inprinciple—
arisefromBre1andRad6travellingwithRNApolymerase II2
,themechanismofH2B
ubiquitinationacrossgenicnucleosomesremainsunclear.Hereweimplicateliquid–
liquidphaseseparation3
astheunderlyingmechanism.Biochemicalreconstitution
showsthatBre1bindsthescaffoldproteinLge1,whichpossessesanintrinsically
disorderedregionthatphase-separatesviamultivalentinteractions.Theresulting
condensatescompriseacoreofLge1encapsulatedbyanoutercatalyticshellofBre1.
ThislayeredliquidrecruitsRad6andthenucleosomalsubstrate,whichaccelerates
theubiquitinationofH2B.In vivo,thecondensate-formingregionofLge1isrequired
toubiquitinateH2Bingenebodiesbeyondthe+1 nucleosome.Ourdatasuggestthat
layeredcondensatesofhistone-modifyingenzymesgeneratechromatin-associated
‘reactionchambers’,withaugmentedcatalyticactivityalonggenebodies.Equivalent
processesmayoccurinhumancells,andcauseneurologicaldiseasewhenimpaired.
Eukaryotic cells require the precisely timed activation of genes,
which coincides with chromatin alterations. The fundamental unit
of chromatin is the nucleosome core particle (NCP), which is assem-
bled from histones and DNA, and iterated to resemble ‘beads on a
string’.Post-translationalmodificationsofhistonesaffectchromatin
structure and thus gene activity. How histone-modifying enzymes
are concentrated in discrete parts of the genome to install histone
marks locally is a key question. Histone H2B is monoubiquitinated
at lysine 123 (H2BK123ub) in yeast and at lysine 120 in mammals1,2
.
Thismarkisfoundacrosspromoter,genicandterminationregionsof
mostgenesinSaccharomycescerevisiae4
.H2BK123ubinfluencesDNA
transcription,repairandreplication,andRNAprocessing1
.H2BK123ub
exertsitstranscriptionaleffectsbyregulatingNCPassembly,stability4
andspecifichistonemethylations1
.AberrantlevelsofH2Bubiquitina-
tion are found in various diseases, including cancer1
. It is therefore
important to understand how H2BK123ub is established in specific
regions of the genome.
Ubiquitination is a three-step enzymatic cascade, which requires a
ubiquitin-activating (E1), a ubiquitin-conjugating (E2) and a ubiqui-
tin-ligating (E3) enzyme. In yeast, H2BK123ub is generated by the E3
Bre1 (an orthologue of the human RNF20 and RNF40 proteins (here-
after, RNF20/RNF40)), together with the E2 Rad6 and the E1 Uba15–9
.
AcommonviewisthatH2BK123ubisdepositedinacotranscriptional
manner1,2
. However, H2B ubiquitination does not strictly depend on
Bre1–Rad6bindingtoRNApolymerase(Pol) II10
.Thus,themechanism
of H2B ubiquitination across genic NCPs is unclear.
Tounderstandhowtheubiquitinationmachineryisenrichedatthe
correct genomic positions, we considered the Large 1 (Lge1) protein,
whichhasanas-yetunknownbiochemicalrole,copurifieswithBre1and
is essential for H2B monoubiquitination in yeast7
. Except for a short
C-terminalcoiledcoil,Lge1ispredictedtoconsistentirelyofanintrin-
sically disordered region (IDR) (Fig. 1a, Extended Data Fig. 2a, b). The
human Bre1 orthologues RNF20/RNF40 interact with WAC, a protein
that is similar to Lge1 in its IDR and coiled-coil domain architecture11
(ExtendedDataFig. 2b).SomeproteinsthatcontainanIDRparticipate
inmultivalentinteractions,whichcanleadtoliquid–liquidphasesepa-
ration(LLPS)andtheformationofbiomolecularcondensates3,12,13
.LLPS
has previously been implicated in chromatin organization14
, hetero-
chromatincompaction15
aswellaspromoterandenhancerfunction16–19
.
HerewedefineadirectroleofLLPSinstimulatinghistoneubiquitina-
tionspecificallyacrossgenebodies.Lge1,Bre1,Rad6andnucleosomes
together form spatially organized reaction chambers that stimulate
H2B ubiquitination.
Lge1promotesBre1oligomerization
WefirstexploredinteractionsbetweenLge1andBre1,andtheircapacity
to phase-separate. Bre1 consists of a series of coiled-coils, flanked by
an N-terminal Rad6-binding domain and a C-terminal RING domain20
(Fig. 1a).Bre1associateswithLge1whenpurifiedfromyeast(Extended
DataFig. 1a).Lge1taggedwithglutathione S-transferase(GST)purified
from Escherichia coli bound the ‘middle’ part of recombinant Bre1,
which we therefore call the Lge1-binding domain (LBD; comprising
residues 308–632)(ExtendedDataFig. 1b,c,SupplementaryFig. 2,Sup-
plementaryTable 1).TheLge1coiledcoilalone(Lge1(CC),comprising
aminoacids 243–332)wasnecessaryandsufficientforbindingtoBre1
(Extended Data Fig. 1d). Thus, coiled-coil contacts mediate a direct
interaction between Lge1 and Bre1.
https://doi.org/10.1038/s41586-020-2097-z
Received: 10 June 2019
Accepted: 11 February 2020
Published online: 11 March 2020
Check for updates
1
Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria. 2
Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation,
Pennsylvania State University, University Park, PA, USA. 3
These authors contributed equally: Laura D. Gallego, Maren Schneider, Chitvan Mittal. ✉e-mail: alwin.koehler@mfpl.ac.at
Nature | Vol 579 | 26 March 2020 | 593
We next analysed the oligomerization state of Bre1 and how this
statemightbeinfluencedbytheIDRofLge1.Bre1showedabroadpeak
in the low-molecular-weight region of a sucrose gradient, whereas
Lge1 sedimented in a distinct high-molecular-weight region. When
mixedwithBre1,Lge1shiftedasubstantialportionofBre1intothehigh-
molecular-weightregion(Fig. 1b,SupplementaryFig. 1).TheLge1(CC)
alonesedimentedinthelow-molecular-weightregion,whereastheLge1
IDR alone (Lge1(IDR), comprising amino acids 1–242) sedimented in
the high-molecular-weight region (Extended Data Fig. 1e). Lge1(IDR)
(whichdoesnotbindBre1)leftBre1inthelow-molecular-weightregion.
Thus, Lge1 is a scaffold protein that—via its IDR—promotes Bre1 oli-
gomerization.
Lge1phase-separatesin vitro
Lge1hasthehallmarksofproteinsthatundergoLLPS3
,includingintrin-
sicdisorder,lowsequencecomplexityandblocksofalternatingcharges
(ExtendedDataFig. 2a,b).Recombinantfull-length6×His-taggedLge1
indeed formed condensates, which grew in size to micrometre-sized
spheres by fusion (Fig. 1c, Extended Data Fig. 1f–h, Supplementary
Video 1). Phase separation occurred at 0.1–0.5 μM under physiologi-
cal salt concentrations without crowding agents, and was inhibited
by 1,6-hexanediol (Extended Data Fig. 4a, b). The sedimentation of
Lge1 in sucrose gradients could thus be explained by LLPS (Extended
Data Fig. 1k). Deletion of the IDR of Lge1 abolished LLPS, whereas the
Lge1(IDR)alonewassufficientforLLPS(Fig. 1c,ExtendedDataFig. 1g).
The N terminus (amino acids 1–80) of Lge1 is enriched in tyrosine (Y)
andarginine(R)residues(ExtendedDataFig. 2a).TruncatingthisY/R-
rich region strongly decreased LLPS (Fig. 1c, Extended Data Fig. 1g).
Conversely, the Y/R-rich region was sufficient for LLPS and showed
LLPS when fused to Lge1(CC), albeit with a lower efficiency. In sum, a
shortY/R-rich‘sticker’regionattheLge1N terminusmayactasaseed
for LLPS.
ABre1catalyticshellencapsulatesLge1
Bre1 does not phase-separate on its own (Extended Data Fig. 4c, d);
Lge1thereforebehavesasascaffoldandBre1asaclient.Whenweused
recombinant Bre1 tagged with monomeric green fluorescent protein
(mGFP–Bre1)atequimolarratiotoLge1,Bre1penetratedtheLge1con-
densateonlytoacertaindepthandformedashellaroundanLge1core.
This shell grew in thickness with increasing concentrations of Bre1
(Fig. 1d,ExtendedDataFig. 1j).Tounderstandhowthecore–shellarchi-
tecture is established, we added mGFP–Bre1 to condensates formed
by Lge1(IDR) that lacked the coiled coil. In these experiments, Bre1
no longer assembled a shell and instead diffused into the condensate
(ExtendedDataFig. 1i,j).TheBre1(LBD)wassufficientforshellforma-
tion (albeit with lower efficiency), and this specifically depended on
the coiled coil of Lge1 (Extended Data Fig. 3a, b). To further test the
roleoftheLge1–Bre1interactioninshellformation,wecreatedhybrid
condensates composed of varying ratios of full-length Lge1 mixed
withLge1(IDR).Bre1couldpenetratedeeperintothecorewhenfewer
Lge1coiledcoilswerepresent(ExtendedDataFig. 3c,d).Thissuggests
that the coiled-coil domain of Lge1 captures and organizes Bre1 as it
infiltrates the structure from the periphery. Notably, the Bre1 shell
inhibited condensate fusion (Extended Data Fig. 3e, Supplementary
Video 2) and thereby restricted condensate growth (Extended Data
Fig. 4d). Thus, Lge1 and Bre1 form a distinct membraneless compart-
mentwithacatalyticE3shellthatencapsulatesaliquid-likeLge1core.
Thematerialpropertiesofacondensatedeterminewhichmolecules
areincorporatedintoorexcludedfromit.Wecharacterizedtheeffec-
tivemeshsizeusingfluorescentlylabelleddextransthatrangedfrom
35 to 2,000 kDa in size21
. None of the probes was excluded, and the
partitioningratiosweresimilarwithorwithoutaBre1shell(Extended
DataFig. 4e,f).The2,000-kDaprobehasahydrodynamicradius(Rh)of
about27 nmindiluteaqueousbuffer,similartoa16-unitnucleosomal
array(ExtendedDataFig. 4e,g).Thus,Lge1–Bre1condensatespermit
the penetration of large molecules.
A key question about LLPS is how particular interactions shape the
mesh and function of a condensate3,22
. Both Y>A and R>K mutations
in the Lge1 sticker region strongly decreased LLPS (Extended Data
Fig. 5a–c).Inthecontextoffull-lengthLge1,Y>Amutationsinthesticker
region decreased LLPS, and three additional Y>A mutations within
aminoacids 1–102ofLge1eliminatedLLPS.TheR>Kmutationsinfull-
length Lge1 showed only a modest decrease in LLPS. In sum, a multi-
valentnetworkunderliesthedynamicbehaviourofLge1condensates,
and tyrosines have a key role.
LLPSacceleratesH2Bubiquitination
Tounderstandthefunctionofthecore–shellcondensates,weexplored
theirinfluenceonH2Bubiquitination.FluorescentlylabelledRad6was
rapidlyrecruitedtotheBre1shellofpreformedLge1–Bre1condensates
(Fig. 2a). Subsequently, Rad6 diffused further into the core, and co-
enrichment with Bre1 in the shell still persisted. When Bre1 was omit-
ted,Rad6didnottransientlyaccumulateintheoutershell,butinstead
became rapidly distributed throughout the condensate (Extended
Data Fig. 6a). The recruitment of Rad6 to the Bre1 shell depended on
a direct interaction, as shown by the fact that the Bre1(LBD), which
lacks the RING domain and the Rad6-binding domain, did not con-
centrateRad6intheshell(ExtendedDataFig. 6b).Thisdemonstrates
thatLge1condensatescanco-enrichboththeE3Bre1andtheE2Rad6
in a catalytic shell.
Forthecondensatestoqualifyasareactionchamberforubiquitina-
tion, nucleosomes should also become concentrated. A 16-unit NCP
array,reconstitutedfromyeasthistonesona16×Widomsequence,was
recruited to the catalytic shell of the Lge1–Bre1 condensate (Fig. 2b,
ExtendedDataFig. 6c,d).SimilartoRad6,thechromatinsubstratedif-
fusedintothecondensateovertime.Asimilarpartitioningbehaviour
a
Lge1
IDR
243 332
1
CC
RING
RBD LBD
700
Bre1
1
CC
632
308
210 462
403
d 6×His–Lge1 (1.5 μM)
mGFP–Bre1
(μM)
1.5
3
5
DIC mGFP–Bre1 Merged
c
b 45 %
5% Sucrose
Bre1
80
70
50
40
Coomassie
Strep–
Bre1
Lge1
80
70
50
40
GST–
Lge1
Bre1 + Lge1
6 7 8 9 10 11 12 13
1 2 3 4 5
80
70
50
40
6 7 8 9 10 11 12 13
1 2 3 4 5
6 7 8 9 10 11 12 13
1 2 3 4 5
Mr (×103)
Strep–
Bre1
GST–
Lge1
6×His–Lge1
DIC
243 332
1 80
CC
N IDR
Y/R
-rich
242
1
IDR
Y/R
-rich
1 80
Y/R
-rich
6×His–Lge1
243 332
CC
IDR
81 243 332
CC
1 80 243 332
CC
Y/R
-rich
Fig.1|Lge1formscore–shellcondensateswithBre1.a,OrganizationofBre1
andLge1.CC,coiled-coildomain(green;non-coiled-coilregions,grey);LBD,
Lge1-bindingdomain;RBD,Rad6-bindingdomain;RING,reallyinterestingnew
genedomain.b,SucrosegradientanalysisofStrep-taggedBre1(Strep–Bre1)
andGST–Lge1.Arrowheadslabelpeakfractions.SeeSupplementaryFig. 1for
uncroppedgels.c,LLPSassaywith6×His–Lge1constructs(1.5 μM)(cartoons).
Scalebar,10 μm.SeeSupplementaryVideo 1forcondensatefusionevents.
d, Reconstitutionofcore–shellcondensateswithincreasingamountsof
mGFP–Bre1addedtopreformed6×His–Lge1condensates.Arrowheadslabel
theshellindifferentialinterferencecontrast(DIC)images.Scalebar,2 μm.
594 | Nature | Vol 579 | 26 March 2020
Article
was observed for mononucleosomes (Extended Data Fig. 6e). When
the Bre1 shell was missing, chromatin immediately diffused into the
interior of the Lge1 condensate (Extended Data Fig. 6f). DNA alone
showednostrongaccumulation(ExtendedDataFig. 6g).Insum,LLPS
spatiallyorganizestheubiquitinationmachineryanditssubstrateinto
a distinct core–shell structure.
To test the functional importance of these reaction chambers, we
reconstituted NCP ubiquitination from defined components under
phase-separatingconditions(Fig. 2c).Theadditionoffull-lengthLge1
acceleratedH2Bubiquitination.Importantly,theeffectwasabolished
by removing the IDR of Lge1, leaving only the coiled-coil domain that
interacts with Bre1. The Lge1(IDR) alone, which undergoes LLPS but
does not assemble a Bre1 shell (Extended Data Fig. 3b), could not
enhancethereaction.Thestimulatoryeffectoffull-lengthLge1required
the sticker region—specifically, the tyrosine residues that promote
LLPS. Thus, H2B ubiquitination was accelerated by conditions that
correspond to the formation of Lge1–Bre1 core–shell condensates.
EndogenousLge1andBre1formlargecomplexes
To determine whether Lge1–Bre1 condensates exist in yeast cells, we
analysedthesedimentationofLge1,Bre1andPol IIatendogenouslevels
inwhole-cellextractsusingsucrosedensitygradients.Bre1taggedwith
haemagglutinin was found throughout the gradient, and overlapped
withthebroadpeakofLge1taggedwithatandemaffinitypurification
taginthehigh-molecular-weightregion(Fig. 3a,ExtendedDataFig. 6h,
i).Pol IIsedimentedinthelow-molecular-weightregion,whichsuggests
thatLge1–Bre1multimerizationisnotduetoanassociationwithPol II.
WhenLGE1wasdeleted,Bre1relocalizedintothelow-molecular-weight
regionofthegradient,consistentwithourreconstitutionexperiments
(Fig. 1b).DeletionoftheIDRofLge1wassufficienttoshifttheremaining
Lge1(CC) and Bre1 into the low-molecular-weight region. Removing
only the sticker region had an effect that was similar to—but weaker
than—removingtheentireIDRofLge1.ConsistentwithLge1(IDR)con-
densatesformingintheabsenceofBre1in vitro(Fig. 1c,ExtendedData
Fig. 1e), Lge1(IDR) alone sedimented in the high-molecular-weight
regionbutdidnotshiftBre1intothisregion.Overall,themultimeriza-
tionstateofLge1andBre1incellextractsisconsistentwiththeforma-
tion of core–shell structures that we observed in vitro (Fig. 1d).
TovisualizeLge1andBre1incells,weco-overexpressedthemunder
a strong promoter. Lge1 and Bre1 colocalized into prominent nuclear
foci (Fig. 3b, Extended Data Fig. 7a, b). When expressed from their
endogenouspromoters,Lge1andBre1werehomogenouslydispersed
intheyeastnucleus(ExtendedDataFig. 7c–f).Toselectivelyvisualize
Bre1 that is bound to Lge1, we used bimolecular fluorescence com-
plementation (BiFC) (Fig. 3c). Bre1 fused to the C-terminal fragment
of Venus exhibited BiFC with full-length Lge1 fused to the N-terminal
fragmentofVenus(Fig. 3d,ExtendedDataFig. 7h,i),confirmingtheir
interaction.TheBiFCsignalshowedmultiplepuncta(Fig. 3d,Extended
Data Fig. 7g), which may reflect condensates. We quantified puncta
formation by measuring the heterogeneity (coefficient of variation)
offluorescentintensitieswithinthenucleus(Fig. 3e).DeletingtheLge1
IDR or the Lge1 sticker region (resulting in Lge1(Δ1–80)) reduced the
formation of BiFC puncta (Fig. 3d, e, Extended Data Fig. 7i). However,
a homogenous BiFC signal was maintained (Fig. 3d), consistent with
the presence of the coiled-coil domain of Lge1, which interacts with
Bre1. As in the other assays, the effect of deleting the entire IDR was
stronger than deleting the sticker region only (Figs. 1c, 3a). Together,
thesedatasuggestthatthenuclearBiFCpunctacorrespondtothepool
of Bre1 that undergoes LLPS when bound to Lge1.
Lge1IDRaffectsgene-bodyubiquitination
To address how LLPS contributes to H2B ubiquitination in cells, we
measured global H2BK123ub levels. Deleting the IDR of Lge1 strongly
reduced H2B ubiquitination (Extended Data Fig. 8a), consistent with
H2B
~Ub
H2B
H2B
~Ub
H2B
H2B
~Ub
H2B
H2B
~Ub
H2B
H2B
~Ub
H2B
3
a
b
Time
(min)
2
5
60
Rad6–PacB
Rad6* (3 μM)
mGFP–Bre1 (3 μM)
DIC mGFP–Bre1
2
5
15
16×NCP* (0.5 μM)
mGFP–Bre1 (3 μM)
DIC mGFP–Bre1
Time
(min)
NCP–Hoech
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
μm
1
2
3
4
μm
n = 22
n = 24
n = 29
n = 29
n = 24
n = 22
16×NCP*
mGFP–Bre1
4 5
3
2
0
0
1
0
4 5
3
2
0 1
4 5
3
2
0
0
1 4 5
3
2
0
0
1
4 5
3
2
0
0
1 4 5
3
2
0
0
1
1
2
Rad6*
mGFP–Bre1
1
2
3
4
1
2
μm
4 6
2
0
4 6
2
0
0 0
4 5
3
2
0
0
1
2
3
4
μm
4 5
3
2
0
0
1
1
n = 26 n = 26
1
2
1
2
3
4
4 6
2
0
0
4 6
2
0
0
n = 39 n = 39
n = 25 n = 25
c
CC
IDR
Y/R
-rich
0 3 6 9
–
–
–
–
– +
+
+
+
+
12 0 3 6 9 12
30
25
15
Mr (×103)
Time (min)
Time (min)
Time (min)
Time (min)
Time (min)
Lge1
0
Time (min)
3 6 9 12
2.0
0
0.5
1.0
1.5
n = 3
Lge1
CC
30
25
15
0 3 6 9 12 0 3 6 9 12
Lge1(CC)
0
Time (min)
3 6 9 12
2.0
0
0.5
1.0
1.5
n = 3
Lge1(CC)
IDR
Y/R
-rich
30
25
15
0 3 6 9 12 0 3 6 9 12
Lge1(IDR)
0
Time (min)
3 6 9 12
2.0
0
0.5
1.0
1.5
n = 3
Lge1(IDR)
CC
IDR
30
25
15
0 3 6 9 12 0 3 6 9 12
Lge1(Δ1–80)
Time (min)
0 3 6 9 12
2.0
0
0.5
1.0
1.5
n = 3
Lge1(Δ1–80)
30
25
15
0 3 6 9 12 0 3 6 9 12
CC
IDR
Lge1(17×Y>A, 1–102)
0
Time (min)
3 6 9 12
2.0
0
0.5
1.0
1.5
n = 3
Lge1 Y>A
Relative
H2B~Ub
Fluorescence
intensity
(FU)
Fluorescence
intensity
(FU)
Relative
H2B~Ub
Relative
H2B~Ub
Relative
H2B~Ub
Relative
H2B~Ub
Fig.2|Lge1–Bre1condensatespromoteH2BK123ub.a,Recruitmentof
Pacific-Blue-labelled6×His–Rad6(heredenoted‘Rad6*’)toLge1condensates
withaBre1shell.Fluorescenceintensitieswerequantifiedacrosssingle
condensates.FU, arbitraryfluorescenceunits.n,numberofcondensates.
Scalebar,5 μm.b,PartitioningofHoechst(Hoech)-labelled,reconstituted
yeastoligonucleosomearrays(heredenoted‘16×NCP*’)intoLge1–Bre1
condensates.Scalebar,5 μm.c,Time-resolvedin vitroH2Bubiquitination
assayperformedunderLLPSconditions.±,theindicatedLge1constructsused
atequimolarconcentration.IntensityoftheH2B~Ubbandwasquantifiedand
normalizedto12-mintimepointwithoutLge1foreachassay.Lge1(17×Y>A,
1–102),Lge1withmutationswithinaminoacids1–102(see‘Proteinpurification’
inMethodsfordetailsofthesubstitutions).n,independentexperiments. Mean
ands.d.areindicated.
Nature | Vol 579 | 26 March 2020 | 595
LLPSacceleratingtheenzymaticreactionin vitro(Fig. 2c).Deletionof
thestickerregionhadaweakereffectthanremovaloftheentireIDRof
Lge1. Lge1(IDR) alone did not promote H2B ubiquitination, as it is not
connectedtoBre1(seealsoFig. 3a,d).Todeterminethegenome-wide
effectofLge1–Bre1LLPS,weanalysedthelevelsofH2BandH2BK123ub
by sequencing exonuclease-treated chromatin immunoprecipitates
(ChIP-exo)23
,whichresolvedbothsubunitsofH2Bwithineachaveraged
nucleosome position (Fig. 4a, left). A lge1Δ strain showed increased
nucleosome occupancy (approximated by H2B) downstream of the
first (+1) gene-body nucleosome. Lge1(CC) was sufficient to sustain
proper nucleosome occupancy and positioning, which suggests that
Lge1–Bre1, but not Lge1-directed LLPS, is involved in these aspects of
chromatin organization.
In examining H2BK123ub, we separated all genes into three well-
studied groups—ribosomal-protein, SAGA-dominated and TFIID-
dominated genes—that have distinct types of regulation24,25
(Fig. 4a,
Extended Data Figs. 8b, c, 9d, e). As expected, a lge1Δ bre1Δ strain
showed substantial loss of H2BK123ub. An lge1Δ strain also showed
reduced H2BK123ub across all gene-body nucleosomes. The greater
loss in thelge1Δ bre1Δ strain indicates that Bre1 retains some activ-
ity in the absence of Lge1 (see also Extended Data Fig. 8a). When the
Bre1-interactingcoiled-coildomainofLge1wasremoved(NLS-Lge1IDR
strain), the H2BK123ub pattern resembled that in the lge1∆ strain,
confirming the general importance of the Bre1–Lge1 interaction in
regulating H2B ubiquitination in vivo (Extended Data Fig. 8a, b). By
contrast, when the IDR of Lge1 was deleted, H2BK123ub levels were
mainly reduced downstream of +1 nucleosomes (Fig. 4a). This sug-
geststhatLLPSisespeciallyimportantforubiquitinationwithingene
bodies.
ToexaminewhetheranyIDRcouldexecutetheLLPSfunctionofLge1,
wetestedtwoIDRsfromdistantspecies.TheIDRoftheCaenorhabditis
elegans P-granule component LAF1 (amino acids 1–169) undergoes
LLPS26
, but has no relation to H2B ubiquitination. Homo sapiens WAC
(aminoacids1–318)waspickedastheprobablefunctionalcounterpart
of Lge111
(Extended Data Fig. 2b). Using ChIP-exo, we found that the
IDR of human WAC, but not the IDR of the unrelated LAF1, partially
substituted for the IDR of yeast Lge1 when fused to Lge1(CC) (Fig. 4a,
Extended Data Figs. 8b, 10a, b, d–g). This was further confirmed by
measuring global H2BK123ub levels with immunoblotting (Extended
Data Fig. 8a), which suggests that the IDRs of human WAC and yeast
Lge1 have analogous functions.
The genome-wide binding profile of Lge1 showed enrichment at
all gene classes, but was strongest at ribosomal-protein and SAGA-
dominatedgenes(ExtendedDataFig. 9a,b).Enrichmentwasmaximal
downstreamof+1nucleosomes(ExtendedDataFig. 9c),consistentwith
theeffectofdeletingtheIDRofLge1onH2BK123ub.Thegenome-wide
distribution of Lge1 was largely unaffected by loss of Bre1 (Extended
Data Fig. 9b, c). Thus, intrinsic features of Lge1 (or as-yet unknown
factors) may guide Lge1 to its target locations. These results support
anucleosome-position-specificfunctionofLge1condensates,down-
streamofthe+1nucleosome.Ubiquitinationatthe+1positiondepends
on Bre1, but not through Lge1-directed LLPS.
e
c
a
1.2 MDa
2.0 3.2
40S
60S
80S
Polysomes
5 %
Y/R Lge1
IDR
CC
g 1
ge1
IDR
CC
N
C
Bre1
80
243 332
-rich
b
Lge1–mCh Merged
mGFP–Bre1
bre1Δ lge1Δ
d
VC–Bre1
Lge1
(IDR)–
VN
Lge1
(Δ1–80)–
VN
Lge1–
VN
Lge1
(CC)–
VN
BiFC BiFC
Nup188–
mCh
bre1Δ lge1Δ
0
10
20
30
80
200
320
440
560
0
10
20
80
200
320
440
560
Fluorescence intensity
0
80
200
320
440
560
10
50
30
0
Pixel
frequency
Pixel
frequency
Pixel
frequency
Pixel
frequency
80
200
320
440
560
10
6 7 8 9 10 12
1 2 3 4 5 11 13
WT
lge1Δ
lge1CC
lge1IDR
lge1Δ1–80
HA–
Bre1
Lge1–
TAP
RNA
Pol II
HA–
Bre1
RNA
Pol II
Lge1–
TAP
HA–
Bre1
RNA
Pol II
Lge1–
TAP
HA–
Bre1
RNA
Pol II
Lge1–
TAP
HA–
Bre1
RNA
Pol II
Lge1–
TAP
0
0.5
0.4
0.3
0.2
0.1
VC–Bre1
***
***
**
n = 60
Coefficient
of
variation
L
g
e
1
–
V
N
L
g
e
1
(
C
C
)
–
V
N
L
g
e
1
(
Δ
1
–
8
0
)
–
V
N
45%
Sucrose
VC
VN
Fig.3|EndogenousLge1andBre1formlargecomplexesandnuclearpuncta.
a,Sucrosegradientanalysisofcellextractsfromlge1∆cellstransformedwith
theindicatedplasmids.Ribosomalspeciesserveassizemarkers.Gradient
fractionswereanalysedbyimmunoblotting.Peakfractionsarehighlighted
(arrowheads).HA,haemagglutinin;TAP,tandemaffinitypurificationtag;WT,
wild-typeLGE1.b,Liveimagingofbre1∆ lge1∆cellsthatcoexpresstheindicated
constructsfromastrongGPDpromoter.Scalebar,2 μm.mCh,mCherry.c,BiFC
design.VNandVCdenotethecomplementaryVenusfragments(N-terminal
andC-terminalfragments,respectively).d,Liveimagingofbre1∆ lge1∆cells
expressingVC–Bre1andtheindicatedLge1–VNconstructsfromtheir
endogenouspromoters.ArrowheadslabelnuclearBiFCpuncta,Nup188–
mCherrylabelsthenuclearenvelopeanddashedlinerepresentsthecell
contour.Histogramsrepresentpixelfrequenciesoffluorescenceintensity
values.Scalebar,2 μm.e,CoefficientofvariationofnuclearBiFCfluorescence-
intensityprofiles(ExtendedDataFig. 7i).Thehigherthecoefficientof
variation,thegreatertheheterogeneityoftheBiFCsignal.Medianand
interquartilerangeareindicated.n,numberofanalysedcells.**P = 0.0037,
***P < 0.001,determinedbytwo-sidedMann–Whitneytest.
596 | Nature | Vol 579 | 26 March 2020
Article
Lge1IDRaffectsviabilityinhtz1Δcells
We next asked whether Lge1–Bre1 condensates affect cell physiol-
ogy. Both LGE1 and BRE1 are essential for viability in cells that lack
the conserved histone variant H2A.Z (yeast Htz1)7
(Fig. 4b, Extended
Data Fig. 7f). Htz1 assembles into +1 nucleosomes27
—the only gene-
body nucleosomes that do not depend on Lge1 LLPS for ubiquitina-
tion. A truncation of the sticker region of Lge1 (either Lge1(Δ1–80)
or Lge1(Δ1–40)) showed a synthetically enhanced growth phenotype
whencombinedwithhtz1∆(ageneticinteractionresultinginasyner-
gistic growth defect), as did Y>A mutations in the N terminus of Lge1
(aminoacids1–102)(Fig. 4b,ExtendedDataFig. 10h,i).Thedeletionof
the middle region of Lge1 (amino acids 81–242) displayed no obvious
growthdefectwithhtz1∆.Notably,however,deletionoftheentireIDR
was synthetically lethal with htz1∆—despite the presence of the Bre1-
interactingcoiled-coildomainofLge1.ExpressionofLge1(IDR)alone,
which cannot bind Bre1, was similarly synthetic lethal (Fig. 4b). The
IDR of human WAC—but not that of LAF1—partially compensated for
the deletion of the IDR of Lge1 (Extended Data Fig. 10c, e), consistent
with their effect on H2B ubiquitination of gene-body nucleosomes.
Overall,thesegeneticassayssuggestthatLge1LLPSbecomesessential
forviabilitywhenHtz1isabsentfrom+1nucleosomes,reinforcingthe
physiological importance of Lge1–Bre1 condensates.
We propose that the Bre1 shell has a direct catalytic role, whereas
the core concentrates the E2 Rad6 and the chromatin substrate. By
confining the reactants in a small space at high concentration, LLPS
increases the opportunity for productive interactions many fold.
Moreover, by avidity, the strength and specificity of multiple simul-
taneous Bre1–NCP interactions will be greater than the sum of indi-
vidualbindingevents.ThehumanorthologuesofBre1(RNF20/RNF40)
copurify with WAC, which may perform a function analogous to that
ofLge1inhumancells11
.Despitenoobvioussequencesimilarity,WAC
andLge1shareasimilardomainorganization(ExtendedDataFig. 2b).
OurresultsprovideanentrypointtostudywhetherLLPScontributes
to DeSanto–Shinawi syndrome, a neurodevelopmental disorder that
is caused by mutations that truncate WAC28
(Extended Data Fig. 2b).
In conclusion, we have discovered that LLPS augments the catalytic
activity of the chromatin modifier Bre1. We propose that core–shell
condensatesformdynamichistoneubiquitinationhubs,whichtarget
gene-bodynucleosomes(Fig. 4c)andtherebyshapegenearchitecture
and expression.
Onlinecontent
Anymethods,additionalreferences,NatureResearchreportingsum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availabilityareavailableathttps://doi.org/10.1038/s41586-020-2097-z.
Occupancy
2,500
2,000
1,500
1,000
500
3,000
3,500
H2B
All genes
1,500
1,000
500
3,000
2,000
2,500
+1 +2 +3
NFR
1,500
1,000
500
3,000
2,500
2,000
+1 Nucleosome distance (bp)
1,500
1,000
500
3,000
2,500
2,000
+1 +2 +3
NFR
WT
lge1Δ
50
100
150
200
50
100
150
200
1,500
1,000
500
2,500
2,000
SAGA dom.
Ribosomal protein TFIID dom.
H2B K123Ub
WT
lge1Δ
bre1Δ
50
100
150
200
50
100
150
200
500
2,500
2,000
1,000
1,500
+1 +2 +3
NFR
WT
lge1CC
50
100
150
200
1,500
1,000
500
2,500
2,000
50
100
150
200
WAC-
lge1CC
WT
50
100
150
200
50
100
150
200
1,500
1,000
500
2,500
2,000
–400 –200 200
0 400 –400 –200 200
0 400 –400 –200 200
0 400 –400 –200 200
0 400
+1 +2 +3
NFR
a
c
Bre1
NFR
TSS
Htz1
Ub
+1
–1
+2
Ub Ub
Ub
Ub
Ub
Ub
Ub
Ub
+3
Ub Lge1
b lge1Δhtz1Δ
SDC–His 5-FOA
LGE1
lge1Δ
lge1Δ1–40
lge1Δ1–80
lge1IDR
NLS-lge1IDR
lge1CC
lge11–80, CC
243 332
1 80
CC
N IDR
Y/R
-rich
CC
IDR
CC
IDR
CC
IDR
CC
IDR
Y/R
-rich
Y/R
-rich
Y/R
-rich
Fig.4|TheIDRofLge1enhancesH2BK123ubingenebodiesandisrequired
forviabilityinhtz1Δcells.a,H2B(left)orH2BK123ub(right)ChIP-exotag5′
endswereplottedrelativetothe+1nucleosomeofallgenesforwildtype(grey
trace)andtheindicatedlge1mutants(redtraces).Thefirstthreegenic
nucleosomesarelabelled+1,+2and+3.TwoH2Bpeaksareobservedper
nucleosomeposition.H2BK123ubpatternsareshownseparatelyforeachgene
class29
.dom.,dominated;NFR,nucleosomefreeregion.b,Geneticinteraction
analysis.Doubledeletionstrains containingawild-typeLGE1 coverplasmid
(Uramarker)werecotransformedwiththeindicatedplasmids(Hismarker).
Growth(tenfoldserialdilutions)wasfollowedonSDC–His(control)andon
SDC + 5-fluorooroticacid(5-FOA),whichshufflesouttheUracoverplasmid.
c,LLPS-basedubiquitinationmodel.TheHtz1-containing+1NCPisdepicted
outsideofthe‘reactionchamber’asitisubiquitinatedindependentlyofLge1
LLPS.Forsimplicity,Rad6andtheE1areomittedandonlyasinglelayerofBre1
moleculesintheshellisshown.TSS,transcriptionstartsite.
Nature | Vol 579 | 26 March 2020 | 597
1.	 Fuchs, G. & Oren, M. Writing and reading H2B monoubiquitylation. Biochim. Biophys. Acta
1839, 694–701 (2014).
2.	 Weake, V. M. & Workman, J. L. Histone ubiquitination: triggering gene activity. Mol. Cell
29, 653–663 (2008).
3.	 Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates:
organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
4.	 Batta, K., Zhang, Z., Yen, K., Goffman, D. B. & Pugh, B. F. Genome-wide function
of H2B ubiquitylation in promoter and genic regions. Genes Dev. 25, 2254–2265
(2011).
5.	 Cucinotta, C. E., Young, A. N., Klucevsek, K. M. & Arndt, K. M. The nucleosome acidic
patch regulates the H2B K123 monoubiquitylation cascade and transcription elongation
in Saccharomyces cerevisiae. PLoS Genet. 11, e1005420 (2015).
6.	 Gallego, L. D. et al. Structural mechanism for the recognition and ubiquitination of a
single nucleosome residue by Rad6–Bre1. Proc. Natl Acad. Sci. USA 113, 10553–10558
(2016).
7.	 Hwang, W. W. et al. A conserved RING finger protein required for histone H2B
monoubiquitination and cell size control. Mol. Cell 11, 261–266 (2003).
8.	 Kim, J. et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates
H3K4 methylation in human cells. Cell 137, 459–471 (2009).
9.	 Wood, A. et al. Bre1, an E3 ubiquitin ligase required for recruitment and substrate
selection of Rad6 at a promoter. Mol. Cell 11, 267–274 (2003).
10.	 Van Oss, S. B. et al. The histone modification domain of Paf1 complex subunit Rtf1
directly stimulates H2B ubiquitylation through an interaction with Rad6. Mol. Cell 64,
815–825 (2016).
11.	 Zhang, F. & Yu, X. WAC, a functional partner of RNF20/40, regulates histone H2B
ubiquitination and gene transcription. Mol. Cell 41, 384–397 (2011).
12.	 Alberti, S. Phase separation in biology. Curr. Biol. 27, R1097–R1102 (2017).
13.	 Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease.
Science 357, eaaf4382 (2017).
14.	 Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation.
Cell 179, 470–484 (2019).
15.	 Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation
in heterochromatin. Nature 547, 236–240 (2017).
16.	 Boija, A. et al. Transcription factors activate genes through the phase-separation capacity
of their activation domains. Cell 175, 1842–1855 (2018).
17.	 Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-
dependent condensates. Science 361, 412–415 (2018).
18.	 Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that
control gene transcription. Science 361, eaar2555 (2018).
19.	 Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation
and gene control. Science 361, eaar3958 (2018).
20.	 Turco, E., Gallego, L. D., Schneider, M. & Köhler, A. Monoubiquitination of histone H2B is
intrinsic to the Bre1 RING domain–Rad6 interaction and augmented by a second Rad6-
binding site on Bre1. J. Biol. Chem. 290, 5298–5310 (2015).
21.	 Wei, M. T. et al. Phase behaviour of disordered proteins underlying low density and high
permeability of liquid organelles. Nat. Chem. 9, 1118–1125 (2017).
22.	 Wang, J. et al. A molecular grammar governing the driving forces for phase separation of
prion-like RNA binding proteins. Cell 174, 688–699 (2018).
23.	 Rossi, M. J., Lai, W. K. M. & Pugh, B. F. Simplified ChIP-exo assays. Nat. Commun. 9, 2842
(2018).
24.	 Huisinga, K. L. & Pugh, B. F. A genome-wide housekeeping role for TFIID and a highly
regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573–585
(2004).
25.	 Reja, R., Vinayachandran, V., Ghosh, S. & Pugh, B. F. Molecular mechanisms of ribosomal
protein gene coregulation. Genes Dev. 29, 1942–1954 (2015).
26.	 Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase
separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA
112, 7189–7194 (2015).
27.	 Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene
expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).
28.	 DeSanto, C. et al. WAC loss-of-function mutations cause a recognisable syndrome
characterised by dysmorphic features, developmental delay and hypotonia and
recapitulate 10p11.23 microdeletion syndrome. J. Med. Genet. 52, 754–761 (2015).
29.	 Vinayachandran, V. et al. Widespread and precise reprogramming of yeast protein-
genome interactions in response to heat shock. Genome Res. 28, 357–366 (2018).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020
Article
Methods
No statistical methods were used to predetermine sample size. The
experimentswerenotrandomizedandinvestigatorswerenotblinded
to allocation during experiments and outcome assessment.
Proteinpurification
Allrecombinantproteinsusedinthisstudywereexpressedaspublished20
.
ProteinswereclonedbyPCR-basedmethodsfromgenomicDNA.Muta-
tions and deletions were generated by PCR-based methods and con-
firmedbysequencing.StrepII–Bre1constructswerepurifiedona5-ml
Strep-TactinSuperflowcolumn(GEHealthcare)aspreviouslydescribed20
.
6×His–Lge1–StrepII constructs were purified on Ni-NTA Sepharose 6
FastFlow beads (GE Healthcare) coated with Co2+
(Co(NO3)2) at room
temperature.Lysiswasperformedinabuffercontaining10mMTris,pH
8.0,100mMNaH2PO4,1mMTCEPand8Murea,followedbyawashing
stepinwashingbuffer(10mMTris,pH7.4,100mMNaH2PO4,1mMTCEP
and 8 M urea). A linear gradient to the final buffer (containing 20 mM
Tris,pH7.4,500mMNaCl,1mMTCEP,3Mureaand10%v/vglycerol)was
applied.Additionalwashingstepsin10mMTris,pH5.9,100mMNaH2PO4,
1 mM TCEP, 3 M urea and 10% v/v glycerol, and the same buffer with
pH4.5wereperformed.Proteinswereelutedin10mMTris,pH7.2,300mM
or 1M NaCl, 1 mM TCEP and 1 M imidazole, and directly used for phase
separationassaysinbuffercontaining100mMNaCland100mMimidazol.
TheLge1mutantwithR>Ksubstitutions(Lge1(11×R>K))(R11K,R18K,
R20K, R27K, R28K, R30K, R39K, R48K, R63K, R70K and R77K) was
ordered from Invitrogen. Mutant Lge1(17×(Y>A), 1–102) (Y4A, Y9A,
Y12A,Y23A,Y38A,Y39A,Y45A,Y49A,Y53A,Y68A,Y69A,Y73A,Y79A,
Y80A, Y87A, Y95A and Y102A) was ordered from GenScript.
StrepII–mGFP and StrepII–mGFP–Bre1 constructs were affinity-
purifiedona5-mlStrepII-TactinSuperflowcolumn(GEHealthcare)in
buffercontaining50mMTris,pH7.5and100mMNaCl.Proteinswere
elutedin5mMdesthiobiotinandstoredin10%v/vglycerolat−80 °C.
6×His–TEV–Rad6 was cloned, expressed and purified as previously
described20
. Where stated, purified 6×His–TEV–Rad6 was labelled
with Pacific Blue C5-maleimide (ThermoFisher) as follows. Rad6 was
incubated with Pacific Blue dissolved in DMSO for 20 min at 4 °C,
before dialysis (18 h) in 50 mM Tris, pH 8.0, 50 mM NaCl, 50 mM KCl,
10 mM MgCl2 and 1 mM TCEP. Unbound fluorophore was removed by
size-exclusionchromatographyonaSuperdex20016/60column(GE
Healthcare) equilibrated with the same buffer. Purified protein was
stored in final 10% v/v glycerol at −80 °C.
LAF1(residues1–169)wasamplifiedbyPCRfromaplasmidcontain-
ingfull-lengthLAF1(obtainedfromthelaboratoryofC. Brangwynne)
and fused with Lge1(CC) in an expression vector. The coding region
forWAC(aminoacids1–318)wasamplifiedbyPCRfromhumancDNA
andwasfusedtoLge1(CC)inanexpressionvector.6×His–LAF1(1–169)–
Lge1(CC)–StrepIIand6×His–WAC(1–318)–Lge1(CC)–StrepIIwerepuri-
fied in urea as described for 6×His–Lge1–StrepII, followed by buffer
exchange to 10 mM Tris, pH 8.0, 0.2 mM EDTA and 100 mM NaCl.
In vitrobindingassays
Purified GST–Lge1–StrepII constructs were mixed with StrepII–Bre1
constructs in a 1:3 molar ratio in binding buffer (50 mM Tris, pH 7.5,
100 mM NaCl, 0.5 mM DTT and 50 μg of BSA) and incubated with glu-
tathione-sepharose 4B beads (GE Healthcare) for 1 h at 4 °C. Beads
were washed with binding buffer (without BSA) and bound proteins
were eluted in 0.006 mg/ml glutathione. After trichloroacetic acid
(TCA) precipitation, samples were analysed by SDS–PAGE (4–12% gel,
MOPS buffer) and Coomassie staining, or by immunoblotting with
anti-StrepII antibody (Qiagen, no. 34850).
Sucrose gradientsedimentationassay
Forrecombinantproteins,30μgofpurifiedproteinswereappliedtoa
12-ml5–45%sucrosegradientin20mMTris,pH7.5,10mMKCland5mM
MgCl2,andsedimentedat27,000rpmfor15hat4 °CinaSW40-Tirotor
(BeckmanCoulter).Gradientswerefractionatedin13×1-mlfractionsby
pumpingFluoriniertFC-40(3M)intothebottomofthegradientwhile
collecting the fractions from the top using a Brandel gradient frac-
tionationsystem.FractionswereprecipitatedwithTCA,washedtwice
withacetoneandanalysedbySDS–PAGE(4–12%gel,MOPSbuffer)and
Coomassiestaining.FortheBre1–Lge1complex,30μgofeachprotein
was incubated for 30 min at 4 °C before loading the gradient. For the
fractionationofcelllysates,cellsweregrownexponentially,collected
andresuspendedinbuffer20mMTris,pH7.5,10mMKCl,5mMMgCl2
and 1mM DTT. Cells were lysed by vortexing with glass beads. Lysates
wereclarifiedbycentrifugationat14,000rpmfor5minat4 °C.Thetotal
proteinamountwasquantifiedbyBradfordassay(BioRad)andabout
350μgwerelayeredonto12-ml5–45%sucrosegradients,sedimented
andfractionatedasdescribed.Ribosomalprofileswererecordedasa
reference by monitoring absorbance at an optical density of 254 nm.
After TCA precipitation, samples were analysed by immunoblotting
withanti-HA(Sigma,no.11666606001),anti-proteinA(Sigma,P3775)
and anti-RNA polymerase II (Rpb1; Covance, no. MMS-126R). Input
samples were also analysed with anti-Pgk1 (Abcam, no. Ab113687) as
loading control.
Lge1phase-separationassay
PurifiedLge1proteinsinatotalvolumeof20μlwereplacedina16-well
glass-bottom ChamberSLIP slide (Grace, BioLabs). Slides were pre-
treatedwith1%(w/v)pluronicF-127(PF127,SigmaAldrich)andwashed
twicewithbuffer25mMTris,pH7.5,50mMNaCl,1mMDTTand10%v/v
PEG6000.Afinalbuffercompositionof20mMTris,pH7.5,100mMNaCl
and1mMDTTwasusedforthedilutionoftheproteins.1,6-Hexanediol
was used at a final concentration of 5 or 10% (w/v) (Sigma Aldrich, no.
240117).Finalproteinconcentrationandincubationtimesfortheexperi-
ments are detailed in the corresponding figure legends. DIC imaging
was performed on a temperature-controlled DeltaVision Elite micro-
scope (GE Healthcare) at 20 °C. Images were acquired with a 60× oil
immersionobjectivecoupledtoaCoolSNAPHQ2charge-coupleddevice
camera (Photometrics). Image deconvolution was carried out using
the SoftWoRx software (GE Healthcare). Images were processed with
ImageJ. Quantification of the total area (in μm2
) of randomly selected
condensates was analysed in ImageJ. One hundred condensates were
measured for each condition. Statistical significance was evaluated
bytwo-sidedMann–WhitneytestusingtheGraphPadPrismsoftware.
Phase-separationassayswithfluorescentproteins
6×His–Lge1constructs(1.5μM)weremixedwithfluorescentproteins
(StrepII–mGFP,StrepII–mGFP–Bre1constructs,6×His–Rad6*,1×NCP*,
16×NCP* or 16× 601 Widom DNA*) in pretreated and washed 16-well
glass-bottom ChamberSLIP slides at 20 °C in a final volume of 20 μl.
Abuffercompositionof20mMTris,pH7.5,100mMNaCl(50mMNaCl
forNCPassays,1mMDTT)wasused.Theconcentrationoffluorescent
constructs and incubation times for each experiment are described
in the figure legends. Samples were either directly imaged or, where
stated, the experiment was followed over time. Image acquisitions
parameters for images of the same experiment are always identical.
Images were processed with ImageJ. The peak fluorescence intensity
of the condensates with fluorescent-tagged proteins was measured
by drawing a line across at least 25 randomly selected condensates.
Line-scan graphs were generated in ImageJ. For Bre1 shell formation,
6×His–Lge1–StrepII (1.5 μM) and StrepII–mGFP–Bre1 constructs
(3μM)werepreincubatedinpretreatedandwashed16-wellglass-bottom
ChamberSLIP slides for 15 min at 20 °C. Fluorescent shell thickness
wasquantifiedasfollows:ontheline-scangraphs,backgroundsignal
insidethecondensatewassubtractedfromthemaximumfluorescent
intensityofthepeaks.Finalthicknessvaluescorrespondtothelength
(in μm) of the resulting baseline of the peaks. Statistical significance
was evaluated by two-sided t-test analysis with the GraphPad Prism
software.Imageacquisitionsparametersforimagesofthesameexperi-
mentarealwaysidentical.Thenumberofanalysedcondensates(n)is
indicated in each figure.
Turbidityassay
Two hundred microlitres of each purified protein (buffer: 20 mM Tris
pH7.5,100mMNaCl,100mMimizadoland1mMDTT)weremeasured
at450nmonabottom-clear96-wellplate(GreinerBio-One)inaVictor
Nivo plate reader (Perkin Elmer).
Dextranexperiments
Tetramethylrhodamineisothiocyanate(TRITC)-labelleddextranofan
average molecular weight of 35–45 (TdB Consultancy AB, no. TD40),
65–85 (Sigma Aldrich, no. T1162), 155 (Sigma Aldrich, no. T1287) or
2,000kDa(ThermoFisher,no.D7139)wasdissolvedin20mMTris,pH
7.5 and 100 mM NaCl. The dextrans with a final concentration of 0.05
mg/mlwereaddedtosamplescontaining6×His–Lge1–StrepII(1.5μM),
6×His–Lge1(IDR)–StrepII(1.5μM)or6×His–Lge1–StrepII(1.5μM)with
apreformedBre1shell,eachin20μl.Thefinalbuffercompositionwas
20 mM Tris, pH 7.5, 100 mM NaCl and 1 mM DTT. Samples were incu-
batedfor15minat20 °Cinpretreatedandwashed16-wellglass-bottom
ChamberSLIPslides.SampleswereimagedsimultaneouslyinDIC,FITC
andTRITCchannels.Partitionratioswerecalculatedonthebasisofthe
background-correctedTRITCfluorescentintensityinsideandoutside
ofacondensatequantifiedwithImageJ.Atotalof60randomlyselected
condensates were considered for each condition.
Dynamiclightscattering
The hydrodynamic radius and molecular weight of recombinant pro-
teins were measured at 20 °C in a ProteinSolution DynaPro-99-E50
DLS module (Wyatt).
Nucleosomearrayreconstitutionandlabelling
Mononucleosomes(1×NCP)werereconstitutedaspreviouslydescribed20
.
Forchromatinreconstitution(16×NCParray),DNAconsistingof16repeats
ofthe167-bp601WidomsequencewasgeneratedfromapUC19-16x601Wi-
domplasmid(agiftfromT.Richmond)bytripledigestionwithPstI,BamHI
andDpnIfor20hat37 °C.Fortypercent(w/v)PEG6000–NaClprecipita-
tionwasusedtoseparatethedigestedplasmidfromarrayDNA,which
wasprecipitatedinEtOHandfinallyresuspendedin10mMTris,pH8.0,
0.1 mM EDTA. Chromatin was reconstituted with the purified histone
octamer and the 16× 601Widom DNA, in a histone octamer:DNA ratio
(mg:mg)of10,followedbyKCldialysisandMonoQion-exchangechroma-
tography,aspreviouslydescribed20
.Sampleswerethendialysedin20mM
Tris,pH7.5,1mMEDTAand1mMDTTfor18h.Histonestoichiometrywas
assessedbySDS–PAGEandCoomassiestaining.Nucleosomeoccupancy
wastestedbyScaIdigestionandelectrophoresisina1%agarosegel.Both1×
and16×NCPswerelabelledwithHoechst33258(SigmaAldrich)(1μg/ml)
byincubationfor30minat4 °C,followedbydialysisin20mMTris,pH
7.5 and 1 mM DTT for 20 h at 4 °C. Labelled 1×NCP* and 16×NCP* were
storedat4 °C.The16×DNAwaslabelledwithHoechst(final1μg/ml)by
incubationfor18hat4 °Candstoredat−20 °C.
Negative-stainelectronmicroscopy
Thequalityofthe16×NCParraywasalsoassessedbyelectronmicros-
copy.Samplesin20mMTris,pH7.5,wereadsorbedonglow-discharged
electron microscopy grids coated with carbon film and stained with
2%uranylacetate(Merck),pH4.0.Electronmicroscopysampleswere
examinedonaFEIMorgagni268DTEMoperatedat80kV.Digitalimages
were acquired using an 11-megapixel Morada charge-coupled device
camera from Olympus-SIS.
NCPubiquitinationassay
Forthein vitroH2BubiquitinationassaywithLge1–Bre1condensates,
6×His–Lge1(0.5μM),Bre1(3μM),155-kDadextran(0.65μM),1×NCP(1μM),
E1 (100 nM), Rad6 (3 μM) and ubiquitin (36 μM) were incubated in
20 mM Tris HCl, pH 7.5, 75 mM NaCl and 1 mM DTT. Reactions were
startedbyadditionofATP(3mM)andcarriedoutfor12minwithshak-
ingat300rpmat30 °C.Reactionswerestoppedattheindicatedtime
pointsbyadding4×SDSloadingbufferandboiling(5minat95 °C),and
analysed by SDS–PAGE and immunoblotting with anti-Flag antibody
(Sigma Aldrich, no. F1804). Each experiment was reproduced at least
three times. Condensate formation was verified by microscopy.
Yeaststrainsandtandemaffinitypurification
Allyeaststrainsusedinthisstudyarelistedinthe SupplementaryTable.
Genesinyeastweretaggedordeletedbyastandardone-stepPCR-based
technique.Microbiologicaltechniquesfollowedstandardprocedures.
Cells were grown in yeast-extract peptone dextrose (YPD) or, when
transformed with plasmids, in selective synthetic dextrose complete
(SDC) drop-out medium. Tandem affinity purifications (TAPs) from
yeast were performed according to standard protocols.
Live-cellimagingofyeast
Exponentially growing cells were immobilized on microscope slides
with agarose pads and imaged on a DeltaVision Elite microscope (GE
Healthcare).Imageswereacquiredwitha60×oilimmersionobjective
and recorded with a CoolSNAP HQ2 charge-coupled device camera
(Photometrics). Deconvolution was carried out using the SoftWoRx
software (GE Healthcare). Images were processed with ImageJ. Cell
contours were marked with a dashed white line based on bright-field
imaging.Forthe1,6-hexanediolexperiment,cellswereincubatedwith
10%(w/v)1,6-hexanedioland10μg/mldigitonin(oronly10μg/mldigi-
tonin as control) for 10 min at 30 °C before imaging.
To record Lge1–Bre1 BiFC intensity in a histogram, a contour was
drawnaroundthenucleusandfluorescenceintensitieswereanalysed
usingtheImageJ‘Histogram’function.Forquantificationofthemean
nuclear BiFC intensity, mean fluorescence-intensity values from the
histogramswereused.Thecoefficientofvariationvaluesrepresentthe
ratio of the standard deviation to the mean (both values determined
from histogram data).
To quantify the corrected total-cell fluorescence, a contour was
drawn around a cell and the integrated density was measured using
ImageJ. To quantify the fluorescence intensity of Lge1 constructs in
cells, a line was drawn across the nucleus and line-scan graphs were
obtained by ImageJ. The number of analysed cells (n) is indicated in
eachfigure.Statisticalsignificancewasevaluatedbytwo-sidedMann–
Whitney test using the GraphPad Prism software.
Yeastgeneticinteractionanalysis
Doublemutantstrainscontainingawild-typeLGE1coverplasmid(Ura
marker)werecotransformedwithplasmidscarryingLGE1,WACorLAF1
(His marker). Growth was followed on SDC–His (loading control) and
onSDC + 5-FOAplatestoshuffleouttheUracoverplasmid.Cellswere
spotted in tenfold serial dilutions and incubated for 2 (SDC–His) or 3
days (5-FOA) at 30 °C.
Proteinexpressionlevelsinwhole-cellextracts
Yeast lysates were prepared, normalized for protein concentration
and analysed by western blotting according to standard procedures.
Antibodies were used according to the manufacturer’s instructions:
anti-mCherry(Abcam,no.Ab125096),anti-proteinA(Sigma,no.P3775)
and anti-Pgk1 (Abcam, no. Ab113687).
GloballevelsofH2Bubiquitination
LGE1 was deleted in a strain carrying Flag-tagged H2B. This strain was
then transformed with plasmid-based versions of wild-type LGE1-
mCherry, empty vector and the indicated mutants, all of which were
expressedfromtheendogenousLGE1promoter.Celllysatesweresub-
jectedtoanti-Flagimmunoprecipitation(M2beads,Sigma,no.A2220).
Article
RecoveredproteinswereanalysedbySDS–PAGEandimmunoblotting
with an anti-Flag antibody (Sigma, no. A8592).
ChIP-exoversion5.0
The antibodies rabbit monoclonal antibody against ubiquityl-
H2B(Lys120)(CellSignaling,no.5546),andrabbitpolyclonalantibody
againstH2B(Abcam,no.ab1790)10
wereusedtoprobeforthespecific
ubiquitinmarkandtheunderlyingnucleosome,respectively.ForTAP-
taggedstrains,rabbitIgG(Sigma)conjugatedtoDynabeadswasused.
The protein A module of the TAP tag was the target.
IndicatedmutantstrainsweregrowninselectiveCSM − Hismedium,
andthewild-typestrainsweregrowninCSM + allmediumtoanoptical
densityat600 nmof0.8at25 °C.Cellswerecrosslinkedwithformalde-
hydefor15minatroomtemperatureatafinalconcentrationof1%,and
quenchedwithglycinefor5minatafinalconcentrationof125mM.Cells
were then centrifuged and washed with ST buffer (10 mM Tris-HCl, pH
7.5and100mMNaCl)at4 °C.Supernatantwasremovedandcellpellets
were flash-frozen and stored at −80 °C until further use. Fifty-millilitre
culture aliquots were resuspended and lysed in 750 μl FA lysis buffer
(50mMHepes-KOH,pH7.5,150mMNaCl,2mMEDTA,1%TritonX-100,
0.1% sodium deoxycholate and complete protease inhibitor (Roche))
alongwith1mlof0.5-mmzirconiabeadsbybead-beatingfor4cyclesof
3-minon/7-minoffinaMini-Beadbeater-96machine(Biospec).Whole-
celllysatesweretransferredtomicrocentrifugetubesandspunat14,000
rpmfor3minat4 °Ctoobtainchromatinpellets.Thesupernatant(repre-
sentingthecytoplasmicfraction)wasdiscardedandthechromatinpellet
wasresuspendedin200μlFAlysisbuffersupplementedwith0.1%SDS
and75μl0.1-mmzirconiabeads.Theresuspendedchromatinsamplewas
sonicatedinaBioruptor(Diagenode)for4cyclesof30-son/30-soff.The
tubeswerecentrifugedat14,000rpmfor10mintocollectthesonicated
chromatin fraction. Chromatin obtained from 50 ml culture was used
for a single ChIP experiment. A Reb1–TAP-tagged strain (Open Biosys-
tems) was used a positive control to determine the success of the ChIP
experiments.Appropriateantibodies(5μgperChIP)wereconjugatedto
proteinAmagneticsepharoseresin(GEHealthcareLifeSciences)at4 °C
for6–8h.Unconjugatedantibodywasremovedandchromatinsample
wasaddedandincubatedat4 °Covernighttoallowforimmunoprecipi-
tation.Allstepsafterimmunoprecipitationwereessentiallyperformed
aspreviouslydescribed23
.Preparedlibrariesweregel-purifiedandwere
sequencedinpaired-endmodewithaNextSeq500.Sequencereadswere
alignedtotheS. cerevisiaegenome(sacCer3)usingbwa-mem(v.0.7.9a)30
.
AlignedreadsobtainedwerefilteredtoremovePCRduplicatesandany
non-unique alignments. ChIP-exo read-1 5′ ends had their coordinates
shifted by 6 bp in the 3′ direction, to reflect the offset of exonuclease
stopsandthesiteofcrosslinking.Atleasttwobiologicalreplicateswere
performedforChIP-exoexperiments,unlessotherwiseindicated.These
methodsandinformationondataanalysisandscriptscanbeaccessed
online(https://github.com/CEGRcode/Gallego_2019).
Structuralbioinformatics
Charge profiles for Lge1 and WAC protein sequences were generated
usingscriptswrittenforthispurpose,withawindowof10aminoacid
residuesusedforsmoothing.HydrophobicityprofilesforLge1andWAC
protein sequences were generated and superimposed using VOLPES
server31
(http://coil.msp.univie.ac.at/app.html).
Statisticsandreproducibility
TheexperimentsinFig. 1b,c,dwereperformed4,2and3times,respec-
tively;thequantificationofcondensatesisincludedinExtendedData
Fig. 1j.ExperimentsinFig. 2a,bwereperformed3times.Experimentsin
Fig. 3a,b,dwereperformed2,3and3times,respectively;quantificationis
includedinExtendedDataFig. 7i.TheexperimentshowninFig. 4aisrepre-
sentativeof2replicates.TheexperimentinFig. 4bwasperformed6times.
Experiments were performed the following numbers of times: 2
(ExtendedDataFigs. 1i,3c,4a,g,6a,d,g,10a),3(ExtendedDataFigs. 1k,
3a,b,4b,e,6b,7a–d,f–h,8a,10d,f),4(ExtendedDataFigs. 1d,e,5a,c,6e,
f,h,10c,e,h,i),5(ExtendedDataFig. 1b,c)or6(ExtendedDataFig. 1a)
In Extended Data Fig. 1f, Lge1(1–80) was purified 2 times, Lge1(1–
80, CC) was purified 3 times and the other constructs were purified
>10 times. The time lapse for droplet fusion in Extended Data Fig. 1h
wasrecordedin2independentexperiments.InExtendedDataFig. 2b,
sequenceswereanalysedasdescribedinthefigurelegendandin Supple-
mentaryMethods.ThetimelapseinExtendedDataFig. 3ewasrecorded
in2independentexperiments.TheexperimentinExtendedDataFig. 4c
wasperformed10timesascontrol.InExtendedDataFig. 6c,thepurifi-
cationofmononucleosomes(1×NCP)wasperformed29timesandthe
purificationof16×NCPwasperformed11times.Theexperimentshown
in Extended Data Fig. 6i corresponds to Fig. 3a (performed 2 times).
ThenumbersofrandomlyselectedcellsinExtendedDataFig. 7ewere:
Lge1 = 22;Lge1bre1Δ = 33;Lge1(Δ1–40) = 24;Lge1(Δ1–80) = 25;Lge1(1–
80,CC) = 25;Lge1(IDR) = 28;NLS–Lge1(IDR) = 21;andLge1(CC) = 27.The
quantification for Extended Data Fig. 7h is shown in Extended Data
Fig. 7i. Data shown in Extended Data Fig. 8b, c are representative of 2
replicates. In Extended Data Fig. 9a, the dot spots were performed 4
times,andwholecellextractsandwesternblottingwereperformed2
times.DatashowninExtendedDataFig. 9b–earebasedon2replicates.
Reportingsummary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
Dataavailability
ChIP-exo sequencing files can be accessed at NCBI Gene Expression
Omnibus(https://www.ncbi.nlm.nih.gov/geo/),withtheaccessionnum-
ber GSE131639. All source data (that is, uncropped gels and western
blots)associatedwiththepaperareprovidedinSupplementaryFigs. 1,2.
Codeavailability
Data analysis software, scripts and parameters used to analyse ChIP-
exo datasets can be accessed via https://github.com/CEGRcode/Gal-
lego_2019.
30.	 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
Preprint at https://arxiv.org/abs/1303.3997 (2013).
31.	 Bartonek, L. & Zagrovic, B. VOLPES: an interactive web-based tool for visualizing and
comparing physicochemical properties of biological sequences. Nucleic Acids Res. 47,
W632–W635 (2019).
32.	 Armstrong, J. K., Wenby, R. B., Meiselman, H. J. & Fisher, T. C. The hydrodynamic radii
of macromolecules and their effect on red blood cell aggregation. Biophys. J. 87,
4259–4270 (2004).
33.	 Yassour, M. et al. Ab initio construction of a eukaryotic transcriptome by massively
parallel mRNA sequencing. Proc. Natl Acad. Sci. USA 106, 3264–3269 (2009).
Acknowledgements We thank B. Zagrovic and A. Polyansky for critical insights into the
multivalency of Lge1 LLPS, and Lge1 and WAC sequence analyses; O. R. Abdi for technical
support; and G. Warren and D. Gerlich for discussions. A.K. was funded in part by a NOMIS
Pioneering Research Grant, L.D.G. by a L’Oréal-UNESCO-OeAW Austria Fellowship and A.R. by
an OeAW DOC Fellowship. B.F.P. and C.M. were funded by the National Institutes of Health
grant HG004160.
Author contributions L.D.G. and M.S. performed all biochemical and genetic experiments with
support from R.M.G.C. C.M. conducted ChIP-exo and analysed the data with B.F.P. T.S.
contributed to sucrose gradient analyses. A.R. performed all cell biology experiments. A.K.
designed the study and wrote the paper with input from all authors.
Competing interests B.F.P. has a financial interest in Peconic LLC, which uses the ChIP-exo
technology implemented in this study and could potentially benefit from the outcomes of this
research. The remaining authors declare no competing interests.
Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2097-z.
Correspondence and requests for materials should be addressed to A.K.
Peer review information Nature thanks Fred van Leeuwen, Tanja Mittag and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.
ExtendedDataFig.1|Lge1interactionwithBre1andLLPS.a,Bre1copurifies
withLge1.Lge1–TAPwastandem-affinity-purifiedfromyeast.Bre1andCBP
(calmodulinbindingpeptide)-taggedLge1(Lge1–CBP; aremnantafter
proteasecleavage)wereconfirmedbymassspectrometry.Asteriskindicatesa
Bre1degradationproduct.b,Bre1interactswithLge1in vitro.Bindingassay
usingrecombinantGST–Lge1–Strepasbait(blackdot)withStrep–Bre1
constructs(arrowheads)(1:3molarratio).Proteinswereanalysedby
Coomassiestainingandanti-Strepimmunoblotting.c,Inputproteinsforb.
d,Samesetupasinb.BlackdotsindicateimmobilizedLge1constructs;asterisk
indicatesadegradationproduct.e,Sucrose gradientsedimentationassays
(5–45%)ofrecombinantStrep–Bre1andGST–Lge1proteins.Peakfractionsare
highlighted(arrowheads).f,Inputproteinfor6×His–Lge1constructsusedin
phase-separationassays.g,QuantificationofcondensatesizesinFig. 1c.
n,numberofcondensates.Dotplotswithmedianandinterquartilerange.
**P = 0.0189,****P < 0.0001,determinedbytwo-sidedMann–Whitneytest.n.d.,
notdeterminable.h,AnalysisofcondensategrowthusingDICimaging(6×His–
Lge1,5 μM)(SupplementaryVideo 1).Scalebar,2 μm.i,Increasingamountsof
mGFP–Bre1wereaddedtopreformed6×His–Lge1(IDR)condensates(which
lackthecoiled-coildomainofLge1).TheunrestricteddiffusionofBre1(5 μM)
intoLge1(IDR)condensatescausedtheirinteriortocollapseintocoarse
aggregates.Scalebar,2 μm.j,QuantificationofmGFP–Bre1shellthicknessini
andFig. 1d.Box-and-whiskerplotshowsmedian,interquartilerange,and
minimumandmaximumvalues.***P value < 0.001,determinedwithtwo-sided
t-test(1.5 μm–3 μm,t = 7.6,degreesoffreedom = 67;3 μm–5 μm,t = 14,degrees
offreedom = 69).n,numberofcondensates;n.d.notdeterminable.k,GST–
Lge1usedinFig. 1bphase-separatesin vitro.RecombinantGST–Lge1(7 μM),
GST(7 μM)andbuffer-only(20 mMTrispH7.5,10 mMKCland5 mMMgCl2)
werevisualizedbyDICmicroscopyat20 °Cfortheindicatedtimes(min).Scale
bar,10 μm.SeeSupplementaryFig. 2foruncroppedgelsandwesternblots.
Article
ExtendedDataFig.2|Lge1structuralproperties,andcomparisonwith
WAC. a,AminoacidsequenceofS. cerevisiaeLge1.TheIDR(aminoacids1–242)
ishighlightedinlightorange;thepredictedcoiled-coildomain(aminoacids
281–332)ishighlightedinindarkorange;andtheY/R-richstickerregion(amino
acids1–80)isunderlined.ThemutatedYandRresiduesarelabelledinmagenta
andblue,respectively.b,ComparativesequenceanalysesofyeastLge1(left)
andhumanWAC(WW-domain-containingadaptorproteinwithcoiled-coil)
(right).CartoonshowspredictedLge1andWACdomainorganization;
boundariesaredrawntoscale.WW,protein–proteininteractiondomainwith
twotryptophans(W).Asterisksindicateresiduesthemutationofwhichhas
previouslybeenimplicatedinthepathogenesisofDeSanto–Shinawi
syndrome28
.Thisneurodevelopmentaldisordercausesadevelopmentaldelay
anddysmorphicfacialfeatures.Itiscausedbymutationsthatarepredictedto
truncatetheIDRofWAC,andthereforedisrupttheWACinteractionwith
RNF20/RNF40(thatis,nonsenseandframeshiftmutationsleadingto
nonsense-mediateddecayorproteintruncation)28
.Fordisorderprediction,
disorderscoreswerecalculatedwiththeIUPredalgorithm.BothLge1andWAC
showextensiveintrinsicdisorder.For coiled-coildomain predictions,the
COILSsoftwarewasused,showingputativecoiled-coilelementsatthe
C terminiofbothproteins.Forhydrophobicityanalysis,theVOLPESwebserver
wasusedtoplothydrophobicityprofilesofproteinsequences31
(furtherdetails
areprovidedintheMethods).Lge1andWACdisplayasimilarhydrophobicity
patternintheirN-terminalregions.Theregionwiththebestmatchis
highlightedwithagreyrectangle.Similarityinthisregionisindicatedby
Pearsoncorrelationcoefficient(R = 0.68)androot-mean-squareddeviation
(r.m.s.d. = 0.16).Intheirchargedistributionprofile,bothLge1andWACexhibit
alternatingblocksofnegativeandpositivecharge.Thesequencecharge
densitywascalculatedusingacustom-madescript.Awindowoftenresidues
wasusedforsmoothing.Forcondensateformation,thecatGRANULE
algorithmwasusedtopredictthepropensityforcondensateformation.Top
scoresareindicated.Thehigh-scoringsequenceinLge1corresponds
approximatelytotheY/R-richregion.
ExtendedDataFig.3|MechanismofBre1shellformation.
a, b, Reconstitutionofcondensateswithcore–shellarchitecture.Recombinant
mGFP-taggedproteins(1.5 μM)wereaddedtopreformed6×His–Lge1
condensatesor6×His–Lge1(IDR).Sampleswereincubatedfor15 minbefore
imagingbyDICandfluorescencemicroscopy.Scalebar,2 μm.
c,Reconstitutionofhybridcondensates,withvaryingratiosof6×His–
Lge1:6×His–Lge1(IDR)showadifferentialpartitioningofmGFP–Bre1intothe
core.Proteinsweremixedattheindicatedmolarratiosandincubatedfor
15 minat20 °C.mGFP–Bre1(0.5 μM)wasaddedtothepreformedcondensates
andincubatedfor15 minbeforeimagingbyDICandfluorescentmicroscopy.
Fluorescentintensitieswerequantifiedacrosssinglecondensates.Cartoons
indicateputativeassemblystateofhybridcondensates,withadeteriorationof
thecore–shellstructureuponreductionofavailableLge1coiled-coildomains.
n,numberofcondensates.Scalebar,2 μm.d,QuantificationofmGFP–Bre1
shellthicknessinc.Box-and-whiskerplotshowsmedian,interquartilerange,
andminimumandmaximumvalues.****P < 0.0001,determinedwithtwo-sided
t-test(t = 9.4,degreesoffreedom = 62).n,numberofcondensates;n.d.not
determinable. e,Analysisofcondensatefusion.6×His–Lge1condensates
(1.5 μM)withanmGFP–Bre1shell(1.5 μM)werefollowedovertimeby
microscopy.Condensatescollidebutdonotfuse(SupplementaryVideo 2).
ComparetoExtendedDataFig. 1hforfusiondynamics.Scalebar,2 μm.
Article
ExtendedDataFig.4|MaterialpropertiesofLge1condensates.
a,Quantificationof6×His–Lge1condensatesizesatdifferentprotein
concentrationsafter5 minofincubationat20 °C.Quantificationwasdone
usingImageJ.n,numberofcondensates.Dotplotsshowmedianand
interquartilerange.**P (for1versus1.5) = 0.0046,**P (for1.5versus2) = 0.0029,
****P < 0.0001,determinedbytwo-sidedMann–Whitneytest.n.d.not
determinable. b,Quantificationof6×His–Lge1condensatesizeinthepresence
of1,6-hexanediolindicatesaninhibitionofLLPS.ConcentratedLge1protein
wasdilutedto1.5 μMinbufferwith1,6-hexanediol(%,w/v)andincubatedfor
15 minbeforeimaging.n,numberofcondensates.Dotplotsshowmedianand
interquartilerange.**P = 0.0032,****P < 0.0001,determinedbytwo-sided
Mann–Whitneytest.n.d.notdeterminable.c,Strep–mGFP–Bre1doesnot
phase-separateundertheconditionswetested.Concentratedproteinswere
dilutedandincubatedat20 °Cfor5 minbeforeDICmicroscopy.Scalebar,
10 μm.d,Turbiditymeasurementsof6×His–Lge1at450 nm,withorwithout
Strep–Bre1.Proteinsweremixedattheindicatedmolarratios.LLPSofLge1
occurredalreadyat0.1 μM,Strep–Bre1showsnoLLPSundertheconditionswe
tested.Meanands.d.areindicated.e,Condensatesof6×His–Lge1,6×His–
Lge1(IDR)or6×His–Lge1withanmGFP–Bre1shellwereincubatedwithTRITC-
labelleddextranofdifferentsizes(finaldextranconcentration0.05 mg ml−1
)
for15 minat20 °C.SampleswereimagedbyDICandfluorescencemicroscopy.
Scalebar,10 μm.Thetablebelowshowsthehydrodynamicradius(Rh)for
differentdextransinaqueousbuffer,andisadaptedfrompreviouslypublished
work32
.f,Lge1–Bre1condensatesarepermeabletodextranofdifferentsizes.
Dextranisneverexcluded(partitionratios ≥ 1).Meanands.d.areindicated;
n = 60 condensates.g,AverageRh ofrecombinantproteinsusedinthisworkas
measuredbydynamiclightscatteringat20 °C.Theexpectedmolecularmass
wascalculatedaccordingtotheaminoacidcompositionoftheprotein,and
comparedtotheexperimentalmolecularmassobtainedbydynamiclight
scattering.Finaldatacorrespondtotheaverageofatleasttwoindependent
measures.n.d.notdeterminable.
ExtendedDataFig.5|Lge1tyrosineresiduesarecriticalforLLPS.a,Phase-
separationassaywiththeindicated6×His–Lge1constructs(10 μM).Scalebar,
10 μm.Cartoonsaredrawntoscale.Lge1(Y>A,1–102)containsthreeadditional
mutationswithinaminoacids1–102besidestheY>Amutationsinthesticker
region(aminoacids1–80)(ExtendedDataFig. 2a),whichincreasesthe
disruptionofLge1LLPSin vitro.b,Quantificationofcondensatesizes(6×His–
Lge1constructs,10 μM).n,quantifiedcondensates.Dotplotshowsmedianand
interquartilerange.****P value < 0.0001,determinedbytwo-sidedMann–
Whitneytest.n.d.notdeterminable.c,Inputgelfora.Asteriskindicates
degradationproduct,arrowheadsindicateLge1constructs.See
SupplementaryFig. 2foruncroppedgels.
Article
ExtendedDataFig.6|Lge1–Bre1condensatesrecruittheE2Rad6and
chromatin.a,RecruitmentofPacific-Blue-labelled6×His–Rad6(heredenoted
‘Rad6*’)(3 μM)ormGFP–Bre1(3 μM)toLge1condensates.Experimental
conditionsasinFig. 2a.Fluorescentintensitieswerequantifiedacrosssingle
condensates.n,numberofcondensates.Scalebar,5 μm.b,Therecruitmentof
Rad6tocondensateswasexaminedbyaddingRad6*to6×His–Lge1
condensatesinthepresenceandabsenceofanmGFP–Bre1(1.5 μM)ormGFP–
Bre1(LBD)(15 μM)shell.TheBre1(LBD)constructhasaweakeraffinitytoLge1
thanfull-lengthBre1,andthereforerequiresahigherconcentrationinthe
assay.MicroscopywasperformedimmediatelyafteraddingRad6*(3 μM)and
followedovertime.Fluorescentintensitieswerequantifiedacrosssingle
condensates.n,numberofcondensates.Scalebar,5 μm.c,Reconstituted
mononucleosomes(1×NCP)andoligonucleosomes(16×NCP)wereanalysedby
SDS–PAGEandCoomassiestainingtoassesspurityandstoichiometry.
d,Negative-stainelectronmicroscopywasperformedtoassessthestructure
ofoligonucleosomes.White arrowheads labelindividualnucleosomes,blue
arrowheadsindicatethelinkerDNA.Scalebar,100 nm.e,Recruitmentof
mononucleosomestoLge1condensateswithanmGFP–Bre1shell. Hoechst-
labelled,reconstitutedmononucleosomes(1×NCP*,0.5 μM)wereaddedto
6×His–Lge1condensateswithanmGFP–Bre1shell(3 μM),andimagedovertime
(min).n,numberofcondensates.Scalebar,5 μm.f,Recruitmentof
oligonucleosomestoLge1condensates.The16×NCPs*(0.5 μM)wereaddedto
6×His–Lge1condensatesandimagedovertime(min).n,numberof
condensates.Scalebar,5 μm.g,Diffusionandretentionof601WidomDNAinto
Lge1condensates.SamesetupasinfbutwithHoechst-labelled16×601Widom
DNA(16×DNA*)addedto6×His–Lge1condensates.n,numberofcondensates.
Scalebar,5 μm.h,Traces(opticaldensityat254 nm)ofthesucrose gradient
sedimentationassays(5–45%)showareproduciblefractionationpatternfor
cellextractspreparedfromtheindicatedstrains.Thedifferentribosomal
speciesandfractionsareindicatedandcorrespondtothefractionsinFig. 3a.
i,Proteinlevelsincellextractsusedforsucrosegradientassays.Anti-Pgk1
servesasaloadingcontrol.SeeSupplementaryFig. 2foruncroppedgelsand
western blots.
ExtendedDataFig.7|AnalysisofLge1andBre1in vivo.a,Galleryof
representativeimagesofbre1∆ lge1∆cellsco-expressingtheindicated
constructsfromthestrongGPDpromoter.Scalebar,2 μm.b,1,6-Hexanediol
treatment(10%,w/v)reducestheformationofLge1–Bre1puncta,butalso
affectsnuclearimportandthuscomplicatestheinterpretationofhexanediol
effectsincells.Whiteasterisklabelsthevacuole;dashedwhitelineshowsthe
cellcontour.Scalebar,2 μm.c, d,Liveimagingofbre1∆ lge1∆cellsexpressing
mGFP–Bre1(c)oranemptyvector(d),andtheindicatedLge1–mCherry
constructs.Dashedwhitelineshowsthecellcontour.Thefluorescence
intensityofLge1–mCherryconstructswasquantifiedacrossalinespanningthe
nucleus.Forcomparison,thearbitraryfluorescenceunitvalue = 1ismarked
withahorizontaldashedline(exceptford,inwhichthedashedlineindicatesa
valueof0.5).n,numberofrandomlyselectedcells.Scalebar,2 μm.
e,Quantificationofbackground-correctedtotalcellfluorescence(CTCF)of
mCherryinc, d.Dotplotsshowmedianandinterquartilerange.f,Comparison
ofprotein-expressionlevelsofdifferentLge1–mCherryconstructsinc.Cell
lysateswereanalysedbySDS–PAGEandimmunoblottingwithanti-mCherry
antibody.Anti-Pgk1servesasaloadingcontrol.Asteriskindicatesa
degradationproduct.RedarrowheadsindicateLge1constructsaccordingto
theirpredictedsizes.SeeSupplementaryFig. 2foruncroppedwesternblot.
g,Galleryofrepresentativeimagesofbre1∆ lge1∆cellsexpressingVC–Bre1and
Lge1–VNorLge1(CC)–VN.Nup188–mCherrymarksthenuclearenvelope.Scale
bar,2 μm.h,Liveimagingofbre1∆ lge1∆cellsexpressingVC–Bre1andthe
indicatedLge1–VNconstructsfromtheirendogenouspromoters. Nup188–
mCherrymarksthenuclearenvelope,andthedashedlinemarksthecell
contour.Histogramsrepresentpixelfrequenciesoffluorescenceintensity
values.Scalebar,2 μm.i,QuantificationofmeannuclearBiFCintensityinhand
Fig. 3d.Medianandinterquartilerangeareindicated.n,numberofcells.
***P < 0.001,determinedbytwo-sidedMann–Whitneytest.ns,notsignificant.
Article
ExtendedDataFig.8|EffectsoftheIDRofLge1onglobalH2B
ubiquitination,andadditionalChIP-exoanalyses. a,Globallevelsof
H2BK123ub.Alge1∆ Flag-H2Bstrainwastransformedwithplasmid-based
variantsofLGE1-mCherryoranemptyplasmid.Celllysatesweresubjectedto
anti-Flagimmunoprecipitation,andanalysedbySDS–PAGEand
immunoblottingwithanti-Flagantibody.Differentexposuresofthe
monoubiquitinatedH2B bandareshown.SeeSupplementaryFig. 2for
uncroppedwesternblots.ExpressionlevelsoftheLge1–mCherryconstructsin
cellextractsareshowninExtendedDataFigs. 7f,10e.b,H2B(left)or
H2BK123ub(right)ChIP-exotag5′endswereplottedrelativetothe+1
nucleosomeofallgenesforwildtype(greytrace)andtheindicatedlge1
mutants(redtraces).Sequencingtagswerenormalizedacrossdatasetstoa
30-bpwindowcentredinthenucleosome-freeregion (NFR)ofallgenes,
representingunboundbackgroundregions.Thefirstthreegenicnucleosomes
arelabelled+1,+2and+3.TwoH2Bpeaksareobservedpernucleosome
position.H2BK123ubpatternsareshownseparatelyforribosomal-protein
genes,andSAGA-andTFIID-dominatedgenes.Analyseswereperformedasin
Fig. 4a.c,ChIP-exoanalysisshowsthatLge1functionisnotcompromisedbythe
plasmid-basedapproachusedinthisstudy(top).H2B(left)orH2BK123ub
(right)occupancyinstrainswithplasmid-basedexpressionofLGE1underits
endogenouspromoter(greytrace)wascomparedtostrainswithLGE1inits
chromosomalcontext(bluetrace).AnalysisofChIP-exobackgroundusinga
non-specificIgGantibody(bottom).H2BK123ubenrichmentinanlge1∆ bre1∆
strain(redtrace)isreducedtobackgroundlevels(IgGnegativecontrol,black
trace).Analyseswereperformedasdescribedinb.
ExtendedDataFig.9|EnrichmentofLge1alonggenebodiescoincideswith
establishmentofH2Bubiquitinationpattern. a,TAP-taggingdoesnotimpair
Lge1functionundertheconditionswetested(relatedtoChIP-exoinb).C-orN-
terminallyTAP-taggedversionsofLGE1 weretransformedintolge1∆cells,and
theirgrowthwascomparedtoanuntaggedBY4741controlstrain.Lge1proteins
wereexpressedatsimilarlevels.CelllysateswereanalysedbySDS–PAGEand
immunoblottingwithanti-protein Aantibody.Anti-Pgk1servesasaloading
control.SeeSupplementaryFig. 2foruncroppedwesternblots.b,Genome-
widebindingprofilesofLge1.Frequencydistributionof5′tagsofLge1ChIP-exo
weremappedtothemidpointbetweengenetranscriptstart(TSS)andend
(TES)forribosomal-protein,SAGA-dominatedandTFIID-dominatedgene
classes.Eachclasswassortedbygenelength,thusgeneratingbellplots.Lge1
bindingprofilesinwild-typeandbre1∆backgroundsaredepicted.Insertionof
theTAPtagattheNorCterminusgavesimilarenrichmentpatterns.TAP-
taggedReb1and‘NoTAPtag’serveaspositive(site-specificbinding)and
negativecontrols,respectively.c,Lge1bindingistiedtotheexpressionofthe
targetgene,andislargelyindependentofBre1(blackversusredtraces).
CompositeplotsofLge1enrichmentattop-andbottom-15%expressedgenes33
areshowninthetopandbottompanels,respectively.TheIgGnegativecontrol
isdepictedasagreytrace.ChIP-exotag5′endsweremappedtothe+1
nucleosomedyad(asdefinedbymicrococcalnuclease(MNase)H3ChIP
sequencing).H2Boccupancyisdepictedasafilledlightgreytrace.The+1,+2,
+3and+4 nucleosomepositionsarehighlighted.Thetablerepresentsthe
percentageofthemembersofeachgeneclassincludedinthetopandbottom
15%.d,QuantificationofH2BK123ubdensityforthefirstthreegenic
nucleosomepositionsinvariousLge1mutants.Tabledepictsthefold
enrichmentofH2BK123ubdensity(ChIP-exoH2BK123ub/H2B)atcanonical
nucleosomepositions+1,+2,and+3fortheindicatedmutantsrelativetowild
type.Datafortwobiologicalreplicatesareshown.BY4741isapositivecontrol
andcorrelateswiththestraincarryingwild-typeLGE1onaplasmid.Ratiosfor
eachgeneclassareindicated,todirectlycomparewithgraphsshowninFig. 4a,
ExtendedDataFig. 8b.e,CorrelationbetweentwobiologicalreplicatesforH2B
andH2BK123ubdatasetsareshown.ChIP-exotag5′endswerebinnedin500-
bpintervals,andthecoefficientofcorrelationbetweenthetwodatasetswas
calculated.
Article
ExtendedDataFig.10|SpecificfeaturesofyeastLge1andhumanWAC
contributetoH2BK123ubandcellviability.a,TheIDRsofWACandLAF1
promoteLLPS.Phase-separationassayofrecombinant6×His–Lge1andthe
fusionconstructs6×His–WAC(1–318)–Lge1(CC)and6×His–LAF1(1–169)–
Lge1(CC)(bothproteins,5 μM;buffer,20 mMTrispH7.5,100 mMNaCland
1 mMDTT,20 °C).Scalebar,10 μm.Proteininputsareshownontheright(black
arrows).b,Quantificationofcondensatesizes(inμm2
)ina.n,numberof
condensates.Dotplotshowingmedianandinterquartilerange.**P = 0.004,
****P < 0.0001,determinedbytwo-sidedMann–Whitneytest.c,Asynthetic
geneticapproachwasusedtoinvestigatethefunctionalityofLge1LLPSin vivo.
CellswereinviablewhenLGE1andHTZ1weredeletedtogether,indicatinga
functionalrelationship.Double-deletionstrainscontainingawild-typeLGE1
coverplasmid(Uramarker)werecotransformedwiththeindicatedplasmids
(Hismarker).GrowthwasfollowedonSDC–His(loadingcontrol)andon
SDC + 5-FOA,whichshufflesouttheUracoverplasmid.Cellswerespottedin
tenfoldserialdilutionsandincubatedfortwo(SDC–His)orthreedays(5-FOA)
at30 °C.d,Liveimagingofbre1∆ lge1∆cellsexpressingmGFP–Bre1andWAC(1–
318)–Lge1(CC)–mCherryorLAF1(1–169)–Lge1(CC)–mCherryshowsprotein
importintothenucleus.Dashedwhitelineindicatesthecellcontour.
FluorescenceintensityofthemCherryconstructwasquantifiedacrossaline
spanningthenucleus.Forcomparison,thearbitraryfluorescenceunitvalue = 1
ismarkedwithahorizontaldashedline.n,numberofcells.Scalebar,2 μm.
e,CelllysatesofstrainsincanddwereanalysedbySDS–PAGEand
immunoblottingwithanti-mCherryantibody.Anti-Pgk1servesasaloading
control;asterisksindicatedegradationproducts.Redarrowheadsindicate
Lge1constructsaccordingtotheirpredictedsizes.f,Liveimagingof
bre1∆ lge1∆cellsexpressingVC–Bre1andWAC(1–318)–Lge1(CC)–VNorLAF1(1–
169)–Lge1(CC)–VNconstructsfromLGE1endogenouspromoter. Arrowheads
labelnuclearBiFCpuncta,Nup188–mCherrylabelsthenuclearenvelopeand
dashedlinesindicatethecellcontours.Histogramsrepresentpixelfrequency
offluorescentintensityvalues.Scalebar,2 μm.g,Coefficientofvariationofthe
fluorescence-intensitydistributionofBiFCsignalsinfandFig. 3e.Thehigher
thecoefficientofvariation,thegreatertheheterogeneityoftheBiFCsignal.A
propensityforLLPSissuggestedbyanincreasedcoefficientofvariationofthe
WAC(1–318)–Lge1(CC)–VNconstruct.Dotplotshowingmedianand
interquartilerange.n,numberofcells.**P = 0.0024,***P < 0.001,determined
bytwo-sidedMann–Whitneytest.h,ExpressionlevelsofLge1–mCherry
constructsusedini.CellslysateswereanalysedbySDS–PAGEand
immunoblottingwithanti-mCherryantibody.Anti-Pgk1servesasaloading
control.Asteriskindicatesdegradationproducts.Redarrowheadindicates
Lge1constructs.i,Geneticinteractionanalysis,setupasincwiththeindicated
plasmids.SeeSupplementaryFig. 2foruncroppedgelsandwesternblots.
Phase separation directs ubiquitination of gene-body nucleosomes.pdf
Phase separation directs ubiquitination of gene-body nucleosomes.pdf
Phase separation directs ubiquitination of gene-body nucleosomes.pdf
Phase separation directs ubiquitination of gene-body nucleosomes.pdf

More Related Content

Similar to Phase separation directs ubiquitination of gene-body nucleosomes.pdf

NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in ArabidopsisNaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
Yang Zhu
 
transciption powerpoint
transciption powerpointtransciption powerpoint
transciption powerpoint
Nikka Bañez
 
Crystal Structure of the Retinoblastoma Protein
Crystal Structure of the Retinoblastoma ProteinCrystal Structure of the Retinoblastoma Protein
Crystal Structure of the Retinoblastoma Protein
Maciej Luczynski
 
Molecular Bio Poster 12_9 SuperFinal
Molecular Bio Poster 12_9 SuperFinalMolecular Bio Poster 12_9 SuperFinal
Molecular Bio Poster 12_9 SuperFinal
Josh Cena
 
Symposium 2014 Presentation CBE
Symposium 2014 Presentation CBESymposium 2014 Presentation CBE
Symposium 2014 Presentation CBE
Jiaochen Shen
 
NAGK-dynein-Golgi interaction at Golgi outpost
NAGK-dynein-Golgi interaction at Golgi outpostNAGK-dynein-Golgi interaction at Golgi outpost
NAGK-dynein-Golgi interaction at Golgi outpost
Md. Ariful Islam
 
GabR_A
GabR_AGabR_A
GabR_A
Rui Wu
 

Similar to Phase separation directs ubiquitination of gene-body nucleosomes.pdf (20)

Konkol_ACS 2015
Konkol_ACS 2015Konkol_ACS 2015
Konkol_ACS 2015
 
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in ArabidopsisNaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
 
Molecular cell biology 2 transcription
Molecular cell biology 2 transcriptionMolecular cell biology 2 transcription
Molecular cell biology 2 transcription
 
transciption powerpoint
transciption powerpointtransciption powerpoint
transciption powerpoint
 
Opella et al
Opella et alOpella et al
Opella et al
 
C2H2_review
C2H2_reviewC2H2_review
C2H2_review
 
Structural Modeling of the PTF1-J and PTF1-L Heterotrimeric Transcription Fac...
Structural Modeling of the PTF1-J and PTF1-L Heterotrimeric Transcription Fac...Structural Modeling of the PTF1-J and PTF1-L Heterotrimeric Transcription Fac...
Structural Modeling of the PTF1-J and PTF1-L Heterotrimeric Transcription Fac...
 
G protein signal
G protein signalG protein signal
G protein signal
 
Crystal Structure of the Retinoblastoma Protein
Crystal Structure of the Retinoblastoma ProteinCrystal Structure of the Retinoblastoma Protein
Crystal Structure of the Retinoblastoma Protein
 
Molecular Bio Poster 12_9 SuperFinal
Molecular Bio Poster 12_9 SuperFinalMolecular Bio Poster 12_9 SuperFinal
Molecular Bio Poster 12_9 SuperFinal
 
B-box proteins in plants bbx family of plant transcription factors
B-box proteins in plants bbx family of plant transcription factorsB-box proteins in plants bbx family of plant transcription factors
B-box proteins in plants bbx family of plant transcription factors
 
RAGE-Mediated Cell Signaling.pdf
RAGE-Mediated Cell Signaling.pdfRAGE-Mediated Cell Signaling.pdf
RAGE-Mediated Cell Signaling.pdf
 
Symposium 2014 Presentation CBE
Symposium 2014 Presentation CBESymposium 2014 Presentation CBE
Symposium 2014 Presentation CBE
 
H52YCcP_JMB_2003.PDF
H52YCcP_JMB_2003.PDFH52YCcP_JMB_2003.PDF
H52YCcP_JMB_2003.PDF
 
Leukocyte Trafficking in Health and Diseases 2016
Leukocyte Trafficking in Health and Diseases 2016Leukocyte Trafficking in Health and Diseases 2016
Leukocyte Trafficking in Health and Diseases 2016
 
A highly efficient and selective synthesis of lissoclinolide
A highly efficient and selective synthesis of lissoclinolideA highly efficient and selective synthesis of lissoclinolide
A highly efficient and selective synthesis of lissoclinolide
 
NAGK-dynein-Golgi interaction at Golgi outpost
NAGK-dynein-Golgi interaction at Golgi outpostNAGK-dynein-Golgi interaction at Golgi outpost
NAGK-dynein-Golgi interaction at Golgi outpost
 
High similarity among ChEC-seq datasets.pdf
High similarity among ChEC-seq datasets.pdfHigh similarity among ChEC-seq datasets.pdf
High similarity among ChEC-seq datasets.pdf
 
GabR_A
GabR_AGabR_A
GabR_A
 
Interaction between ligand and receptor
Interaction between ligand and receptorInteraction between ligand and receptor
Interaction between ligand and receptor
 

Recently uploaded

Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Cherry
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
Cherry
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Cherry
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cherry
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
Cherry
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Cherry
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Cherry
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 

Recently uploaded (20)

Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Daily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter PhysicsDaily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter Physics
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 

Phase separation directs ubiquitination of gene-body nucleosomes.pdf